Failure Correlation in Software Reliability Models

Katerina Geéva — Popstojanova and Kishor Trivédi
Center for Advanced Computing and Communication
Department of Electrical and Computer Engineering
Duke University, Durham, NC 27708 — 0291
E-mail: {katerina, ksf@ee.duke.edu

Abstract the basic assumptions made by various software reliability
models, one which appears to be the weakest point is the
Perhaps the most stringent restriction that is present in independence among successive software runs.
most software reliability models is the assumption of inde- Most existing software reliability growth models
pendence among successive software failures. Our researcliSRGM) assume that the testing is performed homoge-
was motivated by the fact that although there are practical neously and randomly, that is, the test data are chosen from
situations in which this assumption could be easily violated, the input space by some random mechanism and the soft-
much of the published literature on software reliability mod- ware is tested using these data assuming homogeneous con-
eling does not seriously address this issue. ditions. In practical situations usually this is not the case.
In this paper, we present a software reliability modeling During the testing phase, different test scenarios are usu-
framework based on Markov renewal processes which nat-ally grouped according to high level functionalities which
urally introduces dependence among successive softwargneans that a series of related test runs are conducted. In ad-
runs. The presented approach enables the phenomena aflition, input data are usually chosen in order to increase the
failure clustering to be precisely characterized and its ef- testing effectiveness, that is, to detect as many faults as pos-
fects on software reliability to be analyzed. Furthermore, it sible. As a result, once a failure is observed, usually a series
also provides bases for a more flexible and consistent modebf related test runs are conducted to help isolate the cause of
formulation and solution. The Markov renewal model pre- failure. Overall, testing of software systems employ a mix-
sented in this paper can be related to the existing softwareture of the structured (centered around scenarios), clustered
reliability growth models, that is, a number of them can be (focused on fault localization) and random testing [25].
derived as special cases under the assumption of failure in- - The stochastic dependence of successive software runs
dependence. also depends on the extent to which internal state of a soft-
Our future research is focused on developing more spe-ware has been affected and on the nature of operations un-
cific and detailed models within this framework, as well as gertaken for execution resumption (i.e., whether or not they
statistical inference procedures for performing estimations involve state cleaning) [12].
and predictions based on the experimental data. Assuming the independence among successive software
runs does not seem to be appropriate in many operational
usages of software either. For instance, in many applica-
1. Introduction tions, such as real-time control systems, the sequence of
input values to the software tend to change slowly, that is
Software reliability is widely recognized as one of the successive inputs are very close to each other. For these
most important aspects of software quality spawning a lot reasons, given a failure of a software for a particular input,
of research effort into developing methods of quantifying there is a greater likelihood of it failing for successive in-
it. Despite the progress in software reliability modeling, puts. In applications that operate on demand, similar types
the usage of the models is restricted by often unrealistic of demands made on the software tend to occur close to each
assumptions made to obtain mathematically tractable mod-other which can result in a succession of failures.
els and by the lack of enough experimental data. Among To summarize, there may be dependencies among suc-
*Supported in part by the National Science Foundation, by Bellcore cessive software runs, that is, the assumptlpn qf the inde-
and by the Lord Foundation as a core project in the Center for Advanced Pe€ndence of software failures could be easily violated. It
Computing and Communication means that, if a software failure occurs there would tend to

be an increased chance that another failure will occur in the we consider the outcomes of successive software runs
near term. We say that software failures occur in clusters if to construct the model in discrete time. Then, consid-
failures have tendency to occur in groups. That is, the times ering the execution times of the software runs we build
between successive failures are short for some periods of a model in continuous time.

time and long for other periods of time.

Prevalent SRGM fall into two categories: time between
failure (TBF) models which treat the inter-failure interval
as a random variable, and failure count (FC) models which
treat the number of failures in a given period as a random
variable. In the case of TBF models the parameters of the
inter — failure distribution change as testing proceeds, while

the software reliability evolution in FC models is described o Applicability to different phases of the software life cy-
by Iett|ng the parameters of distribution, such as mean value cle. The proposed mode”ng approach is app”cable

out that the two approaches presented above are strictly re- phase and operational phase.

lated. Failure time intervals description and failure count-

ing process description are essentially two different ways of2 Markov renewal processes - brief overview
looking at the same phenomenon. To some extent, it is pos- "
sible to switch between them. Herein, the analysis of the , .
existing models and the correspondence between the two Conspler a process constructgd as fOHO\N?' First 'ga}ke a
classes will not be pursued any further. For survey on thek—state discrete time Markov chain (DTMC) with transition

existing SRGM the reader is referred to [1], [16], [18], [20], Probability matrixP = [p;;]. Next construct a process in
[28]. contmuoug time by makmg t.he Flme spe.nt in a transition
One of the basic assumptions common to both classegrom ;:tata to statey havg distribution functiod; (¢), such)
of models is that the failures, when the faults are detected,that tlmes_ are mutually.mdependent. ,At the end of the in-
are independent. For example, in [7] this assumption is in- ©7Val We imagine a point event of type Such a process
cluded in the Standard Assumptions that apply for each pre-

sented model. In other words, neither TBF nor FC models X C S
statistically satisfy the requirements of addressing the is- cesses with countable state spaces. A descriptive definition

sue of dependencies among successive software runs whic]Bf SMP would be that it 'rs] a stochastic processblvvhlch rgovesf
usually results in failure clustering. One of the reasons rom one state 1o another among a countable number o

"Why conventional reliability theory fails” for software states with the successive states visited forming a discrete

listed in [9], is that the program runs are not always inde- time Markov chain, and that the process s.tays In-a given
pendent. state a random length of time, the distribution function of

To the best of our knowledge, there are only a few pub- which may depend on this state as well as on the one to be

lished papers that consider failure correlation. The empiri- ViSitéd next.

cally developed Fourier series model proposed in [6] can be I-Irhde famkily of stochlastic processes used ig thi; paper,
used for analyzing clustered failure data, especially thoseC2/led Markov renewal process (MRP), may be shown to

with cyclic behavior. The Compound — Poisson software re- be equive;}lent to thef fr;mily of SMP [4], [E‘]' .Thus, Fhe'ISMP
liability model presented in [22] considers multiple failures records the state of the process at each time goithile

that occur simultaneously in bunches within the specified the MRP is_ a point (counting) process which records.the
CPU second or time unit. The work presented in [26] con- number of times each of the possible states has been visited

siders the problem of modeling correlation between succes-UP fO timet. MRP are of general interest since they join to-

sive executions of the software fault — tolerance technique9€ther the theory of two different types of processes, the re-
based on recovery blocks newal process and the Markov chain. In studying MRPs itis

In this paper we propose a software reliability model- possible to follow the methods used for renewal processes,

ing framework, based on Markov renewal processes, which©" bsse tEe_treatment much more heavily on the theory of
is capable of incorporating the possible dependence amond\/Iar O;]’C ans. | th he basi died is th
successive software runs, that is, the effect of clustering. " the renewal theory, the basic process studied is the

Markov renewal model formulation has several :':1dvantages,m"mber of renewal§ N (t);¢ > 0,} In the interval (0,].
both theoretical and practical, such as: If one regards the MRP as consistingfoflependent pro-

cesseVi (t), ..., Ni(t), whereN;(t) refers to the points
¢ Flexible and more consistent modeling of software re- of classi, that is, the number of times statehas been
liability. The model is constructed in two stages. First, visited, the observed process of points is the superposition

¢ Adaptibility of the model to both dependent and inde-
pendent sequences of software ruiiie model nat-
urally introduces dependence among successive soft-
ware runs, that is, failure correlation. Considering the
independence among software runs is a special case of
the proposed modeling framework.

is called semi — Markov process (SMP), and it is a gener-
alization of both continuous and discrete time Markov pro-

N(t) = Ni(t) + ... + Ni(t). Many of the properties of Similarly, if the i-th run results in success then there are
Markov renewal processes are derived from those of re-probabilitiesp and1 — p of success and failure respectively
newal processes [4]. For example, the points of particularat the(; + 1)-st run

type form a renewal process, so that if these points are of in-

terest, then it is necessary to consider only the distribution P{Zi11=0|Z; =0} =p

of an interval between successive points of this type and to P{Zi1=1Z; =0} =1—p.

make use of the standard results of renewal theory. o
The sequence of dependent Bernoulli trigs; i > 1}

defines a discrete time Markov chain with two states. One
of the states denoted by 0 is regarded as success, and the
other denoted by 1 as failure. A graphical description of
this Markov chain is provided by its state diagram shown in

We have developed a software reliability modeling Figure 1 and its transition probability matrix is given by
framework based on the Markov renewal process which is

intuitive and naturally introduces dependence among suc- _ [p 1-p]
cessive software runs. MRP approach allows us to build L 1-g¢ q ’
the model in two stages. First, we define a DTMC which
considers the outcomes from the sequence of possibly de
pendent software runs in discrete time. Next, we construct _

. . . . o lp+q—1] <1 3)
the process in continuos time by attaching the distributions
of the run’s execution time, that is, duration of runs, to the
transitions of the DTMC. Thus, we obtain an SMP which p q
describes both failure and execution behavior of the soft-
ware. Since in software reliability theory we are interested

in the distribution of the time to the next failure and the /\

number of software failures in time interval of duratign 0

we focus on the equivalent point process, that is, the MRP. \/

3.1. Software reliability model in discrete time

3. Software reliability modeling framework
based on MRP

0<p,g<l. (2

Sincep andq are probabilities, it follows that

Figure 1. Markov interpretation of dependent

We view the sequence of software runsin discrete time as g0l trials

a sequence of dependent Bernoulli trials in which the prob-
ability of success or failure at each trial depends on the out-

come of the previous trial. Let us associate with tké Let us first consider in some detail the Markov chain.
software run a binary valued random variaBlehat distin- The probabilityy (p) is the conditional probability of failure
guishes whether the outcome of that particular run resulted(success) on a software run given that the previous run has
in success or failure: failed (succeeded). The unconditional probability of failure

on the(i + 1)-strunis:
7 - { 0 denotes a success on thth run (i+1)

1 denotes a failure on theth run P{Z;, =1}
If we focus attention on failures and scoreeach time a =P{Zip1=1,Zi =1} + P{Zit1 = 1,Z; = 0}
failure occurs and otherwise, then the cumulative scatg =P{Zi1 =1|Z; =1} P{Z; =1}
is the number of runs that have resulted in a failure among + P{Zis1 =1|2Z; =0} P{Z; = 0}

n successive software runS,, can be written as the sum — g P{Zi =1} +(1—p) P{Z =0}

Sp=21+...+Z, (1) =qP{Z;=1}+(1—p) [l - P{Z; = 1}]
of n possibly dependent random variables. =(0-p+p+e-1)P{Z =1} 4
Suppose that if thé-th run results in failure then the If p+ ¢ = 1 the Markov chain describes a sequence of
probability of failure at theti + 1)-strun isq and the prob-jndependent Bernoulli trials. In that case the equation (4)
ability of success at th@ + 1)-st run isl — ¢, that is reduces toP{Z;;; = 1} = 1 — p = q, which means that

the failure probability does not depend on the outcome of
the previous run. Thatis, each subsequent run has indepen-
P{Zi1=01Zi=1}=1—-q¢. dently probabilitiep andg = 1 — p of being a success and

P{ZiJrl =].|Zz =].} =q

failure. This means that all software runs are independent
of each other, and the number of failuigsis a sum ofn guence of runs, making no changes if there is no fail-
mutually independent Bernoulli random variables. ure. When a failure occurs on any run an attempt will be
If p+ ¢q # 1then the DTMC describes the sequence of made to fix the underlying fault which will cause the con-
dependent Bernoulli trials and enables us to accommodatalitional probabilities of success and failure on the next run
possible dependence among successive runs. In this cas® change. This implies thatandgq, that is, the transition
the outcome of the software run (success or failure) dependsrobability matrixP stays constant between two successive
on the outcome of the previous run as in equation (4). Thevisits to the failure state. In other words, the transition prob-
number of failures im runs, given bys,,, is the sum ofx ability matrix P; given by
dependent random variables. Depending on the relation be-

During the testing phase software is subjected to a se-

tween the conditional probabilitigsandg we can describe
the presence or the lack of failure clustering.

Whenp + ¢ > 1, runs are positively correlated, that
is, if software failure occurs ig-th run, there would be an

increased chance that another failure will occur in the next

run. It is obvious that in this case failures occur in clusters.
The boundary case arises when equality in (3) holds, i.e.
p+q =2 (p =q=1). This means that if the sequence of
software runs starts with failure all successive runs will fail
or if it starts with success all successive runs will succeed,
that is, the Markov chain remains forever in its initial state
as shown in Figure 2.

1

Figure 2. DTMC forthecase p=qg=1

Next consider the case when successive software run
are negatively correlatgel+ ¢ < 1. In other words, if soft-
ware failure occurs iri-th run, there would be an increased
chance that a success will occur(ih+ 1)-st run, that is,

there is a lack of clustering. In the boundary case, when the

equality in (3) holdsg+ ¢ = 0i.e.p = ¢ = 0), the Markov
chain alternates deterministically between the two states, a
in Figure 3.

@Q@

Figure 3. DTMC forthecase p=q=0

The boundary cases are excluded from further analysisecution distribution regardless of the outcorfg, (¢)

since they are somewhat trivial, with no practical interest.
We impose the conditiof < p, ¢ < 1 on transition proba-
bilities, which implies thatp + ¢ — 1| < 1. In other words,
DTMC in Figure 1 is irreducible and aperiodic [27].

Di

1—q ®)

SIS
q;
defines the values gf; andg; for the testing runs that fol-
low the occurrence of theth failure up to the occurrence
of the next(i + 1)-st failure. Thus, the software reliability
growth model in discrete time can be described with a se-
'quence of dependent Bernoulli trials with state — dependent
probabilities. The underlying stochastic process is a non —
homogeneous discrete time Markov chain.

The sequencs§,, = Z; + ... + Z, provides an alterna-
tive description of reliability growth model considered here.
{S,} defines the DTMC presented in Figure 4. Both states
andi, represent that failure state has been occupiides.

The state represents the first trial for which the accumu-
lated number of failure§,, equalsi, while i, represents all
subsequent trials for whicH,, = i, that is, all subsequent
successful runs before the occurrence of rigxt1)-st fail-

ure. Without loss of generality we assume that the first run
is successful, that i§) is the initial state.

3

K .2. Software reliability model in continuous time

The next step in the model construction is to obtain a
process in continuous time considering the time that takes
software runs to be executed by assigning a distribution
function F;; (¢) to the time spent in a transition from state
4 to statej of the DTMC in Figure 1. It seems realistic
to assume that the runs execution times are not identically
distributed for successful and failed runs. Thus, distribu-
tions F;;(t) depend only of the type of point at the end
of the interval, that isFyo(t) = Fio(t) = F...(t) and
Fo1(t) = F11(t) = Fepp(t), whereF,,.(t) and F,, . (t)
are the distribution functions of the duration of successful
and failed runs, respectively. This is equivalent to assign-
ing distribution functionF,,.. (¢) to all transitions to states
is and F,, . (t) to all transitions to states (i > 1) of the
DTMC in Figure 4.

For the sake of simplicity, we have chosen the same ex-

Feps(t) = Fepp(t). Thus, the execution tim&,, of
each software run has the distribution functibn.(t) =
P{T.. < t}. Considering the situation when software ex-
ecution times are not identically distributed for successful

Figure 4. DTMC for testing phase

and failed runsF,, (t) # Fe.(t) is straightforward and
will be discussed later.

With the addition ofF.,.(¢) to the DTMC, we obtain the
software reliability model in continuous time, that is, an
MRP. The total number of software rugsv(¢),t > 0} is
a superposition of two dependent renewal procedggs)
andNg(t) which refer to the number of times stafegsuc-
cess) and (failure) of the DTMC have been visited {0, ¢].

In the software reliability modeling we are interested in
deriving the distribution of the time between successive fail-
ures. This means that only the points of particular type, i.e.
failures are of interest. Therefore, it is necessary to con-

sider only the distribution of an interval between successive
failures and to make use of the standard results of renewa

theory.

First we derive the distribution of the discrete random
variable X;,; defined as a number of runs between two
successive visits to the failure state of the DTMC, that is,
a number of runs between thieh and (i + 1)-st failure.
Clearly, (see the Figure 4) the random varialile (i > 1)
has the pmf:

if k=1
if k> 2.
(6)

qi

P{Xip =k} = { Q-

)2 (1 - py)

Next, we derive the distribution of the time to next failure
in continuous time which is the interval distribution of the
point processV (t) that records the number of failures in
(0,%]. LetT}(i = 1,2,...) be acontinuous random variable
representing theé-th failure time. Defin€l;,; as the time
elapsed fromi-th failure until the occurrence df + 1)-st
failure. It follows thatTy,, = E;fl T; = T} + Tia,
whereTj = 0.

When software reliability growth is considered a usual
measure of reliability is conditional reliability. Since the
system has experiencedailures, conditional reliability is
the survivor function associated wift 4+ 1)-st failure. In
other words, we are concerned with the distribution of the
time between successive failur€s ; = T;,, — Tj. It fol-
lows from (6) that the conditional distribution of the time to

'fined fors > 0 by Fe,;

the next failureF; 1 (¢)
by:

= P{T;+1 <t} fori > 1isgiven

Fk*

exr

(1 —pi) FE(2)

(7)

Fiya(t) =

0o
0+ 1-a)p
k=2

where F%* denotes the k-fold convolution of the distribu-
tion F..

The Laplace — Stieltjes transform (LST) Bf, (¢) is de-
= [, e *tdF.,(t) = E[e*!].
The LST of the dlstrlbutlon of the time to failurg, , (t)
Pecomes

o0

+Z 1—q)p

pi—a) B4 ()
1- piFez (S)

The inversion of (8) is in principle straightforward and rea-
sonably simple closed — form results can be obtained when
the run’s execution time distributio#, (¢) has rational
LST (such as phase — type distributions discussed in [5]).

We can develop some general properties of time to next
failure without making assumptions about the form of the
run’s execution time distributiod,.(¢). Due to the well
known property of LST the moments can be derived easily
by a simple differentiation of (8)

Fiia(s) = () F

_ qzﬁez()+(1_pz_

(8)

dFy (s 2—pi— @i dFe(s
ETip] = - c;sl() == 1—p; ds()
(3
s§= s=0
2-pi—a
= #E[Tez] 9)

whereE|[T,,] is the run’s mean execution time.gf+ ¢; =
1 then successive runs are independent and (9) becomes

iy = Dl
BT = T2

which means that we can rewrite (9) as One more generalization that can be considered in apply-
ing the MRP approach is to chookestate Markov chain to

ETi1] =2 —-pi — @) E[T;'j:l]. describe the sequence of software runs in discrete space.
For example, it is possible to define DTMC which consid-
If we introduce the notation; = p; + ¢; — 1 then ers more than one type of failure. We can also add states
, that will enable us to consider non — zero time to remove a
E[Tip1]) = (1 —m) E[T{]. (10) fault or periods of time when the software is idle.

When the successive software runs are depen@est 0)

o cases can be considered: 3.4. Applicability to validation phase and

operational phase

L.IfoO<mm <1 (pi+ g > 1)then successive runs
are positively correlated, that is, the failures occur in ~ The presented modeling approach can be used to make
clusters. It follows that the mean time between fail- reliability estimations of the software based on the results
ures is shorter than it would be if the runs were inde- of testing performed in its validation phase. In the case
pendent. In other words, SRGM that assume indepen-of safety critical software it is common to demand that all
dence among failures will result in overly optimistic known faults are removed. This means that if there is a
predictions. failure during the testing the fault must be identified and

) removed. After the testing (debugging) phase the software

2. 1f =1 <m <0 (pi+¢ <1)thenthe successive enters a validation phase in order to show that it has a high
runs are negatively correlated and the the mean timeyg|iapility prior to actual use. In this phase no changes are
between failures is longer then it would be if the runs ade to the software. Usually, the validation testing for

were independent. safety critical software takes the form of specified number
o of test cases or specified period of working that must be ex-
3.3. Model generalizations ecuted failure — free. While of particular interest in the case

of safety critical software, the same approach can be applied
The presented model can be generalized in many waysto any software that, in its current version, has not failed for

First, considering not identically distributed runs execution ,, syccessive runs.
times for successful and failed russ, ; (t) # Fe., (t) is Letd be the unconditional probability of a failure per run
straightforward: we assign distribution functidi, ; (t) to (execution). For the case of independent Bernoulli trials the
each transitions to state(successful runs), ankl...(£) to probabilities that each run will fafl = ¢ or succeed —6 =
each transition to stafe(failed runs). By making appropri- ;, are independent of previous runs. Thus, the probability
ate changes in (7) we get: thatn independent test runs are conducted without failure

IS
Fip1(t) = qiFea (1)

> o h1)e (1-0)"=(1-q" =p" (13)
+> (1=a) pi 2 FETV* () (1= pi) Feap (1)
k=2 The largest value of such that
(11)
1-0)">« (14)
which leads to LST transform:
. ~ - defines thel — o upper confidence bound @h[9], [27].
Fipi(s) = GiFerr () + (1= pi — i) Fear (5) Feas (5) Solving (14) forf gives1 — a confidence that the failure
1 —piFees(s) probability per execution of a software that reveals no fail-

(12) ureinn independent runs is below

Next generalization considers the possible variability of * =1— al/m. (15)
the run’s execution time distributiof,, (¢). We have as-
sumed that this distribution does not change during theFor the related recent work on a Bayesian estimation ap-
whole testing phase. This assumption can be violated forproach see [15] and [17].
reasons such as significant changes in the code due to the Now consider a sequence of possibly dependent software
fault fixing attempts. In other words, it may be useful to runs. During the validation phase the software is not chang-
consider the situation when the parameters of the distribu-ing, thatis,p andg do not vary. In other words, the sequence
tion F,,(t) change after each failure occurrence (i.e., after of runs can be described by the homogeneous DTMC with
each visit to the failure state). In that case, we need only totransition probability matrix (2). We assume thatthe DTMC
substituteF...(t) with F.,, () in equation (7). is stationary, that is, each run has the same probability of

failure P{Z;;1 = 1} = P{Z; = 1} = 6. Then, from (4) it with time — domain software reliability growth models. We
follows that next examine these relations.
1 The software reliability model in discrete time presented
g=_—-_P (16) in this paper can be related to input — domain based models
2-p—q which consider the software input space from which test
cases are chosen. For example, the input — domain model

The probability that, successive runs will succeed is given - : g Halt!
presented in [19], [20] defines the conditional reliability as

by:
y probability thatk runs will succeed before the failure, given
P{Zy=...=2y=2,=0|Zy =1} thatj faults have been detected and corrected
= P{Z, =0|Zpn_1 =0}... P{Zy = 0|2, = 0} Ri(k|\) = (1= X))k), (19)
X P{Zl = 0|Z0 = 1}

wherek > 0and); (0 < A; < 1) is defined as a
fault size under operational inputs. It is obvious that (19)
is a special case of (6) under the assumption that succes-
sive inputs have independent failure probability. In [A9]
is treated as a random variable with a distribution function
G();), and (19) becomeB; (k) = [(1—X;)*X;dG();) =
E[(1 =M)A.
1 ql/(n=1) Note that the model in discrete time is also related to
o = . (18) the Compound — Poisson software reliability model in [22].
This model is based on the work presented in [23] which
If failures occur in clusterd) < = < 1) then the confidence approximates the sum of dependentinteger — valued random
bound on failure probability is approximately (1 — =) variablesS,, given by (1) with a compound Poisson process.
higher than the bound obtained under the independence as- Now consider the software reliability model in contin-
sumption (15), that is, the result obtained under the assumpuous time. 1fF,,(s) is a rational function of, so too is
tion of independence is overly optimistic. Fiy1(s), and the inversion of (8) is in principle straight-
We consider the applicability of the Markov renewal forward. An important special case is when the distri-
model in the operational phase next. During the opera-bution of the run’s execution time is exponential so that
tional phase no changes are made to the software, that isf..(t) = p€ #?, since it relates the MRP approach to the
the sequence of runs can be described by the homogeneowexisting time — domain based software reliability models
DTMC. The well developed theory of Markov renewal pro- and some of their basic assumptions, such as the indepen-
cesses [5], [21] and its limiting results can be used to derivedence of successive runs and the exponential distribution of
a number of measures other than the distribution of the timethe inter — failure times. In other words, the simplest special

=p" ' (1-0). (17)

Using the notionr = p 4+ ¢ — 1 in addition to (16) we can

rewrite (17) in terms of andr. It follows that in the case of

dependent Bernoulli trial§l — «)) upper confidence bound
on failure probability per executichbecomes:

between failures, such as case of the model is under the assumptions that the succes-
sive software runs are independept ¢ ¢; = 1) and the
» the expected number of failurédy (t) = E[Nr(t)] software execution time (duration of testing runs) is expo-
and the expected number of successés(t) = nentially distributed with ratg. Inverting (8) leads to the
E[N5s(t)] in the interval(0, t]; pdf of the inter — failure times:
e the probability of success at tintg that is, instanta- firr(t) = (1 —p;) pe (-pidnt, (20)

neous availability;

o - . . that is, the conditional reliability is given by
¢ the limiting probability that the process will be in state

0 attimet ast — oo, thatis, steady — state availability. Rip1(t) =1— Fyy(t) = e Pt (21)

4S . . . It follows that the inter — failure time is exponentially dis-
. Some special cases and relation to existing tributed with rate(1 — p;) i if the software testing is consid-
models ered as a sequence of independent runs with an exponential
distribution of the execution times. Note that, the coeffi-

The Markov renewal model described in this paper can cient of variation, defined by the ratio of standard deviation

be related to existing software reliability models. The and mean, of an exponential distributioriis

model in discrete time is comparable with an input — do- The alternative interpretation of this special case can be

main based models which are static and don’t consider thefound in [11]. Under the assumption that inputs arrive at

time, while the model in continuous time is comparable software system according to a Poisson process withurate

which is interpreted as intensity of testing, the probability by:
that the software encounters no failures in a time interval
(0,t] is given by:

1-F(t) = i e”tj(!“t)j (M &M*y (22) L pitai-1)

j=0 Di

(3

fira(t) = 1—p;)pue (oront

pe kit (25)

whereM is the size of the input data space, i.e., the number This distribution is a mixture (compound) distribution [27]
of data items which can be used as input to the software andyith pdf of a formg(t) = ay g1(t) + a2 g2(t), where
M is the total number of these input data which may causeq,, a, > 0 anda; + a» = 1.

software failure. The first term inside the summation sign |n the case whemp; + ¢; > 1 the inter-failure distri-
denotes the probability thgtinputs are received in time bution (25) is hyperexponential, that is, a mixture of two
and the second term denotes that nong ofputs lead to exponential distributions with ratés — p;) 1 andp. The

a failure of software. It is easy to verify that (22), when mixing probabilities are given by, = (1 — ¢;)/p; and

simplified, leads to as = (p; + ¢ — 1)/p;, respectively. Note that the coef-
o, ficient of variation in the case of hyperexponential distri-
1—-F(t) =€ mH, (23) pution is greater tha. It is obvious that due to the pres-

ence of failure clustering, the inter —failure time has smaller
meanE|[T;,1] < E[T;] and greater variability compared
to the independent case, even under the assumption of ex-
ponentially distributed duration of testing runs.
If the p;+¢; < 1then (25) becomes a mixture of an expo-

nential distribution with ratél — p;) © and hypoexponential

1— Fi(t) = P{T; > t} = e Mt (24) distribution with rateg1 — p;) 1 andu. The mixing propor-

o . tionsaren; = ¢;/(1—p;) andaz = (1 —p; —q;) /(1 —p;),

Even though the motivations are different and the pa- respectively. It can be shown that the coefficient of variation
rameters have different interpretations, mathematically thejn this case is smaller than In other words, the inter — fail-
model derived in [11] is a special case of the software relia- yre time has greater med#{T;,] > E[T}m] and smaller
blllty model based on MRP under the assumptions that SUCj/ariabi”ty Compared to the independent case.
cessive software runs (i.e., failures) are independent and the The presented results C|ear|y demonstrate the effects of
software execution times are exponentially distributed with fajlure correlation on the software reliability measures. It
ratep. In [11] itis shown that the Jelinski — Moranda model s obvious that some of the common assumptions made by
[10] can be obtained by introducing = 17 (N —i+1) = software reliability models are inadequate and result in op-

A(N —i+ 1) and treating\ and N as unknown parame- timistic estimations when failures are indeed clustered.
ters. Then by adopting a Bayesian point of view two other

models can be derived from the Jelinski — Moranda model

It means that the time to first failure has an exponential
distribution with failure rate\ = (M*/M)u. Note that
M* /M is just the probability of failure on a test run.

The conditional reliability, that is, the survivor function
of the time betweeli — 1)-st andi-th failureT; becomes

5. Discussion and future work

[11]:
1. Goel — Okumoto model [8] is obtained by assuming The ultimate goal when developing reliability growth
has a known value and assigning Poisson prior distri- models is the development of good reliability inference and
bution for V; prediction methods which can be applied to software devel-

opment. This paper does not deal with inference or predic-
tions per se. Itis mainly aimed at showing that the classical
software reliability theory can be extended in order to con-
sider a sequence of possibly dependent software runs, that

Some other time — domain SRGM can easily be obtainedis, a failure correlation. However, there are many research
as special cases under the assumption of independence. Dussues that we would like to address in near future in order
to the space limitations and vast number of SRGM the anal-the model to be fully specified and applied in real software
ysis of the relation to the existing models will not be pur- development projects for performing estimations and pre-
sued any further. dictions.

Let us now keep the assumption that the distribution of Let us consider in some detail the concept of software
the run’s execution time is exponential, but assume depen+uns. The operation of software can be broken down into
dence between successive software rpps-q; # 1). In- series of runs [18]. Each run performs mapping between
verting (8) leads to the pdf of the inter — failure time given a set of input variables and a set of output variables and

2. Littlewood — Verrall model [14] is obtained by assum-
ing NV has a known value and thathas a prior Gamma
distribution.

consumes a certain amount of execution time. The inputof faults in a systematic way by assuming various determin-
variable for a program run is any data item that exists ex- istic functional relationships. That is, the free parameters
ternal to the run and is used by a run. There does not haveare simply seen as unknown constants to be estimated by
to be a physical input process. The input variable may sim- the sample data. The alternate approach is to treat the pa-
ply be located in memory, waiting to be accessed. Evenrameters as random variables themselves in order to con-
for the software that operates continuously it is still possi- sider the uncertainty about the effect of fault removal [13],
ble and more convenient to divide the operation into runs [14]. Thus, even if the fault removal is successful, there
by subdivision of time associated with some user — orientedwill be uncertainty about the size of the fault removed, and
tasks [18]. The information associated with software runs so uncertainty about the magnitude of reliability improve-
can generally be grouped into two categories: ment. This approach results in a doubly stochastic model:
one model for set of parameters and the other for the times
° Tlmlng This includes SpeCiﬁC time associated with between failures conditional on the parametersl

each run, such as start time, normal termination time |n SRGM it is generally assumed that when debugging

for successful runs, or failure time for failed runs. is taking place there is a presence of reliability growth.
However, the detailed assumptions about the nature of this
growth and the way the modeling parameters change as a
result of the fault removal attempts vary from one model to
another. Here, some basic issues that should be taken into
account are briefly outlined [2], [28]:

¢ Input and OutcomeThe descriptive information about
each specific run generally specifies the input for the
program, the testing environment, and the outcome
that has been obtained (success or failure).

Relevant data about the failed runs, as well as for successful size of faults.in general, different software faults do

runs are routinely captured in many projects for test track- not affect equally the failure probability. Some faults

ing and testing process management purposes [24], [25]. \yhich are more likely to occur contribute more to the

This data, with possibly minor modifications, provide com- failure probability than other faults.

mon source for reliability growth modeling, input — domain

analysis, and integrated analysis in this paper. ¢ Imperfect debugging.Often, fault fixing cannot be
The existing time — domain SRGM disregard the suc- seen as a deterministic process, leading with certainty

cessful runs between two failures and ignore the informa- to the removal of the fault. Moreover, it may cause the

tion conveyed by them. The consideration of successful introduction of new faults in code.

runs, that is, non — failure stops of software operation for .
parameters estimation of some of the existing SRGM was ¢ Non —instantaneous and delayed fault remowzsu-

presented recently in [3]. In this work it is pointed out that ally, neither the removal of a fault occurs immediately
disregarding the non — failure stops violates the Maximum ~ after the failure is observed, nor the time to remove the
Information Principle that suggests to exploit available soft- faultis negligible.

ware reliability information as much as possible.
In the case of MRP model the time between faillfes,
is a random variable whose distribution depends on the dis-
tribution of the run’s execution timé., (¢), and on the con-
ditional probabilitieg; andg;. The timing information as-
sociated with each run can be obtained quite easily in many)
computer systems. Therefore, instead of making assump8. Conclusion
tions, the specific distribution function of the run’s execu-
tion time F¢, (t) could be determinated from measured data. ~ The research work presented in this paper is devoted to
Consider possible models for the parameter setdevelopment of the more realistic software reliability mod-
{p1,q1,p2,02, ...} next. It is mathematically possible to eling framework that enables to account for the phenomena
permit an infinite number of failures, and in this case the of failure correlation and to study its effects on the software

e Changing testing strategin practice it is important to
deal with the case of nonhomogeneous testing, that is
the model should include the possibility of describing
variations of the testing strategy with time.

parameter set is infinite. By settigg = 0 andp; = 1 for reliability measures. The important property of the devel-
i > n + 1 the finite failure model is obtained as a special oped Markov renewal modeling approach is its flexibility.
case. It allows us to construct the software reliability model in

For the model to be fully, specified it is necessary to con- both discrete time and continuous time, and depending on
sider the way the parameters change as a result of the faulbur goals to base the analysis either on Markov chain the-
removal attempts. In this regard, there are two possible ap-ory or on renewal process theory. The model presented in
proaches. One approach of modeling the parameter set ishis paper can be related to the existing software reliability
to relate them to the number of test runs or to the numbermodels. In fact, it is demonstrated that a number of input —

domain and time — domain models can be derived as special10] Z. Jelinski and P. B. Moranda. Software reliability research.

cases under the assumption of failure independence.

This paper is mainly aimed at showing that the classi-

cal software reliability theory can be extended in order to [11]
consider a sequence of possibly dependent software runs,

that is, a failure correlation.

It does not deal with infer-
ence or predictions per se. In order the model to be fully
specified and applied for performing estimations and pre-

[12]

dictions in real software development projects we need to [13]
address many research issues, such as the detailed assump-

tions about the nature of the reliability growth and the way
the modeling parameters change as a result of the fault re-

moval attempts.

To summarize, the software reliability modeling frame-

[14]

work presented in this paper contributes toward more real- [15]

istic modeling of software reliability since it naturally inte-
grates the phenomena of failure correlation. In addition, it
also provides bases for a more flexible and consistent ap-
proach to the mathematical formulation on software relia-

[16]

bility. However, in order to apply the model to real data the [17]

development of more detailed and specific models within
this framework, as well as statistical inference procedures
for modeling parameters are the subjects of our future re-

search.

References

[1] S.Bittanti, editor.Software Reliability Modelling and Identi-
fication volume 341 ofLecture Notes in Computer Science

Springer — Verlag, 1988.

[2] S. Bittanti, P. Bolzern, and R. Scattolini. An introduction to

software reliability modeling. In S. Bittanti, edit@oftware
Reliability Modelling and Identificatignzolume 341 oLec-

ture Notes in Computer Sciencpages 43—66. Springer —

Verlag, 1988.
[3] K. Cai. Censored software — reliability modelEEE Trans-
actions on Reliability46(1):69—-75, March 1997.

[4] D. R. Cox and V. Isham.Point Processes Chapman and

Hall, 1980.

[5] D. R. Cox and H. D. Miller. The Theory of Stochastic Pro-

cessesChapman and Hall, 1990.

[6] L. H. Crow and N. D. Singpurwalla. An empirically de-
veloped Fourier series model for describing software fail-
ures. IEEE Transactions on ReliabilifyR-33(2):176-183,

June 1984.

[7] W. Farr. Software reliability modeling survey. In M. R. Lyu,
editor,Handbook of Software Reliability Engineerimgages

71-117. Mc Graw — Hill, 1996.

[8] A. L. Goel and K. Okumoto. Time dependent error — de-
tection rate model for software reliability and other per-

formance measureslEEE Transactions on ReliabilityR-
28:206— 211, 1979.

[9] D. Hamlet. Are we testing for true reliability?EEE Soft-
ware, pages 21— 27, July 1992.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

In W. Freiberger, editorStatistical Computer Performance

Evaluation pages 485-502. Academic Press, 1972.

N. Langberg and N. D. Singpurwalla. A unification of some
software reliability models. SIAM J. Sci. Stat. Compult.
6(3):781-790, July 1985.

J. Laprie and K. Kanoun. Software reliability and system
reliability. In M. R. Lyu, editor,Handbook of Software Reli-
ability Engineering pages 27—-69. Mc Graw — Hill, 1996.

B. Littlewood. Modeling growth in software reliability. In
P. Rook, editorSoftware Reliability Handboglpages 137—
153. Elsevier Applied Science, 1990.

B. Littlewood and J. L. Verrall. A Bayesian reliability
growth model for computer software. Rroceedings of the
IEEE Symposium on Computer Software Reliabiligges
70-77,1973.

B. Littlewood and D. Wright. Some conservative stopping
rules for the operational testing of safety — critical software.
IEEE Transaction on Software Engineering3(11):673—
683, November 1997.

M. R. Lyu, editor. Handbook of Software Reliability Engi-
neering Mc Graw — Hill, 1996.

K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park, D. M.
Nicol, B. W. Murrill, and J. M. Voas. Estimating the proba-
bility of failure when testing reveals no failurd&EE Trans-
action on Software Engineering8(1):33—43, January 1992.
J. D. Musa, A. lannino, and K. Okumot8oftware Reliabil-
ity: Measurement, Prediction, ApplicatioMc Grow — Hill,
1987.

C. V. Ramamoorthy and F. B. Bastani. Modeling of the soft-
ware reliability growth process. IRroceedings of COMP-
SAG pages 161-169, 1980.

C. V. Ramamoorthy and F. B. Bastani. Software reliability
— status and perspectivesEEE Transaction on Software
Engineering 8(4):354-371, July 1982.

S. M. Ross.Applied Probability Models with Optimization
Applications Holden — Day, 1970.

M. Sahinoglu. Compound — Poisson software reliabil-
ity model. IEEE Transaction on Software Engineerjng
18(7):624—630, July 1992.

R. F. Serfozo. Compound Poisson approximations for sums
of random variables. Annals of Probability 14(4):1391—
1398, 1986.

J. Tian. Integrating time domain and input domain anal-
yses of software reliability using tree — based models.
IEEE Transactions on Software Engineeririgfl(12):945—
958, December 1995.

J. Tian and J. Palma. Data partition based reliability mod-
eling. InProceedings of the 7th IEEE International Sympo-
sium on Software Reliability Engineeringages 354—363,
1996.

L. A. Tomek, J. K. Muppala, and K. S. Trivedi. Model-
ing correlation in software recovery blockEEEE Transac-
tions on Software Engineering9(11):1071-1086, Novem-
ber 1993.

K. S. Trivedi. Probability and Statistics with Reliability,
Queuing and Computer Science ApplicationBrentice —
Hall, 1982.

M. Xie. Software Reliability Modelling World Scientific
Publishing Company, 1991.

