
Performabill.ity Modeling of N Version Programming Technique

Katerina GoSt:va - Popstojanova

Department of' Computer Science
Faculty of Electrical Engineering

Skopje, Macedonia 91000

A. bs t ract
This paper presents a detailed, but efficiently solv-

able model of the N version programming for evaluating
the reliability rind performability over a mission period.
Employing a hierarchical decomposition we reduce the
model complexity and ,provide a modeling framework
for evaluating the N V P failure and execution time be-
havior and the operational environment, 0,s well. The
failure and execution rates are treated as random vari-
ables and the operational profile is analyzed on mi-
crostructure level, looking at probabilities o j occurrence,
failure and execution rates for each partition of input
space. The reliability submodel, that represents per run
behavior of NVP, includes both functional failures and
timing failures thus resdting in system reliabilif y which
accounts for performance requirements. The succes-
sive runs are modeled b y the performance submodel,
that represents the iterative nature of software's execu-
tion. Combining the results of both submodels, we as-
sess the performability over a mission period that rep-
resents the collective effect of multiple system attributes
on the NVP effectiveness.

1 Introduction
In this paper we analyze the software fault toler-

ance technique based on N version programming, first
proposed in [2]. It relies on the application of design di-
versity: program versions are independent#ly designed
to meet the same systenri requirements [3], [lG]. A con-
sistent set of inputs is supplied to all versions and all
N versions are executed in parallel. A decision mecha-
nism must gather the available results from the N ver-
sions and determine thle result to be delivered to the
user. If a decision mechanism requires all N versions to
produce a result, a slow or fail stop version would delay
this process indefinitely. In a real -time environment,
such a delay is unacceptable, so a timing constraint is
used to ensure that results are delivered in a timely
manner.

In order to investigat#e the effectiveness of software
fault tolerance in improving reliability the analysis has
either been performed b'y empirical studies or by mod-

209
1071-9458/95 $4.00 01995 IEEE

Aksenti Grnarov

Department of Computer Science
Faculty of Electrical Engineering

Skopje, Macedonia 91000

eling techniques. We provide an overview of the cur-
rent state of the art of the software fault tolerance anal-
ysis and, through this evaluation, lay the groundwork
for future research directions.

The several experimental studies investigated the
key assumption that design diversity will result in soft-
ware versions that have sufficiently different failure
characteristics. Diversity has been introduced in the
form of different specifications [3], [4], [lo], [lG], differ-
ent programming languages [.?], [lo], and for different
distributions of test values; over the input space [4].
All versions were developed independently by different
teams, in some studies even by geographical distinct
participants [4], [7], [17], [20].

Examining the results obtained by these experi-
ments reveals several characteristics of NVP:

0 The assumption of independence of failures be-
tween independently developed programs does not
hold. For example, the experiments [7], [17] or [20]
observed identical or similar faults involving up to
5, 4 or 2 versions, respectively.

0 The coincident failures were observed in every
experiment conducted thus far. Coincident fail-
ures do not necessarily result from related design
faults. Independent faults causing coincident fail-
ures were also observed.

0 The failure behavior is very sensitive to the distri-
bution of test values over the input space.

0 The faults that were tolerated were not the same
as the faults that weFe detected by fault elimi-
nation techniques and the faults that reduce the
effectiveness of the N V P are among the most dif-
ficult to detect [28].

In general, using NVP in these experimental studies
show more or less gain in reliability. The success of
the NVP approach clearly depends on the degree to
which we can achieve the diversity of the versions' fail-
ure behavior.

A number of papers devoted to the dependability
modeling of software fault tolerant techniques have ap-
peared in the literature. I t is obvious that there are
two disjoin modeling approaches. On one side, the
major goal for the first approach is the modeling and
evaluation of the dependability measures of the par-
ticular fault tolerant structure. Methods of specifying
the system structure include combinational [14], [27],
discrete time Markov chain [l], [18], [31], continuous
time Markov process [ll], [la], [13], fault trees and
Markov reward models [5], extended stochastic Petri
net and simulation [9], and generalized stochastic Petri
nets [15] model types.

On the other side, the major goal of models that be-
long to the second class, based on the ground - break-
ing work of Eckhardt and Lee’s [6], is the precise mean-
ing of the independence refered to the failure behavior
of the diverse program versions. The intensity of coin-
cident errors 8(z) has a central role in this analysis. It
describes the notion that component versions may fail
together and gives the probability that a component,
when chosen a t random, fails on a particular input 2 .

The key idea is that B(z) will generally take different
values for different inputs z. The objective of 1191 is
to study the situation when there are available several
software development methodologies. The idea is that
8 will vary not only from one 2 to another, but from
one methodology to another. Other contributions in
this class include modeling the intensity of coincident
errors by a random variable with a Beta density func-
tion in [25] and the recovery block modeling considered
in [30] which examines several methods for determining
the intensity distribution: the use of the beta binomial
distribution suggested in [25], and two new methods
based on the pairwise correlation of modules.

Safety critical real - time computer applications are
characterized by stringent deadlines and high reliabil-
ity requirements. In these terms, deadlines on the time
that certain processes should be completed is perfor-
mance property, while the fault tolerance is a reliabil-
ity related property. However, one must place certain
constraints on how properties affecting performance in-
teract with those affecting dependability. For this pur-
pose, a unified measure, called performability has been
introduced [21]. In spite of the vast number of papers
that consider performability of hardware systems [22] ,
model based evaluation of software fault tolerance tech-
niques has been focused on either separate evaluation
of performance and dependability, or strict measures of
dependability until the recently proposed performabil-
ity modeling framework of the NVP [as]. This hierar-
chical model is constructed in two layers: a dependabil-
ity submodel (discrete time Markov chain suggested in

210

[l]) and a performance submodel (a renewal process
where each program iteration is represented by a re-
newal cycle). The information contributed by the lower
layer constitutes the upper layer model thus combin-
ing performance and dependability measures, via the
concept of performability.

2 The NVP model
With the benefit of this background, we develop an

unified approach aimed a t modeling both the N ver-
sion system behavior (including time aspects) and the
operational environment. The fault tolerant software
system investigated here is for the real - time, mission
critical applications. The success of such a system de-
pends not only on its logical correctness, but also on its
timing correctness. It must make correct responses to
environmental changes within specified time intervals
or deadlines. The program periodically gets the inputs
from the environment and generates the output that is
a function only of the most recently accepted input.

In order to reduce the model complexity we use the
hierarchical decomposition. The reliability submodel
considers both functional and timing failures and ac-
counts for the correlation between versions for single
input due to the influence of the operational environ-
ment. On the other hand, the performance submodel
considers the execution behavior of the NVP includ-
ing the correlation between versions’ execution times.
The performability model combines information con-
tributed by these submodels by associating the reward
value obtained by reliability submodel to each iteration
cycle of the performance submodel.

2.1 Reliability submodel
The reliability submodel incorporates the basic con-

cepts of software reliability theory, so a precise though
informal definitions for a set of terms relating to soft-
ware reliability are given. A fault is the defect in
the program that executed under particular conditions
causes failure. Thus, a soflulare failure is the event
which occurs when the software is subjected to an in-
put condition such that, due to the presence of one
or more faults in code, the resultant output will be
different (in time or value) from the required output
according to design specifications [23]. Such a general
definition of failures enables us to combine functional
failures, where the output is incorrect, and timing fail-
ures, where the output is not produced on time. It
is very important for real - time applications because
failing to meet deadline may have an adverse effect on
system reliability. This issue has been addressed only
in simulation based method presented in [9].

In accounting for dependence we use the idea that
the influence of the operational environment on ver-

sions failures and execution times induces correlation.
Since the effects of faults are typically quite sensitive to
just how a system is utilized, it is helpful to distinguish
the NVP system from its environment. The concept
of the operational envircmment (already used for soft-
ware testing [24]) is reviewed next. The operation of
a software is broken down into series of runs and each
run performs mapping between a set of input variables
and a set of output variables and consumes a certain
amount of execution time. Usually a run is a quantity
of work initiated by some input. Runs that, are identi-
cal repetitions of each other are said to form1 a run type.
Because the probabilities of occurrence of input states
are the natural way of rlepresenting the program usage
in its operational environment the operatzonal profile is
defined as a set of relative frequencies of occurrence of
the run types. If the relative frequencies of selection
have changed, then the operational profile has changed
and that will affect the reliability.

For this study we do not distinguish between de-
tected and undetected failures, that is we do not in-
vestigate the error detection capabilities off NVP. The
view point taken here is that if there is a requirement
for fault tolerance, then there is also a requirement for
the system to provide a continuation of service.

The reliability submodel, which represents per run
behavior of NVP, is coinstructed in two steps. First,
we develop the continuous time Markov model which
considers both the failure and execution behavior of
NVP, given a particular input state. Then, the user -
oriented model of the operational environment is devel-
oped, and the probability distributions are defined in
execution time - input space domain, thus accounting
for the correlation between versions due to the common
input.
2.1.1 Model of N'VP behavior. We assume
that:

Corresponding to the different development pro-
cesses, the version failures and execution times are
conditionally independent, given a particular in-
put state.

For each input state, times to failure of program
versions are identically distributed random vari-
ables, as well as the execution times. Further, we
take both of them to be exponentially distributed.
The particular values of the failure rate and ex-
ecution rate, given an input state, are X and p
respectively.

These assumptions guarantee that, given ;a particular
input state, a finite state continuous time Markov pro-
cess can be used for the reliability modeling of the N

21 1

version system. A state is defined as a vector (i , j , k),
O L i , j , k < n , i + j + k < n , where

i is the number of versions that have encountered
functional failure during the execution and have
not completed the execution

is the number of versions that have completed the
execution producing functionally incorrect result

i s the number of versions that have completed the
execution producing correct result.

j

IC

The Markov model for the particular case of three
version system and the transitions and associated rates
for the case of N versions are presented in figure 1.

Due to the real - time constraint, we define the de-
terministic parameter characterized as a fixed bound
T > 0 on the time to complete a run. Note that all
probabilities in this section are conditional on particu-
lar values of failure rate X and execut;on rate p which
correspond to the given input state. To simplify nota-
tion, we write P{ t 5 T I X , ~ } as P{T} .

Performing derivations of the Markov process yields:

(4)

Since the decision algorithm does not distinguish the
versions that have not completed the execution (with
or without functional failure) we can rewrite the ex-
pression (1) as:

where d = j + k is the number of versions that have
completed the execution until T and

It is obvious that the above joint pmf is the multino-
mial pmf and the marginal pmf's are binomial. They
are characterized in terms of the probabilities Pend
(individual version produces correct result before T) ,

i f j + k < n
i f i > O
i f i + j + k < n.

Figure 1: Markov reliability model

P f e n d (individual version produces functionally incor-
rect result before r) and P n o e n d (individual version
has not completed the execution until 7). Using the
marginal pmf's of the distribution (6) we obtain the
probabilities which characterize NVP failure and exe-
cution behavior. Thus, we define liming failure of N
version system (n = 2m - I) , on given input state, to
be the event that majority of versions do not produce
output in time 5 r

Ptf(7) = 2 (y) P i o e n d (7) [I - P n o e n d (~)] ~ - ' . (8)

a majority of incorrect results (functional failure)

Pff(7) = 2 (S) ';end(.) ~ f e n d (. > ~ n = i l (10)
j=m

or there is no majority of either correct or incorrect
results

Pnm(7) = 1 - Ptf(r) - Pok(r) - Pjf(~). (11)
The analysis outlines some relations between failure

probabilities l-Pok(.), Pjf(7) and P t j (~) , given apar-
ticular input state. Total failure probability 1 -Pok(r),
likewise the functional failure probability P f j (r) , in-
creases for higher failure rate A, as well as for longer av-
erage execution time (smaller execution rate ,U). How-
ever Pff (.) is significantly more sensitive to the varia-
tion of the failure rate than the total failure probability.
Note that the total failure probability is approximately
equal to the timing failure probability Ptf(.) i f p >> A.
If 1.1 - A , or even p < X the major contribution to

I=m

If the majority of versions have completed the execu-
tion before . it is possible that there is majority of
correct results (success)

Pok(7) = 5 (i) P:n,(~) [i - pend(7)]n-k, (9)

212

k=m

the total failure probability comes from the functional
failure probability.
Influence of the parameters A, p, 7. We desire a
condition on model parabmeters A , p and T such that the
NVP processing a given input improves the probability
of success, and reduces the probabilities of functional
and timing faillure. Note that the probabilities of suc-
cess, functional failure and timing failure of NVP are
functions of a form

where y is either Pe,d(T), Pfend(7.) or Pnoend(7).

Rather than examine the series of parameters it is de-
sirable to examine the function @(y, n) = h(y, n) - y.
A sufficient condition uinder which NVP improves the
probability of success is Pend(7) > 0.5. Considering
model parameters i t means that NVP has greater prob-
ability of producing the correct result on tiime than do
single version if

NVP reduces the timing failure probability if
Pnoend(7) < 0.5, that is whenever

(13)

NVP reduces the probability of functional failure if
pfend(T) < 0.5, that is

P 2 A and T > O , or (14)
P < X and T < 7-1 (15)

where 71 is the numerical value obtained by solving
Pfend(T1) = 0.5. The condition (15) is highly unde-
sirable because such values of the model parameters
certainly degrade the probability of success. It follows
that the NVP effectiveness on particular input is im-
proved if the condition (12) is satisfied.
Generalization of the assumptions. Markov
model is based on assurnptions that the time to failure
and the time to end of execution are bolh exponen-
tially distributed. Next, we introduce a rnethod that
can be used to relax these assumptions and thus to
account for quite general distributions. We define the
following random variables: X time to the occurrence
of functional failure and Y time to the end of execution
of individual versions.]Let denote by d the event that
Y < X , by R the event that X 5 Y , and by C the
event that Y 5 T . Using the conditional distribution
functions and the low of total probability we obtain

Pend(T) = P{Cd) = P{Y < XIY = t}fy(t) dt(16)

213

Pfend(T) = P{cB} = P{x 5 YIY = t}fy(t)dt(l7) IT
Pnoend(7.) = 1 - P{C} = 1 - (P{Cd} + P{CB}) (18)

Equations (16), (17) and (1.8) enable the different dis-
tributions to be used for the time to the occurrence of
functional failure X and the time to complete the ex-
ecution Y . Provided that both X and Y are exponen-
tially distributed leads to the equivalent expressions to
ones derived earlier (4), (3) and (7).
2.1.2 Operational environment model. In or-
der to obtain the probabilities of program failing on
randomly chosen input state the particular input state
must be unconditioned from the above probabilities.
We make the following additional assumptions:

e The environment is homogeneous or time invari-
ant and the operational period is sufficiently long
so the input state selection probabilities can be
characterized by a steatdy state.

e The input states occur randomly and indepen-
dently according to the operational profile.

The last assumption, although usual in most software
models [6], [19], [25] and software testing experiments,
is a simplification of real life, as it does not explicitly
model the phenomena of failure clustering which typ-
ically occurs when successive input states are related
to one another.

Since the failure and execution behavior are quite
sensitive to just how a system is utilized we need to
account the change of the failure rate X and execution
rate p. Therefore, we model the failure and execu-
tion rates as random variables, A and M respectively.
Given a pair (A, M) of random variables their joint dis-
tribution function is H (A , p) = f f * ~ (X , p) = P { A 5
A , A4 5 p } and the unconditional probabilities of suc-
cess, timing failure and functional failure for randomly
chosen input state are:

P M P M

where P0g(71A = X , M = p) , P t , (~ l A = X,M = p) ,
Pjf(~lA = X,M = p) are given in (9), (8), (10). Note
that, we use the Lebesgue - Stieltjes integral, thus
covering both the discrete and continuous distribution
functions H(A, p) .

It is possible to make assumptions about the inde-
pendence of random variables A and M and to use
some theoretical distribution functions for H(X, p) in
order to obtain numerical results. Instead, we choose
the user - oriented model of operational environment.
Therefore, we partition the input space by grouping
run types that exhibit (as nearly as possible) homoge-
neous failure and execution behavior. The operational
profile is analyzed on a microstructure level, looking
at probabilities of occurrence, failure rate and execu-
tion time rate for each partition of the input space.
Suppose A = X i and M = pi for each input state
2 E Ak, where AI , A2, . . . , A, is a partition of input
space Cl. The operational profile Q gives the probabil-
ities P { A = Xi, M = p j } = pi j = pk = Q (A k) that
successive input states are chosen at random in sub-
set Ak of the 'input space R. Since the joint pmf pij
is determined, there is no need to make assumptions
about the independence of random variables A and M .
In general, it is possible A and M to be negatively,
as well as positively correlated random variables, thus
reflecting the influence of the failure behavior on per-
formance behavior. In our model A and M take a finite
number of values over subsets of 0, and the relations
(19), (20) and (21) signify the following:

i j

i j

i j

It should be emphasized that these results concern
averages over input space. This curious result acts as
a warning that actual behavior can differ from the av-
erage behavior [19]. Typically possible, but rarely oc-
curring input conditions would not significantly con-
tribute to over - all failure probability even through it
may be crucial that software works correctly under this
conditions. This reality can be handled by introduc-
ing categories of criticality and generating operational
profiles for each category, as suggested in [24].

Condition of independence. Consider for the mo-
ment only two versions processing a randomly se-
lected input. Let denote the probability that the sin-
gle version fails on a given input x E Ak as p k =
1 - Pend(~lA = Xi,M = pj) and define the indicator
random variable 1; taking value 0 if the sth version
produces correct output on time for given input, and
value 1 otherwise. Its expectation E[I;] = p k is the
probability that version fails on given input x E Ak.
The probability that it fails on the randomly selected

input is E[x;=, 1; p k] = E;=, Pk p k . The probability
that both versions fail on randomly selected input is
E[C;=, I l I i p k] = CL=, pf p k . The condition that
versions fail independently on randomly selected input
can be formulated as

where the sum is over the set S of all distinct
subsets { i (l) , i (2) } chosen without replacement from
{ 1 , 2 , . . . , r } . It follows that a necessary and sufficient
condition for uncorrelated failures and execution times
of the component versions is p q l) = pi (2) , that is A
and M to be identical for all subsets Ak for which
p k = &(Ak) # 0. This result shows that version fail-
ures and execution times are correlated whenever A
and M vary for different input states. Since the ex-
pression on the left in relation (25) is the covariance
and Cov 2 0 there is a tendency all versions to per-
form relatively well or relatively poorly on a randomly
chosen input. Note that this approach is pessimistic as
it enables us to incorporate only positive correlation.

Informally, only the total failure probability along
the interval 0.5 5 pk 5 1 !imits the benefit that can
be obtained with fault tolerance. We have already
shown that the total failure probability P k on given
input is bounded by 0.5 if the condition (12) is satis-
fied. However, it is possible, although perhaps highly
unlikely that this condition is violated for some subset
of the input space. Even if this is the case, N version
system still have smaller probability of failure than
do single version when the operation profile assigns
greater mass to intervals of the type (0.5 - b , 0.5 - a],
0 5 a < b than to their symmetrically located counter-
parts [0.5 + a, 0.5 + b) , as shown in [6].
2.2 Performance submodel

The performance submodel considers only the exe-
cution behavior of the NVP and the events are distin-
guished only by their occurrences in time, independent
of outcome result. Due to the iterative nature of soft-
ware's execution the performance submodel suffices to
consider a renewal process { N (t) , t 2 0} where each
run is represented by a renewal cycle. Let the time
between successive renewals be such that Ti is elapsed
time from (i - 1)st run until the occurrence of i th run.
In order to derive the distribution of Ti we first lump
all states with the same value of j + k of the Markov re-
liability model in equivalent state I = j + k , (0 < 1 < n)
and obtain death process with a linear rate (n - l) p for
all states 1 . If Y1, Yz . . . Y, are interpreted as the length
of the execution times of n versions, given a particular
input state, then the event that at least m among n

214

variables Yj are 5 t has the conditional (distribution
function

Next, we obtain the unconditional probability distribu-
tion function of the time between successive renewals

F (t) = 1” F(tlM = P) d&f(p) (27)

where H M (p) = P { M 15 p } is the marginal probabil-
ity distribution of H*MI(A, ,U). For our model of oper-
ational environment (27) becomes

where p i = P { M = p i } =
Note that the versions’ execution times are corre-

lated whenever the execution rates are not identical for
all subsets of input staties A k for which pk = &(&) #
0. In other words, we ccinsider the correlation between
execution times which is much more realis1,ic than the
assumption of independence made in [29].

Due to the real - time constraint, Ti is the time
upon the end of NVP execution or upon reaching r ,
whichever occurs first. It follows that the probability
distribution of Ti is

pjj.

with mean recurrence ti:me m,. and variance U:.

The performance submodel is also responsible for
supplying the expected number of renewals for the time
duration (0, t] , called the renewal function:

03

E [N (t)] = M (t) = c E’;*@)
k = l

where F:* denotes the n-fold convolution of F,.
Since the consequences of failing to meet deadline

could be catastrophic it is important to compute the
distribution of the time to timing failure. Therefore,
we consider a renewal process with distribution func-
tion F (t) and look for the first occurrence of a time
interval of duration r free of renewal epochs. Accord-
ingly, the time to timing failure X is the tirne when in-
terval duration from the preceding renewal event first
exceeds the real - time constraint r > 0. The distri-
bution V (t) = P I X 5 t } can be obtained by deriving
the renewal equation

215

which reduces to the standard renewal equation with
the defective distribution L defined by

F (t) , for t < r L(t) =

It follows that the distribution of the time to timing
failure is

V (t) = P { X 5 t } = [l - L (r)] [1+ ML(t)] (33)
where ML(t) = Ln*(i!) equals the expected num-
ber of renewal epochs within (0, t] . According to [8] if
there exists a number k such that JF e k y dL(y) = 1
then the asymptotic estimate for the distribution V (t)
can be expressed as

1 - V (t) - - F (r) e-k(t - -7)

km# (34)

where m# = e k y y dL(y) # 0.
2.3 Performability niodel

The performability model combines the information
contributed by the reliability and performance sub-
models. This is done by associating a reward rate ob-
tained by the reliability submodel with each renewal
cycle of the performance submodel. The performance
variable is then taken to be the reward accumulated
over some utilization period and could be interpreted
as the number of successful runs (correct and timely
outputs) during the bounded time interval (0, t]

k=l

where zk is a reward value associated with the kth
renewal interval T k . The indicator random variable Zk
takes value 1 if the NVP system provides correct and
timely output in the kth renewal interval T k , and value
0 otherwise. Its expected value E[Zk] = po~(r) = p is
defined by (22).

The renewal equation for the mean number of suc-
cessful runs A(t) = E [W (t)] over the misson’s time t
can be derived

A (t) = E[Z1] + A(t - X> ~ F , (x) (36) 1”
resulting in

It represents the collective effect of multiple system at-
tributes computed from the reliability submodel P&(T)
(22) and performance submodel M (t) (30).

Since the mission duration t is much greater then the
renewal interval times T k the asymptotic expansion of
the renewal function for large t [8] leads to

1 t U: -mF 1 + -- + ~ lim A (t) = Pok(T)
t-w m,. am:

A = [I

P1=

-
0.999 0 0
0 0.001 0
0 0 0
0 0 0
0 0 0 -

-8, 0.1,0.5]

P 2 =

-
0.98 0 0
0 0.02 0
0 0 0
0 0 0
0 0 0 -

U = [0.5,0.2,0.1] r = 30
-

0.98 0 0
0 0 0

0 0 0
0 0 0

P 3 = 0 0 0.02

1.8e+07-

1.6e+07-

1.4e+07-

Table 1: Parameter values

X
X ?

o x

P1 0
x P 2 +

P3 0
P 4 x

t = 36. lo6

0.88 0 0
0 0 0

0 0.1 0
0 0 0.02

3 Numerical results

The objective of this section is to demonstrate the
impact of the variation of program characteristics (fail-
ure and execution rate) and the operational environ-
ment (input state selection probabilities) on the re-
liability and performability related measures of the
NVP. Suppose that each partition of the input space
is defined by failure rate A = A i and execution rat,e
M = pj and the operational profile gives the proba-
bilities pij = P { A = A;,M = p j } that the successive
input states are chosen at random in that partition.
In applications of software redundancy it is reasonable
to expect that P = [pij] assigns high probabilities of
encountering inputs that result in small duration of
versions execution period compared to the time to fail-
ure (p >> A). The values assigned to model parameters
are shown in Table 1.

Figure 2 and 3 plot the mean number of successful
runs and the failure probabilities for varying number of
versions. The operational profile P1 encounters inputs
that result in the small version’s execution period com-
pared to the time to failure (p >> A). It is evident that
the major contribution to the total failure probabil-
ity comes from the timing failure probability. We also
notice that increasing N does substantially reduce the
failure probability. For example, N = 3 version sys-
tem will reduce the total failure probability by approx-
imately two orders of magnitude relative to that of a
single version. Also evident is that a slight modification
to the operational profile for the same program charac-
teristics (P 2) leads to the significant increase of failure
probabilities and smaller mean number of successful
runs. For example, 1 - P,~(T) < is achieved by
3 version system when P1 is assumed, rather then the
five versions when P 2 is considered. The operational
profile P 3 assigns the same probability 0.02 as P 2 to
the worse program characteristics (higher failure rate
and smaller execution rate). As a result, 21 versions
would be required to achieve the same level of the total
failure probability Moreover, the benefit of in-
creasing the number of versions is less significant com-

216

pared to P1 and P2. The operational profile P4 se-
lects (with higher probability) inputs associated with
even worse program characteristics (p - A) which re-
sults in highly unreliable system. The reliability can
not be improved by any degree of fault tolerance since
the benefit gained from increasing N is almost negligi-
ble. We also notice that the total failure probability
is approximately equal to the functional failure prob-
ability. The mean number of successful runs is also
degraded under this operational profile. However, it is
less sensitive to the variations in the operational profile
because the values of the execution rate and real - time
constraint as defined above do not result in significant
performance reduction.

E[W(t)l
2.4e+07

2.2e+07
+

2eS07 0

n
Figure 2: Mean number of successful runs

Certain operational profiles, although highly un-
likely, can result in N version system being more prone
to failures than a single software component (corre-
sponding diagrams are omitted due to space limita-
tions). However, it is clear that redundancy alone does
not guarantee fault tolerance, and that the degree of
improvement depends both on program characteristics
and the operational profile.

x x x x x x x x x x x

1 5 9 13 17 21
n

0.01

0.001

0.0001

le-05

le-06

le-07

le-08

le-09

P1 0
P 2 +
P3 0
P4 x

631
631

+ B

0 B
+

1 5 9 13 17 21
n

Figure 3: Failure probabilities

4 Conclusions arid future work
This paper presents the modeling based study of

both N versnon system and its operational environ-
ment. The base model supporting the solution is con-
structed in two submodels: a reliability submodel and a
performance submodel. The reliability submodel, that
represents per run behavior of NVP, is constructed
in two steps. First, we develop the continuous time
Markov model which considers both the failure and
execution time behavior of NVP, given a particular
input state. The synchronization structure is repre-
sented in terms of the execution time distrilbutions be-
cause failing to meet deadline has an adverse effect on
the reliability. Then, we develop the user - oriented
model of operational environment, thus accounting for
the correlation between versions due to the common
input. Therefore, the iinput space is partitioned by
grouping run types tha6 exhibit (as nearly as possi-
ble) homogeneous failure and execution time behavior
and the operational profile is analyzed on a imicrostruc-
ture level, looking a t probabilities of occurrence, failure
and execution rates for each group of run types. The
parameters (failure and execution rate) are treated as
random variables, and the new probability distribution
is defined in execution time - input space domain. We
have also derived the conditions under which N version
system improves the probability of producing correct
result on time, and reduces the probabilities of func-
tional and timing failure.

The performance submodel considers only the exe-
cution behavior of the NVP and represents the iterative
nature of software executions. The successive runs are
modeled by renewal process where each run is repre-
sented by a renewal cyclle. As with the reliability sub-

217

0.1

0.01

P1 0
P 2 +
P4 x 0

0 le-05
le-06 0

le-07 0
0

17
0 le-08

0

1 5 9 13 17 21
n

model, we consider the correlation IJetween versions'
execution times for a single input. The performance
submodel permits us to determine the expected value
and the variance of the duration of each run, the ex-
pected number of runs for the mission duration time
and the distribution of the time to timing failure.

The performability model combines the information
contributed by the reliability and performance sub-
models thus representing the collective effect of mul-
tiple system attributes on the NVP effectiveness. In-
formally, this is done by associating a reward rate (ob-
tained by the reliability submodel) with each renewal
cycle of the performance submodel. The performance
variable is taken to be the reward accumulated over
mission period and we choose to settle for the mean
number of successful runs (correct and timely outputs)
during the bounded interval (O , i] .

Anticipating the future work, it is useful to con-
sider several possible extensions or modifications of our
model:

0 The alternative method presented in the paper
could be used to relax the assumptions that the
time to failure, as well as the execution time are
exponentially distributed random variables and
thus to account for quite general distributions.

0 The correlation of subsequent input states might
be considered as suggested in [26] or [30].

0 Rarely occurring input conditions that would not
significantly contribute to over - all failure prob-
ability (even through it may be crucial that soft-
ware works correctly under this conditions) could
be handled by introducing categories of criticality
into analysis.

References [l61 J. Kelly, T. McVittie, W. Yamamoto, ”Implementing
J. Arlat , K .K anoun, J. Laprie, ” Dependability Model-
ing and Evaluation of Software Fault Tolerant Sys-
tems”, IEEE Trans. on Computers, vo1.39, No.4, Apr

A.Aviiienis, L.Chen, ”On the Implementation of N
Version Programming for Software Fault Tolerance
during Program Execution”, Proc. COMPSA C 77,

A.Aviiienis, J.Kelly, ”Fault Tolerance by Design Di-
versity: Concepts and Experiments”, IEEE Comput-
ers, Aug 1984, pp. 67 - 80.
P.Bishop et al. ”Project on Diverse Software - An
Experiment in Software Reliability”, Proc. 4 th IFA C
Workshop SAFECOMP, 1985, pp. 153 - 158.
J.B.Dugan, M.R.Lyu, ”System Reliability Analysis
of N Version Programming Application”, Proc. 4th
IEEE Int’l Symp. Software Reliability Engineering,

D.E.Eckhardt, L.D.Lee, ”A Theoretical Basis for the
Analysis of Multiversion Software Subject to Coinci-
dent Errors”, IEEE Trans. on Software Engineering,
Vol.SE-11, No.12. Dec 1985, pp. 1511 - 1517.
D.E.Eckhardt et al, ”An Experimental Evaluation of
Software Redundancy as a Strategy For Improving
Reliability”, lEEE Trans. on Software Engineering,

W. Feller ”An Introduction to Probability and Its Ap-
plications” Volume 11, John Wiley & Sons, 1971.
R.Geist, A. J.Offult, F.C. Harris Jr, “Estimation
and Enhancement of Real Time Software Reliability
through Mutation Analysis” IEEE Trans. on Comput-
ers, Vol. 41, No. 5, May 1992, pp. 550 - 558.
A.L.Goel, S.N.Sahoo, ”Formal Specification and Re-
liability: An Experimental Study”, Proc. 2nd IEEE
Int? Symp. Software Reliability Engineering, 1991,

K.GoSeva - Popstojanova, A.Grnarov, ”A New
Markov Model of N Version Programming”, Proc.
2nd IEEE Int’l Symp. Software Reliability Engineer-
ing, May 1991, pp. 210 - 215.
K.GoSeva - Popstojanova, A.Grnarov, ” N Version
Programming with Majority Voting Decision: De-
pendability Modeling and Evaluation” Proc. Euromi-
cro 93, Sep 1993, pp. 811 - 818.
K.GoSeva - Popstojanova, A.Grnarov, ”Dependability
Modeling and Evaluation of Recovery Block Systems’’
Proc. 4th IEEE Int’l Symp. Software Reliability Engi-
neering, Nov 1993, pp. 112 - 120.
A.Grnarov, J.Arlat, A.Aviiienis, ”On the performance
of Software Fault Tolerance Strategies”, Proc. 10th
lEEE Int7 Symp. Fault Tolerant Computing, Oct 1980,

K.Kanoun et al. ”Reliability Growth of Fault Tolerant
Software” IEEE Trans. on Reliability, Vol. 42, No. 2,
Jun 1993, pp. 205 -219.

1990, pp. 504 - 513.

1977, pp. 149 - 155.

NOV 1993, pp. 103 - 111.

V01.17, No.7, Jul 1991, pp. 692 - 702.

pp. 139 - 142.

pp. 251 - 253.

- -
Design Diversity to Achieve Fault Tolerance”, IEEE
Software, Jul 1991, pp, 61 - 71.

[17] J.C.Knight, N.G.Leveson, ”An Experimental Evalua-
tion of the Assumption of Independence in Multiver-
sion Programming”, IEEE Trans. on Software Engi-
neering, Vol.SE-12, No.1, Jan 1986, pp. 96 - 109.

[18] J.Laprie, ”Dependability Evaluation of Software Sys-
tems in Operation”, IEEE Trans. on Software Engi-
neering, Vol.SE-10, No. 6, Nov 1984, pp. 701 -714.

[19] B.Littlewood, D.R.Miller, ”A Conceptual Model of
Multiversion Software”, Proc. 17th IEEE Int’l Symp.
Fault Tolerant Computing, Jul 1987, pp. 150 - 155.

[20] M.R.Lyu, Yu - Tao He, ”Improving the N Version Pro-
gramming Process through the Evaluation of a Design
Paradigm”, IEEE Trans. on Reliability, Vol. 42, No. 2,
Jun 1993, pp. 179 -189.

[21] J.F.Meyer, ”On Evaluation the Performability of
Degradable Computing Systems”, IEEE Trans. on
Computers, Vol. 29, No. 8, Aug 1980, pp. 720 - 731.

[2 2] J.F.Meyer, ”Performability: A R.etrospective and
Some Pointers to the Future”, Performance Evalua-
tion, vo1.14, 1992, pp. 139 - 156.

[23] J.D.Musa, A.Iannino, K.Okumoto, Software Reliabil-
ity: Measurement, Prediction, Application, Mc Grow-
Hill, 1987.

[24] J.D.Musa, ”Operational Profiles in Software Reliabil-
ity Engineering”, IEEE Software, Mar 1993, pp. 14 -
32.

[25] V.F.Nicola, A.Goya1, ”Modeling of Correlated Failures
and Community Error Recovery in Multiversion Soft-
ware”, IEEE Trans. on Software Engineering, vo1.16,
No.3, Mar 1990, pp. 350 - 359.

[26] C.Ramamoorthy, F.B. Bastani, ”Software Reliability
- Status and Perspectives”, IEEE Trans. on Software
Engineering, Vol.SE-8, No.4, Jul 1982, pp. 354 - 371.

[27] R.Scott, J.Gault, D.McAllister, ”Fault Tolerant Soft-
ware Reliability Modeling”, IEEE Trans. on Software
Engineering, vo1.13, No.5, May 1987, pp. 582 - 592.

[28] T . J.Shimeal1, N.G. Leveson, ”An Empirical Compar-
ison of Software Fault Tolerance and Fault Elimina-
tion”, IEEE Trans. on Software Engineering, Vo1.17,
No.2, Feb 1991, pp. 173 - 182.

[29] A.T.Tai, J.F.Meyer, A.Aviiienis, ”Performability En-
hancement of Fault Tolerant Software”, IEEE Trans.
on Reliability, Vol. 42, No. 2, Jun 1993, pp. 227 -237.

[30] L.A.Tomek, J.K.Muppala, K.S.Trivedi, ”Modeling
Correlation in Software Recovery Blocks” IEEE Trans.
on Software Engineering, Vol. 19, No. 11, Nov 1993,

[31] K.Tso, A.Aviiienis, J.Kelly, ”Error Recovery in Mul-
tiversion Software”, Proc. 5th IFAC Workshop SAFE-

pp. 1071 - 1086.

COMP, 1986, pp. 35 - 41.

21 8

