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A. bs t ract 
This paper presents a detailed, but efficiently solv- 

able model of the N version programming for evaluating 
the reliability rind performability over a mission period. 
Employing a hierarchical decomposition we reduce the 
model complexity and ,provide a modeling framework 
for evaluating the N V P  failure and execution time be- 
havior and the operational environment, 0,s well. The 
failure and execution rates are treated as random vari- 
ables and the operational profile is analyzed on mi- 
crostructure level, looking at probabilities o j  occurrence, 
failure and execution rates for each partition of input 
space. The reliability submodel, that represents per run 
behavior of NVP,  includes both functional failures and 
timing failures thus resdting in system reliabilif y which 
accounts for performance requirements. The succes- 
sive runs are modeled b y  the performance submodel, 
that represents the iterative nature of software's execu- 
tion. Combining the results of both submodels, we as- 
sess the performability over a mission period that rep- 
resents the collective effect of multiple system attributes 
on the NVP effectiveness. 

1 Introduction 
In this paper we analyze the software fault toler- 

ance technique based on N version programming, first 
proposed in [2]. It relies on the application of design di- 
versity: program versions are independent#ly designed 
to meet the same systenri requirements [3], [lG]. A con- 
sistent set of inputs is supplied to all versions and all 
N versions are executed in parallel. A decision mecha- 
nism must gather the available results from the N ver- 
sions and determine thle result to be delivered to the 
user. If a decision mechanism requires all N versions to 
produce a result, a slow or fail stop version would delay 
this process indefinitely. In a real -time environment, 
such a delay is unacceptable, so a timing constraint is 
used to ensure that results are delivered in a timely 
manner. 

In order to investigat#e the effectiveness of software 
fault tolerance in improving reliability the analysis has 
either been performed b'y empirical studies or by mod- 
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eling techniques. We provide an overview of the cur- 
rent state of the art of the software fault tolerance anal- 
ysis and, through this evaluation, lay the groundwork 
for future research directions. 

The several experimental studies investigated the 
key assumption that design diversity will result in soft- 
ware versions that have sufficiently different failure 
characteristics. Diversity has been introduced in the 
form of different specifications [3], [4], [lo], [lG], differ- 
ent programming languages [.?], [lo], and for different 
distributions of test values; over the input space [4]. 
All versions were developed independently by different 
teams, in some studies even by geographical distinct 
participants [4], [7], [17], [20]. 

Examining the results obtained by these experi- 
ments reveals several characteristics of NVP: 

0 The assumption of independence of failures be- 
tween independently developed programs does not 
hold. For example, the experiments [7], [17] or [20] 
observed identical or similar faults involving up to 
5,  4 or 2 versions, respectively. 

0 The coincident failures were observed in every 
experiment conducted thus far. Coincident fail- 
ures do not necessarily result from related design 
faults. Independent faults causing coincident fail- 
ures were also observed. 

0 The failure behavior is very sensitive to the distri- 
bution of test values over the input space. 

0 The faults that  were tolerated were not the same 
as the faults that  weFe detected by fault elimi- 
nation techniques and the faults that  reduce the 
effectiveness of the N V P  are among the most dif- 
ficult to detect [28]. 

In general, using NVP in these experimental studies 
show more or less gain in reliability. The success of 
the NVP approach clearly depends on the degree to 
which we can achieve the diversity of the versions' fail- 
ure behavior. 



A number of papers devoted to the dependability 
modeling of software fault tolerant techniques have ap- 
peared in the literature. I t  is obvious that there are 
two disjoin modeling approaches. On one side, the 
major goal for the first approach is the modeling and 
evaluation of the dependability measures of the par- 
ticular fault tolerant structure. Methods of specifying 
the system structure include combinational [14], [27], 
discrete time Markov chain [l], [18], [31], continuous 
time Markov process [ll], [la], [13], fault trees and 
Markov reward models [5], extended stochastic Petri 
net and simulation [9], and generalized stochastic Petri 
nets [15] model types. 

On the other side, the major goal of models that be- 
long to the second class, based on the ground - break- 
ing work of Eckhardt and Lee’s [6], is the precise mean- 
ing of the independence refered to the failure behavior 
of the diverse program versions. The intensity of coin- 
cident errors 8(z) has a central role in this analysis. It 
describes the notion that component versions may fail 
together and gives the probability that a component, 
when chosen a t  random, fails on a particular input 2 .  

The key idea is that B(z) will generally take different 
values for different inputs z. The objective of 1191 is 
to study the situation when there are available several 
software development methodologies. The idea is that 
8 will vary not only from one 2 to another, but from 
one methodology to another. Other contributions in 
this class include modeling the intensity of coincident 
errors by a random variable with a Beta density func- 
tion in [25] and the recovery block modeling considered 
in [30] which examines several methods for determining 
the intensity distribution: the use of the beta binomial 
distribution suggested in [25], and two new methods 
based on the pairwise correlation of modules. 

Safety critical real - time computer applications are 
characterized by stringent deadlines and high reliabil- 
ity requirements. In these terms, deadlines on the time 
that certain processes should be completed is perfor- 
mance property, while the fault tolerance is a reliabil- 
ity related property. However, one must place certain 
constraints on how properties affecting performance in- 
teract with those affecting dependability. For this pur- 
pose, a unified measure, called performability has been 
introduced [21]. In spite of the vast number of papers 
that consider performability of hardware systems [22] , 
model based evaluation of software fault tolerance tech- 
niques has been focused on either separate evaluation 
of performance and dependability, or strict measures of 
dependability until the recently proposed performabil- 
ity modeling framework of the NVP [as]. This hierar- 
chical model is constructed in two layers: a dependabil- 
ity submodel (discrete time Markov chain suggested in 
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[l]) and a performance submodel (a renewal process 
where each program iteration is represented by a re- 
newal cycle). The information contributed by the lower 
layer constitutes the upper layer model thus combin- 
ing performance and dependability measures, via the 
concept of performability. 

2 The NVP model 
With the benefit of this background, we develop an 

unified approach aimed a t  modeling both the N ver- 
sion system behavior (including time aspects) and the 
operational environment. The fault tolerant software 
system investigated here is for the real - time, mission 
critical applications. The success of such a system de- 
pends not only on its logical correctness, but also on its 
timing correctness. It must make correct responses to 
environmental changes within specified time intervals 
or deadlines. The program periodically gets the inputs 
from the environment and generates the output that is 
a function only of the most recently accepted input. 

In order to reduce the model complexity we use the 
hierarchical decomposition. The reliability submodel 
considers both functional and timing failures and ac- 
counts for the correlation between versions for single 
input due to the influence of the operational environ- 
ment. On the other hand, the performance submodel 
considers the execution behavior of the NVP includ- 
ing the correlation between versions’ execution times. 
The performability model combines information con- 
tributed by these submodels by associating the reward 
value obtained by reliability submodel to each iteration 
cycle of the performance submodel. 

2.1 Reliability submodel 
The reliability submodel incorporates the basic con- 

cepts of software reliability theory, so a precise though 
informal definitions for a set of terms relating to soft- 
ware reliability are given. A fault is the defect in 
the program that executed under particular conditions 
causes failure. Thus, a soflulare failure is the event 
which occurs when the software is subjected to an in- 
put condition such that,  due to the presence of one 
or more faults in code, the resultant output will be 
different (in time or value) from the required output 
according to design specifications [23]. Such a general 
definition of failures enables us to combine functional 
failures, where the output is incorrect, and timing fail- 
ures, where the output is not produced on time. It 
is very important for real - time applications because 
failing to meet deadline may have an adverse effect on 
system reliability. This issue has been addressed only 
in simulation based method presented in [9]. 

In accounting for dependence we use the idea that 
the influence of the operational environment on ver- 



sions failures and execution times induces correlation. 
Since the effects of faults are typically quite sensitive to 
just how a system is utilized, it is helpful to distinguish 
the NVP system from its environment. The concept 
of the operational envircmment (already used for soft- 
ware testing [24]) is reviewed next. The operation of 
a software is broken down into series of runs and each 
run performs mapping between a set of input variables 
and a set of output variables and consumes a certain 
amount of execution time. Usually a run is a quantity 
of work initiated by some input. Runs that, are identi- 
cal repetitions of each other are said to form1 a run type. 
Because the probabilities of occurrence of input states 
are the natural way of rlepresenting the program usage 
in its operational environment the operatzonal profile is 
defined as a set of relative frequencies of occurrence of 
the run types. If the relative frequencies of selection 
have changed, then the operational profile has changed 
and that will affect the reliability. 

For this study we do not distinguish between de- 
tected and undetected failures, that is we do not in- 
vestigate the error detection capabilities off NVP. The 
view point taken here is that if there is a requirement 
for fault tolerance, then there is also a requirement for 
the system to provide a continuation of service. 

The reliability submodel, which represents per run 
behavior of NVP, is coinstructed in two steps. First, 
we develop the continuous time Markov model which 
considers both the failure and execution behavior of 
NVP, given a particular input state. Then, the user - 
oriented model of the operational environment is devel- 
oped, and the probability distributions are defined in 
execution time - input space domain, thus accounting 
for the correlation between versions due to the common 
input. 
2.1.1 Model of N'VP behavior. We assume 
that: 

Corresponding to the different development pro- 
cesses, the version failures and execution times are 
conditionally independent, given a particular in- 
put state. 

For each input state, times to failure of program 
versions are identically distributed random vari- 
ables, as well as the execution times. Further, we 
take both of them to be exponentially distributed. 
The particular values of the failure rate and ex- 
ecution rate, given an input state, are X and p 
respectively. 

These assumptions guarantee that, given ;a particular 
input state, a finite state continuous time Markov pro- 
cess can be used for the reliability modeling of the N 
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version system. A state is defined as a vector ( i , j ,  k), 
O L i , j , k < n ,  i + j + k < n ,  where 

i is the number of versions that have encountered 
functional failure during the execution and have 
not completed the execution 

is the number of versions that have completed the 
execution producing functionally incorrect result 

i s  the number of versions that have completed the 
execution producing correct result. 

j 

IC 

The Markov model for the particular case of three 
version system and the transitions and associated rates 
for the case of N versions are presented in figure 1. 

Due to the real - time constraint, we define the de- 
terministic parameter characterized as a fixed bound 
T > 0 on the time to complete a run. Note that all 
probabilities in this section are conditional on particu- 
lar values of failure rate X and execut;on rate p which 
correspond to the given input state. To simplify nota- 
tion, we write P{ t  5 T I X , ~ }  as P{T} .  

Performing derivations of the Markov process yields: 

(4) 

Since the decision algorithm does not distinguish the 
versions that have not completed the execution (with 
or without functional failure) we can rewrite the ex- 
pression (1) as: 

where d = j + k is the number of versions that have 
completed the execution until T and 

It is obvious that the above joint pmf is the multino- 
mial pmf and the marginal pmf's are binomial. They 
are characterized in terms of the probabilities Pend 
(individual version produces correct result before T ) ,  



i f j + k < n  
i f i > O  
i f i + j + k  < n. 

Figure 1: Markov reliability model 

P f e n d  (individual version produces functionally incor- 
rect result before r )  and P n o e n d  (individual version 
has not completed the execution until 7). Using the 
marginal pmf's of the distribution (6) we obtain the 
probabilities which characterize NVP failure and exe- 
cution behavior. Thus, we define liming failure of N 
version system (n  = 2m - I) ,  on given input state, to  
be the event that  majority of versions do not produce 
output in time 5 r 

Ptf(7) = 2 ( y )  P i o e n d ( 7 )  [I - P n o e n d ( ~ ) ] ~ - ' .  (8) 

a majority of incorrect results (functional failure) 

Pff(7) = 2 ( S) ';end(.) ~ f e n d ( . > ~ n = i l  (10) 
j=m 

or there is no majority of either correct or incorrect 
results 

Pnm(7) = 1 - Ptf(r) - Pok(r) - Pjf(~). (11) 
The analysis outlines some relations between failure 

probabilities l-Pok(.), Pjf(7) and P t j ( ~ ) ,  given apar-  
ticular input state. Total failure probability 1 -Pok(r),  
likewise the functional failure probability P f j  ( r ) ,  in- 
creases for higher failure rate A, as well as for longer av- 
erage execution time (smaller execution rate ,U). How- 
ever Pff (.) is significantly more sensitive to the varia- 
tion of the failure rate than the total failure probability. 
Note that the total failure probability is approximately 
equal to the timing failure probability Ptf(.) i f p  >> A. 
If 1.1 - A ,  or even p < X the major contribution to 

I=m 

If the majority of versions have completed the execu- 
tion before . it is possible that there is majority of 
correct results (success) 

Pok(7) = 5 ( i )  P:n,(~) [i - pend(7)]n-k,  (9) 
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the total failure probability comes from the functional 
failure probability. 
Influence of the parameters A, p, 7. We desire a 
condition on model parabmeters A ,  p and T such that the 
NVP processing a given input improves the probability 
of success, and reduces the probabilities of functional 
and timing faillure. Note that the probabilities of suc- 
cess, functional failure and timing failure of NVP are 
functions of a form 

where y is either Pe,d(T), Pfend(7.) or Pnoend(7). 

Rather than examine the series of parameters it is de- 
sirable to examine the function @(y, n )  = h(y, n)  - y. 
A sufficient condition uinder which NVP improves the 
probability of success is Pend(7) > 0.5. Considering 
model parameters i t  means that NVP has greater prob- 
ability of producing the correct result on tiime than do 
single version if 

NVP reduces the timing failure probability if 
Pnoend(7) < 0.5,  that  is whenever 

(13) 

NVP reduces the probability of functional failure if 
pfend(T) < 0.5, that  is 

P 2 A  and T > O ,  or (14) 
P < X  and T < 7-1 (15) 

where 71 is the numerical value obtained by solving 
Pfend(T1) = 0.5.  The condition (15) is highly unde- 
sirable because such values of the model parameters 
certainly degrade the probability of success. It follows 
that the NVP effectiveness on particular input is im- 
proved if the condition (12) is satisfied. 
Generalization of the assumptions. Markov 
model is based on assurnptions that the time to failure 
and the time to end of execution are bolh exponen- 
tially distributed. Next, we introduce a rnethod that 
can be used to relax these assumptions and thus to 
account for quite general distributions. We define the 
following random variables: X time to the occurrence 
of functional failure and Y time to the end of execution 
of individual versions. ]Let denote by d the event that  
Y < X ,  by R the event that  X 5 Y ,  and by C the 
event that  Y 5 T .  Using the conditional distribution 
functions and the low of total probability we obtain 

Pend(T) = P{Cd) = P{Y < XIY = t}fy(t) dt(16) 
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Pfend(T) = P{cB}  = P{x 5 YIY = t}fy(t)dt(l7) IT 
Pnoend(7.) = 1 - P{C} = 1 - (P{Cd} + P{CB}) (18) 

Equations (16), (17) and (1.8) enable the different dis- 
tributions to be used for the time to the occurrence of 
functional failure X and the time to complete the ex- 
ecution Y .  Provided that both X and Y are exponen- 
tially distributed leads to  the equivalent expressions to 
ones derived earlier (4), (3) and (7). 
2.1.2 Operational environment model. In or- 
der to obtain the probabilities of program failing on 
randomly chosen input state the particular input state 
must be unconditioned from the above probabilities. 
We make the following additional assumptions: 

e The environment is homogeneous or time invari- 
ant and the operational period is sufficiently long 
so the input state selection probabilities can be 
characterized by a steatdy state. 

e The input states occur randomly and indepen- 
dently according to the operational profile. 

The last assumption, although usual in most software 
models [6], [19], [25] and software testing experiments, 
is a simplification of real life, as it does not explicitly 
model the phenomena of failure clustering which typ- 
ically occurs when successive input states are related 
to one another. 

Since the failure and execution behavior are quite 
sensitive to just how a system is utilized we need to 
account the change of the failure rate X and execution 
rate p.  Therefore, we model the failure and execu- 
tion rates as random variables, A and M respectively. 
Given a pair (A, M )  of random variables their joint dis- 
tribution function is H ( A , p )  = f f * ~ ( X , p )  = P { A  5 
A ,  A4 5 p }  and the unconditional probabilities of suc- 
cess, timing failure and functional failure for randomly 
chosen input state are: 

P M  P M  

where P0g(71A = X , M  = p) ,  P t , ( ~ l A  = X,M = p ) ,  
Pjf(~lA = X,M = p)  are given in (9),  (8), (10). Note 
that,  we use the Lebesgue - Stieltjes integral, thus 
covering both the discrete and continuous distribution 
functions H(A, p ) .  



It  is possible to make assumptions about the inde- 
pendence of random variables A and M and to use 
some theoretical distribution functions for H(X,  p) in 
order to obtain numerical results. Instead, we choose 
the user - oriented model of operational environment. 
Therefore, we partition the input space by grouping 
run types that exhibit (as nearly as possible) homoge- 
neous failure and execution behavior. The operational 
profile is analyzed on a microstructure level, looking 
at probabilities of occurrence, failure rate and execu- 
tion time rate for each partition of the input space. 
Suppose A = X i  and M = pi for each input state 
2 E Ak, where AI , A2, . . . , A, is a partition of input 
space Cl. The operational profile Q gives the probabil- 
ities P { A  = Xi, M = p j }  = pi j  = pk = Q ( A k )  that 
successive input states are chosen at  random in sub- 
set Ak of the 'input space R. Since the joint pmf pij  
is determined, there is no need to make assumptions 
about the independence of random variables A and M .  
In general, it  is possible A and M to be negatively, 
as well as positively correlated random variables, thus 
reflecting the influence of the failure behavior on per- 
formance behavior. In our model A and M take a finite 
number of values over subsets of 0, and the relations 
(19), (20) and (21) signify the following: 

i j  

i j  

i j  

It should be emphasized that these results concern 
averages over input space. This curious result acts as 
a warning that actual behavior can differ from the av- 
erage behavior [19]. Typically possible, but rarely oc- 
curring input conditions would not significantly con- 
tribute to  over - all failure probability even through it 
may be crucial that  software works correctly under this 
conditions. This reality can be handled by introduc- 
ing categories of criticality and generating operational 
profiles for each category, as suggested in [24]. 

Condition of independence. Consider for the mo- 
ment only two versions processing a randomly se- 
lected input. Let denote the probability that the sin- 
gle version fails on a given input x E Ak as p k  = 
1 - Pend(~lA = Xi,M = pj) and define the indicator 
random variable 1; taking value 0 if the sth version 
produces correct output on time for given input, and 
value 1 otherwise. Its expectation E[I;] = p k  is the 
probability that version fails on given input x E Ak. 
The probability that it fails on the randomly selected 

input is E[x;=, 1; p k ]  = E;=, Pk p k .  The probability 
that both versions fail on randomly selected input is 
E[C;=,  I l I i  p k ]  = CL=, pf p k .  The condition that 
versions fail independently on randomly selected input 
can be formulated as 

where the sum is over the set S of all distinct 
subsets { i ( l ) ,  i ( 2 ) }  chosen without replacement from 
{ 1 , 2 , .  . . , r } .  It follows that a necessary and sufficient 
condition for uncorrelated failures and execution times 
of the component versions is p q l )  = pi (2 ) ,  that is A 
and M to be identical for all subsets Ak for which 
p k  = &(Ak) # 0. This result shows that version fail- 
ures and execution times are correlated whenever A 
and M vary for different input states. Since the ex- 
pression on the left in relation (25) is the covariance 
and Cov 2 0 there is a tendency all versions to per- 
form relatively well or relatively poorly on a randomly 
chosen input. Note that this approach is pessimistic as 
it enables us to incorporate only positive correlation. 

Informally, only the total failure probability along 
the interval 0.5 5 pk 5 1 !imits the benefit that can 
be obtained with fault tolerance. We have already 
shown that the total failure probability P k  on given 
input is bounded by 0.5 if the condition (12) is satis- 
fied. However, it  is possible, although perhaps highly 
unlikely that this condition is violated for some subset 
of the input space. Even if this is the case, N version 
system still have smaller probability of failure than 
do single version when the operation profile assigns 
greater mass to intervals of the type (0.5 - b ,  0.5 - a],  
0 5 a < b than to their symmetrically located counter- 
parts [0.5 + a,  0.5 + b ) ,  as shown in [6]. 
2.2 Performance submodel 

The performance submodel considers only the exe- 
cution behavior of the NVP and the events are distin- 
guished only by their occurrences in time, independent 
of outcome result. Due to the iterative nature of soft- 
ware's execution the performance submodel suffices to 
consider a renewal process { N ( t ) , t  2 0} where each 
run is represented by a renewal cycle. Let the time 
between successive renewals be such that Ti is elapsed 
time from ( i  - 1)st run until the occurrence of i th run. 
In order to derive the distribution of Ti we first lump 
all states with the same value of j + k  of the Markov re- 
liability model in equivalent state I = j + k ,  (0 < 1 < n)  
and obtain death process with a linear rate (n - l ) p  for 
all states 1 .  If Y1, Yz . . . Y, are interpreted as the length 
of the execution times of n versions, given a particular 
input state, then the event that at least m among n 
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variables Yj are 5 t has the conditional (distribution 
function 

Next, we obtain the unconditional probability distribu- 
tion function of the time between successive renewals 

F ( t )  = 1” F(tlM = P )  d&f(p) (27) 

where H M ( p )  = P { M  15 p }  is the marginal probabil- 
ity distribution of H*MI(A, ,U). For our model of oper- 
ational environment (27) becomes 

where p i  = P { M  = p i }  = 
Note that the versions’ execution times are corre- 

lated whenever the execution rates are not identical for 
all subsets of input staties A k  for which pk = &(&) # 
0.  In other words, we ccinsider the correlation between 
execution times which is much more realis1,ic than the 
assumption of independence made in [29]. 

Due to  the real - time constraint, Ti is the time 
upon the end of NVP execution or upon reaching r ,  
whichever occurs first. It follows that the probability 
distribution of Ti is 

pjj. 

with mean recurrence ti:me m,. and variance U:.  

The performance submodel is also responsible for 
supplying the expected number of renewals for the time 
duration (0, t ] ,  called the renewal function: 

03 

E [ N ( t ) ]  = M ( t )  = c E’;*@) 
k = l  

where F:* denotes the n-fold convolution of F,. 
Since the consequences of failing to meet deadline 

could be catastrophic it is important to compute the 
distribution of the time to timing failure. Therefore, 
we consider a renewal process with distribution func- 
tion F ( t )  and look for the first occurrence of a time 
interval of duration r free of renewal epochs. Accord- 
ingly, the time to timing failure X is the tirne when in- 
terval duration from the preceding renewal event first 
exceeds the real - time constraint r > 0. The distri- 
bution V ( t )  = P I X  5 t }  can be obtained by deriving 
the renewal equation 
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which reduces to the standard renewal equation with 
the defective distribution L defined by 

F ( t ) ,  for t < r L( t )  = 

It follows that the distribution of the time to timing 
failure is 

V ( t )  = P { X  5 t }  = [l - L ( r ) ]  [1+ ML(t)] (33) 
where ML(t) = Ln*(i!) equals the expected num- 
ber of renewal epochs within (0, t ] .  According to [8] if 
there exists a number k such that JF e k y  dL(y) = 1 
then the asymptotic estimate for the distribution V ( t )  
can be expressed as 

1 - V ( t )  - - F ( r )  e-k( t - -7)  

km# (34) 

where m# = e k y  y dL(y) # 0. 
2.3 Performability niodel 

The performability model combines the information 
contributed by the reliability and performance sub- 
models. This is done by associating a reward rate ob- 
tained by the reliability submodel with each renewal 
cycle of the performance submodel. The performance 
variable is then taken to be the reward accumulated 
over some utilization period and could be interpreted 
as the number of successful runs (correct and timely 
outputs) during the bounded time interval (0, t ]  

k=l 

where zk is a reward value associated with the kth 
renewal interval T k  . The indicator random variable Zk 
takes value 1 if the NVP system provides correct and 
timely output in the kth renewal interval T k ,  and value 
0 otherwise. Its expected value E[Zk]  = po~(r) = p is 
defined by (22). 

The renewal equation for the mean number of suc- 
cessful runs A(t) = E [ W ( t ) ]  over the misson’s time t 
can be derived 

A ( t )  = E[Z1] + A(t  - X> ~ F , ( x )  (36) 1” 
resulting in 

It represents the collective effect of multiple system at- 
tributes computed from the reliability submodel P&(T) 
(22) and performance submodel M ( t )  (30). 

Since the mission duration t is much greater then the 
renewal interval times T k  the asymptotic expansion of 
the renewal function for large t [8] leads to 

1 t U: -mF 1 + -- + ~ lim A ( t )  = Pok(T) 
t-w m,. am: 



A = [I 

P1= 

- 
0.999 0 0 
0 0.001 0 
0 0 0 
0 0 0 
0 0 0 - 

-8, 0.1,0.5] 

P 2 =  

- 
0.98 0 0 
0 0.02 0 
0 0 0 
0 0 0  
0 0 0  - 

U = [0.5,0.2,0.1] r = 30 
- 

0.98 0 0 
0 0 0  

0 0 0  
0 0 0  

P 3 =  0 0 0.02 

1.8e+07- 

1.6e+07- 

1.4e+07- 

Table 1: Parameter values 

X 
X ? 

o x  

P1 0 
x P 2  + 

P3 0 
P 4  x 

t = 36.  lo6  

0.88 0 0 
0 0 0  

0 0.1 0 
0 0 0.02 

3 Numerical results 

The objective of this section is to demonstrate the 
impact of the variation of program characteristics (fail- 
ure and execution rate) and the operational environ- 
ment (input state selection probabilities) on the re- 
liability and performability related measures of the 
NVP. Suppose that each partition of the input space 
is defined by failure rate A = A i  and execution rat,e 
M = pj and the operational profile gives the proba- 
bilities pij  = P { A  = A;,M = p j }  that the successive 
input states are chosen at random in that partition. 
In applications of software redundancy it is reasonable 
to expect that P = [pij] assigns high probabilities of 
encountering inputs that  result in small duration of 
versions execution period compared to the time to fail- 
ure ( p  >> A).  The values assigned to model parameters 
are shown in Table 1. 

Figure 2 and 3 plot the mean number of successful 
runs and the failure probabilities for varying number of 
versions. The operational profile P1 encounters inputs 
that  result in the small version’s execution period com- 
pared to the time to failure ( p  >> A). It  is evident that 
the major contribution to the total failure probabil- 
ity comes from the timing failure probability. We also 
notice that increasing N does substantially reduce the 
failure probability. For example, N = 3 version sys- 
tem will reduce the total failure probability by approx- 
imately two orders of magnitude relative to that of a 
single version. Also evident is that a slight modification 
to the operational profile for the same program charac- 
teristics ( P 2 )  leads to the significant increase of failure 
probabilities and smaller mean number of successful 
runs. For example, 1 - P,~(T) < is achieved by 
3 version system when P1 is assumed, rather then the 
five versions when P 2  is considered. The operational 
profile P 3  assigns the same probability 0.02 as P 2  to 
the worse program characteristics (higher failure rate 
and smaller execution rate). As a result, 21 versions 
would be required to achieve the same level of the total 
failure probability Moreover, the benefit of in- 
creasing the number of versions is less significant com- 
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pared to P1 and P2. The operational profile P4 se- 
lects (with higher probability) inputs associated with 
even worse program characteristics ( p  - A) which re- 
sults in highly unreliable system. The  reliability can 
not be improved by any degree of fault tolerance since 
the benefit gained from increasing N is almost negligi- 
ble. We also notice that the total failure probability 
is approximately equal to the functional failure prob- 
ability. The mean number of successful runs is also 
degraded under this operational profile. However, it is 
less sensitive to the variations in the operational profile 
because the values of the execution rate and real - time 
constraint as defined above do not result in significant 
performance reduction. 

E[W(t)l 
2.4e+07 

2.2e+07 
+ 

2eS07 0 

n 
Figure 2: Mean number of successful runs 

Certain operational profiles, although highly un- 
likely, can result in N version system being more prone 
to failures than a single software component (corre- 
sponding diagrams are omitted due to space limita- 
tions). However, it is clear that  redundancy alone does 
not guarantee fault tolerance, and that the degree of 
improvement depends both on program characteristics 
and the operational profile. 
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Figure 3: Failure probabilities 

4 Conclusions arid future work 
This paper presents the modeling based study of 

both N versnon system and its operational environ- 
ment. The  base model supporting the solution is con- 
structed in two submodels: a reliability submodel and a 
performance submodel. The reliability submodel, that 
represents per run behavior of NVP, is constructed 
in two steps. First, we develop the continuous time 
Markov model which considers both the failure and 
execution time behavior of NVP, given a particular 
input state. The synchronization structure is repre- 
sented in terms of the execution time distrilbutions be- 
cause failing to meet deadline has an adverse effect on 
the reliability. Then, we develop the user - oriented 
model of operational environment, thus accounting for 
the correlation between versions due to the common 
input. Therefore, the iinput space is partitioned by 
grouping run types tha6 exhibit (as nearly as possi- 
ble) homogeneous failure and execution time behavior 
and the operational profile is analyzed on a imicrostruc- 
ture level, looking a t  probabilities of occurrence, failure 
and execution rates for each group of run types. The 
parameters (failure and execution rate) are treated as 
random variables, and the new probability distribution 
is defined in execution time - input space domain. We 
have also derived the conditions under which N version 
system improves the probability of producing correct 
result on time, and reduces the probabilities of func- 
tional and timing failure. 

The performance submodel considers only the exe- 
cution behavior of the NVP and represents the iterative 
nature of software executions. The successive runs are 
modeled by renewal process where each run is repre- 
sented by a renewal cyclle. As with the reliability sub- 
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model, we consider the correlation IJetween versions' 
execution times for a single input. The performance 
submodel permits us to determine the expected value 
and the variance of the duration of each run, the ex- 
pected number of runs for the mission duration time 
and the distribution of the time to timing failure. 

The performability model combines the information 
contributed by the reliability and performance sub- 
models thus representing the collective effect of mul- 
tiple system attributes on the NVP effectiveness. In- 
formally, this is done by associating a reward rate (ob- 
tained by the reliability submodel) with each renewal 
cycle of the performance submodel. The performance 
variable is taken to be the reward accumulated over 
mission period and we choose to settle for the mean 
number of successful runs (correct and timely outputs) 
during the bounded interval ( O , i ] .  

Anticipating the future work, it is useful to con- 
sider several possible extensions or modifications of our 
model: 

0 The alternative method presented in the paper 
could be used to relax the assumptions that the 
time to failure, as well as the execution time are 
exponentially distributed random variables and 
thus to account for quite general distributions. 

0 The correlation of subsequent input states might 
be considered as suggested in [26] or [30]. 

0 Rarely occurring input conditions that would not 
significantly contribute to over - all failure prob- 
ability (even through it  may be crucial that soft- 
ware works correctly under this conditions) could 
be handled by introducing categories of criticality 
into analysis. 
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