
Failure Correlation in Software Reliability Models

Katerina Goˇseva – Popstojanova and Kishor Trivedi�

Center for Advanced Computing and Communication
Department of Electrical and Computer Engineering

Duke University, Durham, NC 27708 – 0291
E-mail: fkaterina, kstg@ee.duke.edu

Abstract

Perhaps the most stringent restriction that is present in
most software reliability models is the assumption of inde-
pendence among successive software failures. Our research
was motivated by the fact that although there are practical
situations in which this assumption could be easily violated,
much of the published literature on software reliability mod-
eling does not seriously address this issue.

In this paper, we present a software reliability modeling
framework based on Markov renewal processes which nat-
urally introduces dependence among successive software
runs. The presented approach enables the phenomena of
failure clustering to be precisely characterized and its ef-
fects on software reliability to be analyzed. Furthermore, it
also provides bases for a more flexible and consistent model
formulation and solution. The Markov renewal model pre-
sented in this paper can be related to the existing software
reliability growth models, that is, a number of them can be
derived as special cases under the assumption of failure in-
dependence.

Our future research is focused on developing more spe-
cific and detailed models within this framework, as well as
statistical inference procedures for performing estimations
and predictions based on the experimental data.

1. Introduction

Software reliability is widely recognized as one of the
most important aspects of software quality spawning a lot
of research effort into developing methods of quantifying
it. Despite the progress in software reliability modeling,
the usage of the models is restricted by often unrealistic
assumptions made to obtain mathematically tractable mod-
els and by the lack of enough experimental data. Among

�Supported in part by the National Science Foundation, by Bellcore
and by the Lord Foundation as a core project in the Center for Advanced
Computing and Communication

the basic assumptions made by various software reliability
models, one which appears to be the weakest point is the
independence among successive software runs.

Most existing software reliability growth models
(SRGM) assume that the testing is performed homoge-
neously and randomly, that is, the test data are chosen from
the input space by some random mechanism and the soft-
ware is tested using these data assuming homogeneous con-
ditions. In practical situations usually this is not the case.
During the testing phase, different test scenarios are usu-
ally grouped according to high level functionalities which
means that a series of related test runs are conducted. In ad-
dition, input data are usually chosen in order to increase the
testing effectiveness, that is, to detect as many faults as pos-
sible. As a result, once a failure is observed, usually a series
of related test runs are conducted to help isolate the cause of
failure. Overall, testing of software systems employ a mix-
ture of the structured (centered around scenarios), clustered
(focused on fault localization) and random testing [25].

The stochastic dependence of successive software runs
also depends on the extent to which internal state of a soft-
ware has been affected and on the nature of operations un-
dertaken for execution resumption (i.e., whether or not they
involve state cleaning) [12].

Assuming the independence among successive software
runs does not seem to be appropriate in many operational
usages of software either. For instance, in many applica-
tions, such as real-time control systems, the sequence of
input values to the software tend to change slowly, that is
successive inputs are very close to each other. For these
reasons, given a failure of a software for a particular input,
there is a greater likelihood of it failing for successive in-
puts. In applications that operate on demand, similar types
of demands made on the software tend to occur close to each
other which can result in a succession of failures.

To summarize, there may be dependencies among suc-
cessive software runs, that is, the assumption of the inde-
pendence of software failures could be easily violated. It
means that, if a software failure occurs there would tend to

be an increased chance that another failure will occur in the
near term. We say that software failures occur in clusters if
failures have tendency to occur in groups. That is, the times
between successive failures are short for some periods of
time and long for other periods of time.

Prevalent SRGM fall into two categories: time between
failure (TBF) models which treat the inter-failure interval
as a random variable, and failure count (FC) models which
treat the number of failures in a given period as a random
variable. In the case of TBF models the parameters of the
inter – failure distribution change as testing proceeds, while
the software reliability evolution in FC models is described
by letting the parameters of distribution, such as mean value
function, be suitable functions of time. It is worth pointing
out that the two approaches presented above are strictly re-
lated. Failure time intervals description and failure count-
ing process description are essentially two different ways of
looking at the same phenomenon. To some extent, it is pos-
sible to switch between them. Herein, the analysis of the
existing models and the correspondence between the two
classes will not be pursued any further. For survey on the
existing SRGM the reader is referred to [1], [16], [18], [20],
[28].

One of the basic assumptions common to both classes
of models is that the failures, when the faults are detected,
are independent. For example, in [7] this assumption is in-
cluded in the Standard Assumptions that apply for each pre-
sented model. In other words, neither TBF nor FC models
statistically satisfy the requirements of addressing the is-
sue of dependencies among successive software runs which
usually results in failure clustering. One of the reasons
”Why conventional reliability theory fails” for software,
listed in [9], is that the program runs are not always inde-
pendent.

To the best of our knowledge, there are only a few pub-
lished papers that consider failure correlation. The empiri-
cally developed Fourier series model proposed in [6] can be
used for analyzing clustered failure data, especially those
with cyclic behavior. The Compound – Poisson software re-
liability model presented in [22] considers multiple failures
that occur simultaneously in bunches within the specified
CPU second or time unit. The work presented in [26] con-
siders the problem of modeling correlation between succes-
sive executions of the software fault – tolerance technique
based on recovery blocks.

In this paper we propose a software reliability model-
ing framework, based on Markov renewal processes, which
is capable of incorporating the possible dependence among
successive software runs, that is, the effect of clustering.
Markov renewal model formulation has several advantages,
both theoretical and practical, such as:

� Flexible and more consistent modeling of software re-
liability. The model is constructed in two stages. First,

we consider the outcomes of successive software runs
to construct the model in discrete time. Then, consid-
ering the execution times of the software runs we build
a model in continuous time.

� Adaptibility of the model to both dependent and inde-
pendent sequences of software runs.The model nat-
urally introduces dependence among successive soft-
ware runs, that is, failure correlation. Considering the
independence among software runs is a special case of
the proposed modeling framework.

� Applicability to different phases of the software life cy-
cle. The proposed modeling approach is applicable
for testing (debugging) phase, as well as for validation
phase and operational phase.

2. Markov renewal processes - brief overview

Consider a process constructed as follows. First take a
k-state discrete time Markov chain (DTMC) with transition
probability matrixP = [pij]. Next construct a process in
continuous time by making the time spent in a transition
from statei to statej have distribution functionFij(t), such
that times are mutually independent. At the end of the in-
terval we imagine a point event of typej. Such a process
is called semi – Markov process (SMP), and it is a gener-
alization of both continuous and discrete time Markov pro-
cesses with countable state spaces. A descriptive definition
of SMP would be that it is a stochastic process which moves
from one state to another among a countable number of
states with the successive states visited forming a discrete
time Markov chain, and that the process stays in a given
state a random length of time, the distribution function of
which may depend on this state as well as on the one to be
visited next.

The family of stochastic processes used in this paper,
called Markov renewal process (MRP), may be shown to
be equivalent to the family of SMP [4], [5]. Thus, the SMP
records the state of the process at each time pointt, while
the MRP is a point (counting) process which records the
number of times each of the possible states has been visited
up to timet. MRP are of general interest since they join to-
gether the theory of two different types of processes, the re-
newal process and the Markov chain. In studying MRPs it is
possible to follow the methods used for renewal processes,
or base the treatment much more heavily on the theory of
Markov chains.

In the renewal theory, the basic process studied is the
number of renewalsfN(t); t � 0g in the interval(0; t].
If one regards the MRP as consisting ofk dependent pro-
cessesN1(t), : : : , Nk(t), whereNi(t) refers to the points
of classi, that is, the number of times statei has been
visited, the observed process of points is the superposition

N(t) = N1(t) + : : : + Nk(t). Many of the properties of
Markov renewal processes are derived from those of re-
newal processes [4]. For example, the points of particular
type form a renewal process, so that if these points are of in-
terest, then it is necessary to consider only the distribution
of an interval between successive points of this type and to
make use of the standard results of renewal theory.

3. Software reliability modeling framework
based on MRP

We have developed a software reliability modeling
framework based on the Markov renewal process which is
intuitive and naturally introduces dependence among suc-
cessive software runs. MRP approach allows us to build
the model in two stages. First, we define a DTMC which
considers the outcomes from the sequence of possibly de-
pendent software runs in discrete time. Next, we construct
the process in continuos time by attaching the distributions
of the run’s execution time, that is, duration of runs, to the
transitions of the DTMC. Thus, we obtain an SMP which
describes both failure and execution behavior of the soft-
ware. Since in software reliability theory we are interested
in the distribution of the time to the next failure and the
number of software failures in time interval of durationt,
we focus on the equivalent point process, that is, the MRP.

3.1. Software reliability model in discrete time

We view the sequence of software runs in discrete time as
a sequence of dependent Bernoulli trials in which the prob-
ability of success or failure at each trial depends on the out-
come of the previous trial. Let us associate with thei-th
software run a binary valued random variableZi that distin-
guishes whether the outcome of that particular run resulted
in success or failure:

Zi =

�
0 denotes a success on thei-th run
1 denotes a failure on thei-th run:

If we focus attention on failures and score1 each time a
failure occurs and0 otherwise, then the cumulative scoreSn
is the number of runs that have resulted in a failure among
n successive software runs.Sn can be written as the sum

Sn = Z1 + : : :+ Zn (1)

of n possibly dependent random variables.
Suppose that if thei-th run results in failure then the

probability of failure at the(i+ 1)-st run isq and the prob-
ability of success at the(i+ 1)-st run is1� q, that is

PfZi+1 = 1jZi = 1g = q

PfZi+1 = 0jZi = 1g = 1� q:

Similarly, if the i-th run results in success then there are
probabilitiesp and1� p of success and failure respectively
at the(i+ 1)-st run

PfZi+1 = 0jZi = 0g = p

PfZi+1 = 1jZi = 0g = 1� p:

The sequence of dependent Bernoulli trialsfZi; i � 1g
defines a discrete time Markov chain with two states. One
of the states denoted by 0 is regarded as success, and the
other denoted by 1 as failure. A graphical description of
this Markov chain is provided by its state diagram shown in
Figure 1 and its transition probability matrix is given by

P =

�
p 1� p

1� q q

�
; 0 � p; q � 1. (2)

Sincep andq are probabilities, it follows that

jp+ q � 1j � 1: (3)

qp

1 - q

1 - p

10

Figure 1. Markov interpretation of dependent
Bernoulli trials

Let us first consider in some detail the Markov chain.
The probabilityq (p) is the conditional probability of failure
(success) on a software run given that the previous run has
failed (succeeded). The unconditional probability of failure
on the(i+ 1)-st run is:

PfZi+1 = 1g

= PfZi+1 = 1; Zi = 1g+ PfZi+1 = 1; Zi = 0g

= PfZi+1 = 1jZi = 1g PfZi = 1g

+ PfZi+1 = 1jZi = 0g PfZi = 0g

= q PfZi = 1g+ (1� p) PfZi = 0g

= q PfZi = 1g+ (1� p) [1� PfZi = 1g]

= (1� p) + (p+ q � 1) PfZi = 1g: (4)

If p + q = 1 the Markov chain describes a sequence of
independent Bernoulli trials. In that case the equation (4)
reduces toPfZi+1 = 1g = 1 � p = q, which means that
the failure probability does not depend on the outcome of
the previous run. That is, each subsequent run has indepen-
dently probabilitiesp andq = 1� p of being a success and

failure. This means that all software runs are independent
of each other, and the number of failuresSn is a sum ofn
mutually independent Bernoulli random variables.

If p + q 6= 1 then the DTMC describes the sequence of
dependent Bernoulli trials and enables us to accommodate
possible dependence among successive runs. In this case
the outcome of the software run (success or failure) depends
on the outcome of the previous run as in equation (4). The
number of failures inn runs, given bySn, is the sum ofn
dependent random variables. Depending on the relation be-
tween the conditional probabilitiesp andq we can describe
the presence or the lack of failure clustering.

When p + q > 1, runs are positively correlated, that
is, if software failure occurs ini-th run, there would be an
increased chance that another failure will occur in the next
run. It is obvious that in this case failures occur in clusters.
The boundary case arises when equality in (3) holds, i.e.,
p+ q = 2 (p = q = 1). This means that if the sequence of
software runs starts with failure all successive runs will fail
or if it starts with success all successive runs will succeed,
that is, the Markov chain remains forever in its initial state
as shown in Figure 2.

1 1

0 1

Figure 2. DTMC for the case p = q = 1

Next consider the case when successive software runs
are negatively correlatedp+ q < 1. In other words, if soft-
ware failure occurs ini-th run, there would be an increased
chance that a success will occur in(i + 1)-st run, that is,
there is a lack of clustering. In the boundary case, when the
equality in (3) holds (p+q = 0 i.e. p = q = 0), the Markov
chain alternates deterministically between the two states, as
in Figure 3.

1

1

0 1

Figure 3. DTMC for the case p = q = 0

The boundary cases are excluded from further analysis
since they are somewhat trivial, with no practical interest.
We impose the condition0 < p; q < 1 on transition proba-
bilities, which implies thatjp+ q � 1j < 1. In other words,
DTMC in Figure 1 is irreducible and aperiodic [27].

During the testing phase software is subjected to a se-
quence of runs, making no changes if there is no fail-
ure. When a failure occurs on any run an attempt will be
made to fix the underlying fault which will cause the con-
ditional probabilities of success and failure on the next run
to change. This implies thatp andq, that is, the transition
probability matrixP stays constant between two successive
visits to the failure state. In other words, the transition prob-
ability matrixPi given by

Pi =

�
pi 1� pi

1� qi qi

�
(5)

defines the values ofpi andqi for the testing runs that fol-
low the occurrence of thei-th failure up to the occurrence
of the next(i + 1)-st failure. Thus, the software reliability
growth model in discrete time can be described with a se-
quence of dependent Bernoulli trials with state – dependent
probabilities. The underlying stochastic process is a non –
homogeneous discrete time Markov chain.

The sequenceSn = Z1 + : : :+ Zn provides an alterna-
tive description of reliability growth model considered here.
fSng defines the DTMC presented in Figure 4. Both statesi
andis represent that failure state has been occupiedi times.
The statei represents the first trial for which the accumu-
lated number of failuresSn equalsi, while is represents all
subsequent trials for whichSn = i, that is, all subsequent
successful runs before the occurrence of next(i+1)-st fail-
ure. Without loss of generality we assume that the first run
is successful, that is,0 is the initial state.

3.2. Software reliability model in continuous time

The next step in the model construction is to obtain a
process in continuous time considering the time that takes
software runs to be executed by assigning a distribution
functionFij(t) to the time spent in a transition from state
i to statej of the DTMC in Figure 1. It seems realistic
to assume that the runs execution times are not identically
distributed for successful and failed runs. Thus, distribu-
tions Fij(t) depend only of the type of point at the end
of the interval, that is,F00(t) = F10(t) = FexS (t) and
F01(t) = F11(t) = FexF (t), whereFexS (t) andFexF (t)
are the distribution functions of the duration of successful
and failed runs, respectively. This is equivalent to assign-
ing distribution functionFexS (t) to all transitions to states
is andFexF (t) to all transitions to statesi (i � 1) of the
DTMC in Figure 4.

For the sake of simplicity, we have chosen the same ex-
ecution distribution regardless of the outcomeFex(t) =
FexS (t) = FexF (t). Thus, the execution timeTex of
each software run has the distribution functionFex(t) =
PfTex � tg. Considering the situation when software ex-
ecution times are not identically distributed for successful

i1 2

is1s

.

p

p p i

 0

1

q 1 q i

i+1

0p1 -

q 11 - 1 - p 1 q i1 - 1 - p i

i+1qq
i-1

1 - p
i-1

0

1 - q i+1

Figure 4. DTMC for testing phase

and failed runsFexS (t) 6= FexF (t) is straightforward and
will be discussed later.

With the addition ofFex(t) to the DTMC, we obtain the
software reliability model in continuous time, that is, an
MRP. The total number of software runsfN(t); t � 0g is
a superposition of two dependent renewal processesNS(t)
andNF (t) which refer to the number of times states0 (suc-
cess) and1 (failure) of the DTMC have been visited in(0; t].

In the software reliability modeling we are interested in
deriving the distribution of the time between successive fail-
ures. This means that only the points of particular type, i.e.,
failures are of interest. Therefore, it is necessary to con-
sider only the distribution of an interval between successive
failures and to make use of the standard results of renewal
theory.

First we derive the distribution of the discrete random
variableXi+1 defined as a number of runs between two
successive visits to the failure state of the DTMC, that is,
a number of runs between thei-th and(i + 1)-st failure.
Clearly, (see the Figure 4) the random variableXi+1 (i � 1)
has the pmf:

PfXi+1 = kg =

�
qi if k = 1

(1� qi)p
k�2
i (1� pi) if k � 2:

(6)

Next, we derive the distribution of the time to next failure
in continuous time which is the interval distribution of the
point processNF (t) that records the number of failures in
(0; t]. LetT 0i (i = 1; 2; : : :) be a continuous random variable
representing thei-th failure time. DefineTi+1 as the time
elapsed fromi-th failure until the occurrence of(i + 1)-st
failure. It follows thatT 0i+1 =

Pi+1
j=1 Tj = T 0i + Ti+1;

whereT 00 = 0.
When software reliability growth is considered a usual

measure of reliability is conditional reliability. Since the
system has experiencedi failures, conditional reliability is
the survivor function associated with(i + 1)-st failure. In
other words, we are concerned with the distribution of the
time between successive failuresTi+1 = T 0i+1 � T 0i : It fol-
lows from (6) that the conditional distribution of the time to

the next failureFi+1(t) = PfTi+1 � tg for i � 1 is given
by:

Fi+1(t) = qiFex(t) +

1X
k=2

(1� qi) p
k�2
i (1� pi) F

k�
ex (t)

(7)

whereF k�
ex denotes the k-fold convolution of the distribu-

tionFex.
The Laplace – Stieltjes transform (LST) ofFex(t) is de-

fined fors � 0 by ~Fex(s) =
R
1

0 e�stdFex(t) = E[e�st]:
The LST of the distribution of the time to failureFi+1(t)
becomes

~Fi+1(s) = qi ~Fex(s) +

1X
k=2

(1� qi) p
k�2
i (1� pi) ~F k

ex(s)

=
qi ~Fex(s) + (1� pi � qi) ~F 2

ex(s)

1� pi ~Fex(s)
: (8)

The inversion of (8) is in principle straightforward and rea-
sonably simple closed – form results can be obtained when
the run’s execution time distributionFex(t) has rational
LST (such as phase – type distributions discussed in [5]).

We can develop some general properties of time to next
failure without making assumptions about the form of the
run’s execution time distributionFex(t). Due to the well
known property of LST the moments can be derived easily
by a simple differentiation of (8)

E[Ti+1] = �
d ~Fi+1(s)

ds

�����
s=0

= �
2� pi � qi

1� pi

d ~Fex(s)

ds

�����
s=0

=
2� pi � qi

1� pi
E[Tex] (9)

whereE[Tex] is the run’s mean execution time. Ifpi+qi =
1 then successive runs are independent and (9) becomes

E[T in
i+1] =

E[Tex]

1� pi

which means that we can rewrite (9) as

E[Ti+1] = (2� pi � qi) E[T in
i+1]:

If we introduce the notation�i = pi + qi � 1 then

E[Ti+1] = (1� �i) E[T in
i+1]: (10)

When the successive software runs are dependent(�i 6= 0)
two cases can be considered:

1. If 0 < �i < 1 (pi + qi > 1) then successive runs
are positively correlated, that is, the failures occur in
clusters. It follows that the mean time between fail-
ures is shorter than it would be if the runs were inde-
pendent. In other words, SRGM that assume indepen-
dence among failures will result in overly optimistic
predictions.

2. If �1 < �i < 0 (pi + qi < 1) then the successive
runs are negatively correlated and the the mean time
between failures is longer then it would be if the runs
were independent.

3.3. Model generalizations

The presented model can be generalized in many ways.
First, considering not identically distributed runs execution
times for successful and failed runsFexS (t) 6= FexF (t) is
straightforward: we assign distribution functionFexS (t) to
each transitions to state0 (successful runs), andFexF (t) to
each transition to state1 (failed runs). By making appropri-
ate changes in (7) we get:

Fi+1(t) = qiFexF (t)

+
1X
k=2

(1� qi) p
k�2
i F (k�1)�

exS (t) (1� pi) FexF (t)

(11)

which leads to LST transform:

~Fi+1(s) =
qi ~FexF (s) + (1� pi � qi) ~FexF (s) ~FexS (s)

1� pi ~FexS (s)
:

(12)

Next generalization considers the possible variability of
the run’s execution time distributionFex(t). We have as-
sumed that this distribution does not change during the
whole testing phase. This assumption can be violated for
reasons such as significant changes in the code due to the
fault fixing attempts. In other words, it may be useful to
consider the situation when the parameters of the distribu-
tion Fex(t) change after each failure occurrence (i.e., after
each visit to the failure state). In that case, we need only to
substituteFex(t) with Fexi(t) in equation (7).

One more generalization that can be considered in apply-
ing the MRP approach is to choosek-state Markov chain to
describe the sequence of software runs in discrete space.
For example, it is possible to define DTMC which consid-
ers more than one type of failure. We can also add states
that will enable us to consider non – zero time to remove a
fault or periods of time when the software is idle.

3.4. Applicability to validation phase and
operational phase

The presented modeling approach can be used to make
reliability estimations of the software based on the results
of testing performed in its validation phase. In the case
of safety critical software it is common to demand that all
known faults are removed. This means that if there is a
failure during the testing the fault must be identified and
removed. After the testing (debugging) phase the software
enters a validation phase in order to show that it has a high
reliability prior to actual use. In this phase no changes are
made to the software. Usually, the validation testing for
safety critical software takes the form of specified number
of test cases or specified period of working that must be ex-
ecuted failure – free. While of particular interest in the case
of safety critical software, the same approach can be applied
to any software that, in its current version, has not failed for
n successive runs.

Let � be the unconditional probability of a failure per run
(execution). For the case of independent Bernoulli trials the
probabilities that each run will fail� = q or succeed1�� =
p are independent of previous runs. Thus, the probability
thatn independent test runs are conducted without failure
is

(1� �)n = (1� q)n = pn: (13)

The largest value of� such that

(1� �)n � � (14)

defines the1 � � upper confidence bound on� [9], [27].
Solving (14) for� gives1 � � confidence that the failure
probability per execution of a software that reveals no fail-
ure inn independent runs is below

�� = 1� �1=n: (15)

For the related recent work on a Bayesian estimation ap-
proach see [15] and [17].

Now consider a sequence of possibly dependent software
runs. During the validation phase the software is not chang-
ing, that is,p andq do not vary. In other words, the sequence
of runs can be described by the homogeneous DTMC with
transition probability matrix (2). We assume that the DTMC
is stationary, that is, each run has the same probability of

failurePfZi+1 = 1g = PfZi = 1g = �. Then, from (4) it
follows that

� =
1� p

2� p� q
: (16)

The probability thatn successive runs will succeed is given
by:

PfZn = : : : = Z2 = Z1 = 0jZ0 = 1g

= PfZn = 0jZn�1 = 0g : : : PfZ2 = 0jZ1 = 0g

� PfZ1 = 0jZ0 = 1g

= pn�1 (1� q): (17)

Using the notion� = p + q � 1 in addition to (16) we can
rewrite (17) in terms of� and�. It follows that in the case of
dependent Bernoulli trials(1� �) upper confidence bound
on failure probability per execution� becomes:

�� =
1� �1=(n�1)

1� �
: (18)

If failures occur in clusters (0 < � < 1) then the confidence
bound on failure probability is approximately1=(1 � �)
higher than the bound obtained under the independence as-
sumption (15), that is, the result obtained under the assump-
tion of independence is overly optimistic.

We consider the applicability of the Markov renewal
model in the operational phase next. During the opera-
tional phase no changes are made to the software, that is,
the sequence of runs can be described by the homogeneous
DTMC. The well developed theory of Markov renewal pro-
cesses [5], [21] and its limiting results can be used to derive
a number of measures other than the distribution of the time
between failures, such as

� the expected number of failuresMF (t) = E[NF (t)]
and the expected number of successesMS(t) =
E[NS(t)] in the interval(0; t];

� the probability of success at timet, that is, instanta-
neous availability;

� the limiting probability that the process will be in state
0 at timet ast!1, that is, steady – state availability.

4. Some special cases and relation to existing
models

The Markov renewal model described in this paper can
be related to existing software reliability models. The
model in discrete time is comparable with an input – do-
main based models which are static and don’t consider the
time, while the model in continuous time is comparable

with time – domain software reliability growth models. We
next examine these relations.

The software reliability model in discrete time presented
in this paper can be related to input – domain based models
which consider the software input space from which test
cases are chosen. For example, the input – domain model
presented in [19], [20] defines the conditional reliability as
probability thatk runs will succeed before the failure, given
thatj faults have been detected and corrected

Rj(kj�j) = (1� �j)
k �j (19)

wherek � 0 and �j (0 � �j � 1) is defined as a
fault size under operational inputs. It is obvious that (19)
is a special case of (6) under the assumption that succes-
sive inputs have independent failure probability. In [19]�j
is treated as a random variable with a distribution function
G(�j), and (19) becomesRj(k) =

R
(1��j)

k�j dG(�j) =
E[(1� �j)

k �j]:
Note that the model in discrete time is also related to

the Compound – Poisson software reliability model in [22].
This model is based on the work presented in [23] which
approximates the sum of dependent integer – valued random
variablesSn given by (1) with a compound Poisson process.

Now consider the software reliability model in contin-
uous time. If ~Fex(s) is a rational function ofs, so too is
~Fi+1(s), and the inversion of (8) is in principle straight-
forward. An important special case is when the distri-
bution of the run’s execution time is exponential so that
fex(t) = �e�� t, since it relates the MRP approach to the
existing time – domain based software reliability models
and some of their basic assumptions, such as the indepen-
dence of successive runs and the exponential distribution of
the inter – failure times. In other words, the simplest special
case of the model is under the assumptions that the succes-
sive software runs are independent (pi + qi = 1) and the
software execution time (duration of testing runs) is expo-
nentially distributed with rate�. Inverting (8) leads to the
pdf of the inter – failure times:

fi+1(t) = (1� pi) � e�(1�pi)� t; (20)

that is, the conditional reliability is given by

Ri+1(t) = 1� Fi+1(t) = e�(1�pi)� t: (21)

It follows that the inter – failure time is exponentially dis-
tributed with rate(1�pi)� if the software testing is consid-
ered as a sequence of independent runs with an exponential
distribution of the execution times. Note that, the coeffi-
cient of variation, defined by the ratio of standard deviation
and mean, of an exponential distribution is1.

The alternative interpretation of this special case can be
found in [11]. Under the assumption that inputs arrive at
software system according to a Poisson process with rate�

which is interpreted as intensity of testing, the probability
that the software encounters no failures in a time interval
(0; t] is given by:

1� F (t) =

1X
j=0

e��t(�t)j

j!

�
M �M�

M

�j

(22)

whereM is the size of the input data space, i.e., the number
of data items which can be used as input to the software and
M� is the total number of these input data which may cause
software failure. The first term inside the summation sign
denotes the probability thatj inputs are received in timet,
and the second term denotes that none ofj inputs lead to
a failure of software. It is easy to verify that (22), when
simplified, leads to

1� F (t) = e�
M
�

M
�t: (23)

It means that the time to first failure has an exponential
distribution with failure rate� = (M�=M)�. Note that
M�=M is just the probability of failure on a test run.

The conditional reliability, that is, the survivor function
of the time between(i� 1)-st andi-th failureTi becomes

1� Fi(t) = PfTi > tg = e��it: (24)

Even though the motivations are different and the pa-
rameters have different interpretations, mathematically the
model derived in [11] is a special case of the software relia-
bility model based on MRP under the assumptions that suc-
cessive software runs (i.e., failures) are independent and the
software execution times are exponentially distributed with
rate�. In [11] it is shown that the Jelinski – Moranda model
[10] can be obtained by introducing�i =

�
M (N � i+1) =

�(N � i + 1) and treating� andN as unknown parame-
ters. Then by adopting a Bayesian point of view two other
models can be derived from the Jelinski – Moranda model
[11]:

1. Goel – Okumoto model [8] is obtained by assuming�
has a known value and assigning Poisson prior distri-
bution forN ;

2. Littlewood – Verrall model [14] is obtained by assum-
ingN has a known value and that� has a prior Gamma
distribution.

Some other time – domain SRGM can easily be obtained
as special cases under the assumption of independence. Due
to the space limitations and vast number of SRGM the anal-
ysis of the relation to the existing models will not be pur-
sued any further.

Let us now keep the assumption that the distribution of
the run’s execution time is exponential, but assume depen-
dence between successive software runs (pi + qi 6= 1). In-
verting (8) leads to the pdf of the inter – failure time given

by:

fi+1(t) =
(1� qi)

pi
(1� pi)�e�(1�pi)� t

+
(pi + qi � 1)

pi
�e�� t: (25)

This distribution is a mixture (compound) distribution [27]
with pdf of a form g(t) = �1 g1(t) + �2 g2(t), where
�1; �2 > 0 and�1 + �2 = 1.

In the case whenpi + qi > 1 the inter-failure distri-
bution (25) is hyperexponential, that is, a mixture of two
exponential distributions with rates(1 � pi) � and�. The
mixing probabilities are given by�1 = (1 � qi)=pi and
�2 = (pi + qi � 1)=pi, respectively. Note that the coef-
ficient of variation in the case of hyperexponential distri-
bution is greater than1. It is obvious that due to the pres-
ence of failure clustering, the inter – failure time has smaller
meanE[Ti+1] < E[T in

i+1] and greater variability compared
to the independent case, even under the assumption of ex-
ponentially distributed duration of testing runs.

If thepi+qi < 1 then (25) becomes a mixture of an expo-
nential distribution with rate(1�pi)� and hypoexponential
distribution with rates(1�pi)� and�. The mixing propor-
tions are�1 = qi=(1�pi) and�2 = (1�pi�qi)=(1�pi),
respectively. It can be shown that the coefficient of variation
in this case is smaller than1. In other words, the inter – fail-
ure time has greater meanE[Ti+1] > E[T in

i+1] and smaller
variability compared to the independent case.

The presented results clearly demonstrate the effects of
failure correlation on the software reliability measures. It
is obvious that some of the common assumptions made by
software reliability models are inadequate and result in op-
timistic estimations when failures are indeed clustered.

5. Discussion and future work

The ultimate goal when developing reliability growth
models is the development of good reliability inference and
prediction methods which can be applied to software devel-
opment. This paper does not deal with inference or predic-
tions per se. It is mainly aimed at showing that the classical
software reliability theory can be extended in order to con-
sider a sequence of possibly dependent software runs, that
is, a failure correlation. However, there are many research
issues that we would like to address in near future in order
the model to be fully specified and applied in real software
development projects for performing estimations and pre-
dictions.

Let us consider in some detail the concept of software
runs. The operation of software can be broken down into
series of runs [18]. Each run performs mapping between
a set of input variables and a set of output variables and

consumes a certain amount of execution time. The input
variable for a program run is any data item that exists ex-
ternal to the run and is used by a run. There does not have
to be a physical input process. The input variable may sim-
ply be located in memory, waiting to be accessed. Even
for the software that operates continuously it is still possi-
ble and more convenient to divide the operation into runs
by subdivision of time associated with some user – oriented
tasks [18]. The information associated with software runs
can generally be grouped into two categories:

� Timing. This includes specific time associated with
each run, such as start time, normal termination time
for successful runs, or failure time for failed runs.

� Input and Outcome.The descriptive information about
each specific run generally specifies the input for the
program, the testing environment, and the outcome
that has been obtained (success or failure).

Relevant data about the failed runs, as well as for successful
runs are routinely captured in many projects for test track-
ing and testing process management purposes [24], [25].
This data, with possibly minor modifications, provide com-
mon source for reliability growth modeling, input – domain
analysis, and integrated analysis in this paper.

The existing time – domain SRGM disregard the suc-
cessful runs between two failures and ignore the informa-
tion conveyed by them. The consideration of successful
runs, that is, non – failure stops of software operation for
parameters estimation of some of the existing SRGM was
presented recently in [3]. In this work it is pointed out that
disregarding the non – failure stops violates the Maximum
Information Principle that suggests to exploit available soft-
ware reliability information as much as possible.

In the case of MRP model the time between failuresTi+1
is a random variable whose distribution depends on the dis-
tribution of the run’s execution timeFex(t), and on the con-
ditional probabilitiespi andqi. The timing information as-
sociated with each run can be obtained quite easily in many
computer systems. Therefore, instead of making assump-
tions, the specific distribution function of the run’s execu-
tion timeFex(t) could be determinated from measured data.

Consider possible models for the parameter set
fp1; q1; p2; q2; : : : g next. It is mathematically possible to
permit an infinite number of failures, and in this case the
parameter set is infinite. By settingqi = 0 andpi = 1 for
i � n + 1 the finite failure model is obtained as a special
case.

For the model to be fully, specified it is necessary to con-
sider the way the parameters change as a result of the fault
removal attempts. In this regard, there are two possible ap-
proaches. One approach of modeling the parameter set is
to relate them to the number of test runs or to the number

of faults in a systematic way by assuming various determin-
istic functional relationships. That is, the free parameters
are simply seen as unknown constants to be estimated by
the sample data. The alternate approach is to treat the pa-
rameters as random variables themselves in order to con-
sider the uncertainty about the effect of fault removal [13],
[14]. Thus, even if the fault removal is successful, there
will be uncertainty about the size of the fault removed, and
so uncertainty about the magnitude of reliability improve-
ment. This approach results in a doubly stochastic model:
one model for set of parameters and the other for the times
between failures conditional on the parameters.

In SRGM it is generally assumed that when debugging
is taking place there is a presence of reliability growth.
However, the detailed assumptions about the nature of this
growth and the way the modeling parameters change as a
result of the fault removal attempts vary from one model to
another. Here, some basic issues that should be taken into
account are briefly outlined [2], [28]:

� Size of faults.In general, different software faults do
not affect equally the failure probability. Some faults
which are more likely to occur contribute more to the
failure probability than other faults.

� Imperfect debugging.Often, fault fixing cannot be
seen as a deterministic process, leading with certainty
to the removal of the fault. Moreover, it may cause the
introduction of new faults in code.

� Non – instantaneous and delayed fault removal.Usu-
ally, neither the removal of a fault occurs immediately
after the failure is observed, nor the time to remove the
fault is negligible.

� Changing testing strategy.In practice it is important to
deal with the case of nonhomogeneous testing, that is
the model should include the possibility of describing
variations of the testing strategy with time.

6. Conclusion

The research work presented in this paper is devoted to
development of the more realistic software reliability mod-
eling framework that enables to account for the phenomena
of failure correlation and to study its effects on the software
reliability measures. The important property of the devel-
oped Markov renewal modeling approach is its flexibility.
It allows us to construct the software reliability model in
both discrete time and continuous time, and depending on
our goals to base the analysis either on Markov chain the-
ory or on renewal process theory. The model presented in
this paper can be related to the existing software reliability
models. In fact, it is demonstrated that a number of input –

domain and time – domain models can be derived as special
cases under the assumption of failure independence.

This paper is mainly aimed at showing that the classi-
cal software reliability theory can be extended in order to
consider a sequence of possibly dependent software runs,
that is, a failure correlation. It does not deal with infer-
ence or predictions per se. In order the model to be fully
specified and applied for performing estimations and pre-
dictions in real software development projects we need to
address many research issues, such as the detailed assump-
tions about the nature of the reliability growth and the way
the modeling parameters change as a result of the fault re-
moval attempts.

To summarize, the software reliability modeling frame-
work presented in this paper contributes toward more real-
istic modeling of software reliability since it naturally inte-
grates the phenomena of failure correlation. In addition, it
also provides bases for a more flexible and consistent ap-
proach to the mathematical formulation on software relia-
bility. However, in order to apply the model to real data the
development of more detailed and specific models within
this framework, as well as statistical inference procedures
for modeling parameters are the subjects of our future re-
search.

References

[1] S. Bittanti, editor.Software Reliability Modelling and Identi-
fication, volume 341 ofLecture Notes in Computer Science.
Springer – Verlag, 1988.

[2] S. Bittanti, P. Bolzern, and R. Scattolini. An introduction to
software reliability modeling. In S. Bittanti, editor,Software
Reliability Modelling and Identification, volume 341 ofLec-
ture Notes in Computer Science, pages 43–66. Springer –
Verlag, 1988.

[3] K. Cai. Censored software – reliability models.IEEE Trans-
actions on Reliability, 46(1):69–75, March 1997.

[4] D. R. Cox and V. Isham.Point Processes. Chapman and
Hall, 1980.

[5] D. R. Cox and H. D. Miller.The Theory of Stochastic Pro-
cesses. Chapman and Hall, 1990.

[6] L. H. Crow and N. D. Singpurwalla. An empirically de-
veloped Fourier series model for describing software fail-
ures. IEEE Transactions on Reliability, R-33(2):176–183,
June 1984.

[7] W. Farr. Software reliability modeling survey. In M. R. Lyu,
editor,Handbook of Software Reliability Engineering, pages
71–117. Mc Graw – Hill, 1996.

[8] A. L. Goel and K. Okumoto. Time dependent error – de-
tection rate model for software reliability and other per-
formance measures.IEEE Transactions on Reliability, R-
28:206– 211, 1979.

[9] D. Hamlet. Are we testing for true reliability?IEEE Soft-
ware, pages 21– 27, July 1992.

[10] Z. Jelinski and P. B. Moranda. Software reliability research.
In W. Freiberger, editor,Statistical Computer Performance
Evaluation, pages 485–502. Academic Press, 1972.

[11] N. Langberg and N. D. Singpurwalla. A unification of some
software reliability models. SIAM J. Sci. Stat. Comput.,
6(3):781–790, July 1985.

[12] J. Laprie and K. Kanoun. Software reliability and system
reliability. In M. R. Lyu, editor,Handbook of Software Reli-
ability Engineering, pages 27–69. Mc Graw – Hill, 1996.

[13] B. Littlewood. Modeling growth in software reliability. In
P. Rook, editor,Software Reliability Handbook, pages 137–
153. Elsevier Applied Science, 1990.

[14] B. Littlewood and J. L. Verrall. A Bayesian reliability
growth model for computer software. InProceedings of the
IEEE Symposium on Computer Software Reliability, pages
70–77, 1973.

[15] B. Littlewood and D. Wright. Some conservative stopping
rules for the operational testing of safety – critical software.
IEEE Transaction on Software Engineering, 23(11):673–
683, November 1997.

[16] M. R. Lyu, editor. Handbook of Software Reliability Engi-
neering. Mc Graw – Hill, 1996.

[17] K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M.
Nicol, B. W. Murrill, and J. M. Voas. Estimating the proba-
bility of failure when testing reveals no failures.IEEE Trans-
action on Software Engineering, 18(1):33–43, January 1992.

[18] J. D. Musa, A. Iannino, and K. Okumoto.Software Reliabil-
ity: Measurement, Prediction, Application. Mc Grow – Hill,
1987.

[19] C. V. Ramamoorthy and F. B. Bastani. Modeling of the soft-
ware reliability growth process. InProceedings of COMP-
SAC, pages 161–169, 1980.

[20] C. V. Ramamoorthy and F. B. Bastani. Software reliability
– status and perspectives.IEEE Transaction on Software
Engineering, 8(4):354–371, July 1982.

[21] S. M. Ross.Applied Probability Models with Optimization
Applications. Holden – Day, 1970.

[22] M. Sahinoglu. Compound – Poisson software reliabil-
ity model. IEEE Transaction on Software Engineering,
18(7):624–630, July 1992.

[23] R. F. Serfozo. Compound Poisson approximations for sums
of random variables.Annals of Probability, 14(4):1391–
1398, 1986.

[24] J. Tian. Integrating time domain and input domain anal-
yses of software reliability using tree – based models.
IEEE Transactions on Software Engineering, 21(12):945–
958, December 1995.

[25] J. Tian and J. Palma. Data partition based reliability mod-
eling. InProceedings of the 7th IEEE International Sympo-
sium on Software Reliability Engineering, pages 354–363,
1996.

[26] L. A. Tomek, J. K. Muppala, and K. S. Trivedi. Model-
ing correlation in software recovery blocks.IEEE Transac-
tions on Software Engineering, 19(11):1071–1086, Novem-
ber 1993.

[27] K. S. Trivedi. Probability and Statistics with Reliability,
Queuing and Computer Science Applications. Prentice –
Hall, 1982.

[28] M. Xie. Software Reliability Modelling. World Scientific
Publishing Company, 1991.

