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Abstract

Many architecture-based software reliability models
have been proposed in the past without any attempt to es-
tablish a relationship among them. The aim of this paper
is to fill this gap. First, the unifying structural properties of
the models are exhibited and the theoretical relationship is
established. Then, the estimates provided by the models are
compared using an empirical case study. The program cho-
sen for the case study consists of almost 10,000 lines of C
code divided into several components. The faulty version of
the program was obtained by reinserting the faults discov-
ered during integration testing and operational usage and
the correct version was used as an oracle. A set of test cases
was generated randomly accordingly to the known opera-
tional profile. The results show that 1) all models give rea-
sonably accurate estimations compared to the actual relia-
bility and 2) faults present in the components influence both
components reliabilities and the way components interact.

1. Introduction

Since the early 1970s a number of models have been
proposed for estimating software reliability. The most
widely known are the models that estimate reliability
growth during testing phase [5], [6], [21]. These so called
black-box models treat the software as a monolithic whole,
without an attempt to model internal structure. Only inter-
actions with external environment are considered, and usu-
ally no information other than the failure data is used.

With growing complexity and emphasis on reuse, the
current software engineering practice emphasizes develop-
ment of component based systems. The existing black—
box models are clearly inappropriate to model such a large
component-based software system. Instead, there is a need
for a white-box approach which estimates system reliability
taking into account the information about the architecture of
the software made out of components. The motivation for
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the use of architecture~based software reliability approach
includes the following:
e understanding how the system reliability depends on
its component reliabilities and their interaction
o studying the sensitivity of the application reliability to
reliabilities of components and interfaces
e guiding the process of identifying critical components
and interfaces for a given architecture

e selecting an architecture that is most appropriate for
the system under study.

Many architecture—based software reliability models
have been proposed in the past, mostly by ad hoc meth-
ods. For extensive survey which proposes classification
of the architecture—based software reliability models, con-
tains a detailed description of the key models, and discus-
sion on the underlying assumptions, usefulness and limita-
tions the reader is referred to [9]. The aim of this paper
is twofold: 1) to establish a theoretical relationship among
different architecture~based software reliability models ex-
panding our earlier work [8], and 2) to compare the esti-
mates provided by the models based on an empirical case
study [17].

The rest of the paper is organized as follows. The unify-
ing structural properties of the models are exhibited in Sec-
tion 2. The key models are described in detail and their the-
oretical relationship is established in Section 3. The com-
parison of the models based on an empirical case study is
presented in Section 4. The concluding remarks are pre-
sented in Section 5.

2. Common structural properties
2.1. System decomposition

Although there is no universally accepted definition, a
component is conceived as a logically independent unit of
the system which performs a well-defined function. This
implies that a component can be designed, implemented,
and tested independently. Component definition is a user
level task that depends on the factors such as system be-
ing analyzed, possibility of getting the required data, etc.



There is a trade off in defining the components. Too many
small components may pose difficulties in measurements,
parametrization, and solution of the model. On the other
hand, too few components may cause the distinction of how
different components contribute to the system failures to be
lost. The level of decomposition clearly depends on the
tradeoff between the number of components, their complex-
ity and the available information about each component.

2.2. Software architecture

Software behavior with respect to the manner in which
different components interact is defined through the soft-
ware architecture. Interaction occurs only by transfer of ex-
ecution control. In the case of sequential software, at each
instant, control lies in one and only one of the components.
The architecture of an application may not always be read-
ily available. In such cases, it has to be extracted from the
source code or the object code of the application. Tech-
niques and tools for extraction of architectural information
are described in our earlier work [9].

In architecture—based approach, one must model the in-
teraction of all components. In well designed system, in-
teraction among components is limited. During the early
phases of software life cycle, each component could be
examined to find with which components it cannot inter-
act. If control can flow between two components it can be
described by non—zero transition probabilities that may be
available by analyzing program structure and using known
operational profiles [20], [27]. During the design phase,
before actual development and integration phases, the tran-
sition probabilities can be estimated by simulation. As new
data become available during the integration phase the esti-
mates have to be updated [7].

The estimation of transition probabilities is affected by
the user’s operational profile. Upgrades to software might
invalidate any existing estimate of operational profile be-
cause new features can change the ways in which the soft-
ware is used. Therefore, it will be necessary to revise the
architecture that describes component interaction and mod-
ify transition probabilities.

2.3. Failure behavior

In the next step, the failure behavior is defined and as-
sociated with the software architecture. Failure can hap-
pen during an execution period of any component or during
the control transfer between two components. The failure
behavior of the components and of the interfaces between
components can be specified in terms of their reliabilities or
failure rates.

Assessing the reliability of software components clearly
depends on the factors such as whether or not component
code is available, how well the component has been tested,
and whether it is a reused or a new component. Several
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techniques for estimating component’s reliability have been
proposed. Software reliability growth models can be ap-
plied to each software component exploiting component’s
failure data obtained during testing [4], [7], [10]. However,
due to the scarcity of failure data it is not always possible
to use software reliability growth models. Another possibil-
ity is to estimate component’s reliability from explicit con-
sideration of non—failed executions, possibly together with
failures [18], [19]. In this context, testing is not an activ-
ity for discovering faults, but an independent validation ac-
tivity. The problem which arises with these models is the
large number of executions necessary to establish a reason-
able statistical confidence in the reliability estimate. Finally,
one can use fault injection technique to estimate compo-
nent’s reliability. However, fault-based techniques are only
as powerful as the range of fault classes that they simulate.
In the context of component’s reliability estimation more re-
search is needed when it comes to the certification of COTS
[24] and reused software components [25].

There is little information available about interface fail-
ures, apart from general agreement that they exist separately
from component failures which are revealed during the unit
testing. When an interface consists of items such as global
variables, parameters, and files, it is not clear how to esti-
mate its reliability. Some explanation and analysis about the
interfaces between components has been presented in [23].
Also, method for integration testing proposed in [3] seems
promising for estimating interface reliabilities.

2.4. Combining software architecture with failure
behavior

Depending on the method used to combine the architec-
ture of the software with the failure behavior, three essen-
tially different approaches can be recognized [9]:

State-based medels use the control flow graph to represent
software architecture and estimate software reliability ana-
lytically. They assume that the transfer of control between
components has a Markov property, that is, model software
architecture with a discrete time Markov chain (DTMC),
continuous time Markov chain (CTMC), or semi Markov
process (SMP). These can be further classified into absorb-
ing and irreducible. The former represents applications that
operate on demand, while the later is well suited for con-
tinuously operating software applications. Accordingly to
the solution method, state-based models can be classified
as either composite or hierarchical. The composite method
combines the architecture of the software with the failure
behavior into a composite model which is then solved to
predict reliability of the application. The other possibility
is to take the hierarchical approach, that is, to solve first the
architectural model and then to superimpose the failure be-
havior on the solution of the architectural model in order to
predict reliability.



Path—based models compute software reliability consider-
ing the possible execution paths of the program. A sequence
of components along different paths is obtained either ex-
perimentally by testing or algorithmically. The reliability
of each path is computed by multiplying the reliabilities of
the components along that path. Then, the system reliability
is estimated by averaging path reliabilities over all paths.

Additive models assume that each component reliabil-
ity can be modeled by non—-homogeneous Poisson process
(NHPP). Then, system failure process is also NHPP with
the cumulative number of failures and failure intensity func-
tion that are the sums of the corresponding functions for
each component. Since additive models [4], [26] do not
explicitly consider software architecture they are not con-
sidered further in this paper.

In the following section the theoretical relationship
among existing architecture-based software reliability
models is established. We describe in detail models that
are suitable for comparison based on the empirical data ob-~
tained from the case study.

3. Theoretical relationship
3.1. State—based models of terminating applications

First, consider the state—based models of a terminating
software application. These models assume that a control
flow graph has a single entry and a single exit node repre-
senting components at which execution begins and is termi-
nated, respectively. Note that this is not a fundamental re-
quirement; the models can easily be extended to cover mul-
tientry, multiexit graphs. The relevant measure for these
models is the reliability R of the single execution of soft-
ware application.

Cheung model [2] is one of the earliest models that con-
siders software reliability with respect to the components
utilization and their reliabilities. The transfer of control
among components is described by an absorbing DTMC
with a transition probability matrix P = [p;;], where p;; =
Pr{program transits from component 5 to component j }.
Components fail independently and the reliability of the
component ¢ is the probability R; that the component
performs its function correctly.

The solution method is composite; two absorbing states
C and F are added, representing the correct output and
failure respectively. The transition probability matrix P is
modified to P as follows. The original transition proba-
bility p;; between the components ¢ and j is modified into
R; p;;, which represents the probability that the component
1 produces the correct result and the control is transferred to
component 7. From the exit state n, a directed edge to state
C is created with transition probability R, to represent the
correct execution. The failure of a component 7 is consid-
ered by creating a directed edge to failure state F' with tran-
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sition probability (1 — R;). The reliability of the program
is the probability of reaching the absorbing state C' of the
DTMC. Let Q be the matrix obtained from P by deleting
rows and columns corresponding to the absorbing states C
and F. Q% (1, n) represents the probability of reaching state
n from 1 through k transitions. From initial state 1 to final
state n, the number of transitions £ may vary from 0 to in-
finity. It can be shown that S = Y 72, Q¥ = (I — Q)71,
so it follows that the overall system reliability is

R=S01,n)R,. (1)
Basically, the reliability is equivalent to the sum of reliabil-
ities of all paths that start at the entry node and end at the
exit node C, including the possibility of infinite number of
paths due to the loops that might exist between two or more
components.

The model proposed by Kubat [12] includes the infor-
mation about execution time of each component, thus re-
sulting in an SMP as a model of software architecture. Tran-
sitions between components follow a DTMC with initial
state probability vector ¢ = [g¢;] and transition probability
matrix P = {p;;]. The sojourn time during a visit in com-
ponent i has the pdf g;(¢t). When component ; is executed,
failures occur with constant failure intensity A;.

The solution method taken in this work is hierarchical.
The reliability of component 4 is estimated as the probabil-
ity that no failure occurs during its execution

[e o]
R; =/ e Mtgi(t) dt. )
0

During a single execution of the software application each
component is executed a random number of times, denoted
by N;. Thus RIN ‘ can be considered as the equivalent reli-
ability of component ¢ that takes into account its utiliza-
tion. Assuming that components fail independently the sys-
tem reliability becomes H?:I RIN" . Based on Taylor’s series
expansion it is shown that the first order approximation of
E[[1%, RM] can be used for the system reliability

R~ ﬁR}’i
i=1

where V; = E[V;] is the expected number of times compo-
nent ¢ is executed during a single execution of a software.
This approximation is based on the assumption that com-
ponents are highly reliable and variances of the number of
times each component is executed are very small. V; are
obtained from the embedded DTMC of the SMP by solving
the following system of linear equations

3

Vi=aqi+ Y V;pji- )
j=1



Note that once component reliabilities are estimated using
equation (2) the solution approach reduces to the hierarchi-
cal treatment of the Cheung model [2].

The hierarchical model proposed by Gokhale et al. [7]
differs in the approach taken to estimate the component re-
liabilities; it considers time dependent failure rates \;(t)
and the utilization of the components through the cumu-
lative expected time spent in the component per execution
Vit;, where t; is the expected time spent in a component %
per visit. The special case of this model that assumes con-
stant failure rates A; is equivalent to the special case of Ku-
bat model [12] that assumes deterministic execution times
gi(t) = t;.

Above software reliability models assume that compo-
nents fail independently and that a component failure will
ultimately lead to a system failure. In hardware system re-
liability it is generally considered that all components are
continuously active which corresponds to the usual equa-
tion for the reliability of a series system R = []}._, R;. The
key question in software reliability is how to account for
component’s utilization, that is, for the stress imposed on
each component during execution. In the case of the hierar-
chical models [7], [12] the expected number of times each
component is executed V; is taken as a measure of compo-
nent’s utilization.

3.2. State-based models of continuously running
applications

Now, consider the models of continuously running ap-
plications. The relevant measures for these models are
waiting time to first failure, or equivalent system failure
rate. Littlewood model [15] is the earliest architecture—
based software reliability model. It describes software ar-
chitecture with an irreducible CTMC and considers both
component and interface failures. Laprie model [13] which
considers only component failures is a special case of [15].
An extension of [13] and [15] that considers the way fail-
ure processes affect the execution and deals with the delays
in recovering an operational state was proposed recently by
Ledoux [14]. Another generalization of [15] proposed in
[16] describes software architecture of continuously run-
ning application by an irreducible SMP assuming that the
time spent in each component has a general distribution.

For the sake of comparison we discuss in detail Laprie
model [13]. This model describes a software system made
up of n components by a CTMC. The parameters are the
mean execution time of a component ¢ given by {; = 1/u;
and the probability p;; that component j is executed after
component ¢ given that no failure occurred during the exe-
cution of component . It is assumed that each component
fails with constant failure rate ;.

The model of the system is an n + 1 state CTMC where
the system is up in the states 4,0 < ¢ < n and the (n + 1)th
state being the down state reached after a failure occur-
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rence. The associated generator matrix between the up
statess B = [b;;] is defined by b; = —(u; + ;) and
bi; = pijpi,fori # j. It can be seen as the sum of two
generator matrices: B’ that governs the execution process,
with diagonal entries equal to —u; and off-diagonal entries
to p;; 14, and B” that governs the failure process, with diag-
onal entries equal to —A; and off-diagonal entries to zero.
The assumption that the failure rates are much smaller than
the execution rates A; < p; leads to the asymptotic behav-
ior relative to the execution process which enables to adopt
the hierarchical solution method. As a consequence, the
system failure rate tends to

n
/\S = Z 7r1-/\,-
=1

where the steady state probability vector # = [my] is the
solution of B’ = 0.

The above result deserves a few comments. First, the
asymptotic Poisson process can be seen as a superposition
of Poisson processes with parameters 7; A;, which is closely
related to the approach taken in the additive models. Fur-
ther, consider the probability that there will be no failure up
to time ¢, that is, the system reliability

&)

n
R(t) I~ e‘)xs t e~ Z?=x midi t = He—-)\.‘ it .

i=1

(6)

m; represents the proportion of time spent in state ¢ in the
absence of failure; thus 7;¢ represents the cumulative exe-
cution time spent in a component ¢ up to time ¢. For hard-
ware systems it is considered that all components are con-
tinuously active which corresponds to making all the =;’s
equal to 1. From the reliability point of view, this leads
to the usual equation for a series system with a number of
subsystems with exponentially distributed times to failure.

Next we establish the relation of this model with the
models of terminating applications. CTMC that represents
Laprie model [13] is irreducible since it considers the con-
tinuity of execution and it is assumed that after a failure
the execution process is restarted instantaneously. Any long
random realization of the irreducible CTMC can be parti-
tioned to single software runs that are equivalent to real-
izations from the fixed starting state to recurrence of start-
ing state. For simplicity we assume that CTMC has a sin-
gle starting state and a single exit state that represents the
final task before the next execution. Having in mind that
R = [Ce Mtuemmit dt = 745, it can be shown that
the embedded DTMC of this (n + 1) state CTMC is equiva-
lent to the DTMC that represents Cheung model [2] with ad-
ditional transitions (with probability 1) from both exit state
and failure state to starting state which represent immediate
reset/restart of program executions.

To compare the hierarchical solution with the models of
terminating applications we need to partition the realization



of the irreducible CTMC with generator matrix B’ to sin-
gle software runs that are equivalent to realizations from a
starting state to recurrence of starting state. The execution
time of a single run is a random variable with expectation
equal to

n
t = E[time of one cycle] = E Vi/pi- @)
’ i=1

Also, it is well known that the proportion of time that irre-
ducible CTMC spends in state ¢ is given by

E[time in state ¢ during one cycle]
= =

_ Vi/pi
Zin:l Vi/l"i'
(8)

Using (6) for the first order approximation of E[R(t)] we

get
n g
()"
i=1

E[time of one cycle]

R(t) =~ ®

where the term in the parentheses is the first order approx-
imation for component reliabilities R;(%;) e hiti =

~
~

e~i/ki Clearly, this approximate solution for the reliabil-

ity of a single software run is equivalent to the hierarchical
solution given by (3).

3.3. Path-based models

Similar to state-based models, path-based models con-
sider software architecture explicitly and assume that com-
ponents fail independently. However, the method of com-
bining software architecture with failure behavior is not an-
alytical. Path~based models consider different paths that
can be taken during software execution. They account
for each component utilization along each path, as well as
among different paths. One of the earliest architecture—
based reliability models that introduces path—based ap-
proach was proposed by Shooman [22]. This model as-
sumes that software execution can take fixed number of dif-
ferent paths. The frequency of occurrence of each path and
its failure probability are assumed to be known.

The path-based model proposed by Krishnamurthy and
Mathur [11] takes an experimental approach to obtain the
path reliability estimates. Specifically, sequences of com-
ponents along different paths are observed using the com-
ponent traces collected during the testing. The component
trace of a program P for a given test case tc, denoted by
M (P, tc), is the sequence of components 1 executed when
P is executed against tc. A sequence of components along a
path traversed for test case tc is considered as a series sys-
tem, and assuming that components fail independently of
each other it follows that the path reliability is

II

vYmeM(P,tc)

Ric Rom. (10)
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The reliability estimate of a program with respect to a test
set T'S is obtained by averaging path reliabilities

R= ZVtcETS Ry .

TS| (1)

Yacoub, Cukic and Ammar model [27] takes an algorith-
mic approach to estimate path reliabilities. A probabilis-
tic model named Component Dependency Graph is con-
structed and the algorithm expands all branches starting
from the entry node. The breadth expansions of the tree
represent logical “OR” paths and are hence translated as the
summation of reliabilities weighted by the corresponding
probabilities of occurrence for each path. The depth of each
path represents the sequential execution of components, the
logical “AND?”, and is hence translated to multiplication of
reliabilities. The depth expansion of a path terminates when
the next node is an exit node (a natural end of an applica-
tion execution) or when the summation of execution time of
that thread sums to the average execution time. The later
condition guarantees that the loops between two or more
components do not lead to a deadlock.

The difference between the state-based and path—based
approaches becomes evident when the control flow graph
of the application contains loops. State-based models an-
alytically account for the infinite number of paths due to
the loops that might exist. In the case of path-based mod-
els either the number of paths is restricted to ones observed
experimentally during the testing [11] or the depth traver-
sal of each path is terminated using the average execution
time of the application [27]. However, the difference will
not be significant since long paths have low path probabil-
ities. Note that path—based models are related to path test-
ing which uses program’s control flow graph as a structural
model. Regarding the path selection criteria during path
testing, it is suggested that it is better to take many short,
simple paths than a few long, complicated paths [1].

4. Experimental comparison

4.1. Description of the case study

The program chosen for the case study provides
language-oriented user interface which allows the user to
describe the configuration of an array of antennas. Its pur-
pose is to prepare a data file in accordance with a predefined
format and characteristics from a user, given the array an-
tenna configuration described using an appropriate Array
Definition Language. The program was developed for the
European Space Agency in C language and consists of al-
most 10,000 lines of code. It is divided into three subsys-
tems: the Parser subsystem, the Computational subsystem,
and the Formatting subsystem. This program has been used
as a case study for investigating sensitivity of software re-
liability growth models to operational profile errors [20].



The choice of this program as a case study for experimental
comparison of the models was based on the following [20]:
e The program is real and of typical size for this kind of
application
e The programming language is widely used
o Faults reinserted are the real faults discovered during
integration testing and operational use of the program
o A set of test cases is generated randomly accordingly
to the known operational profile determined by inter-
viewing the users of the program
o The program has been extensively used after the last
fault removal without having new failures. This gold
version of the program is used as an oracle during the
experiment.

Analyzing the code it was possible to gather software ar-
chitecture as shown in Figure 1 [17]. Components 1, 2, and
3 correspond to the Parser, Computational, and Formatting
subsystems respectively. State E represents the completion
of execution. The choice for the decomposition was made
in order to reach a tradeoff between number of components,
their size, and the ability to collect data needed for use in
the models. More complex model would impose difficul-
ties on the measurement task, especially in the operational
phase when failures occur in principle less frequently. Sim-
ilar situation can be found in the experiment presented in
[10] which considers a telephone switching software sys-
tem decomposed into only four components.

Figure 1. Program architecture

Faulty versions of the program were obtained by rein-
serting the faults discovered during integration testing and
operational usage. In particular, two faults were reinserted
in each of the components 1 and 2. Two faulty versions
of the program were constructed; faulty version A consists
of fault—free component 3 and faulty components 1 and 2,
while faulty version B consists of fault-free components 1
and 3 and faulty component 2.

4.2. Model application

In this subsection we illustrate the application of
architecture—based software reliability models on our case

27

Figure 2. Composite model of a terminating
application

study. DTMC presented in Figure 2 is a composite state-
based model of a terminating application [2]. Using (1) it
can be shown that the system reliability is given by

R = (1-pi2)R1 + p12(1 — pa3) Ri Rz + pi2p2s R1 Ro R.

(12)

If we take a hierarchical approach then we need to esti-

mate the expected number of times each component is exe-

cuted during a single execution of a software for a DTMC
presented in Figure 1. Using (4) we get

‘/l = 19 ‘/2 = P12,

Vs = p12pas. (13)

The first order approximation for the system reliability
given by (3) then becomes

R~ RiREZRE?™P>. (14)

CTMC that represents continuously running application
is presented in Figure 3. It is assumed that both success-
ful termination E and failure F' cause an immediate re-
set/restart to the initial state 1, denoted with dashed lines.

As we have already shown in the previous section em-
bedded DTMC of this irreducible CTMC is equivalent to
DTMC that represents Cheung model [2] with additional
transitions (with probability 1) from E and F states to start-
ing state 1. Subsequent visits to state 1 partition the realiza-
tion into subsequences equivalent to single software runs.
The reliability of a single software run with expected exe-
cution time ¢ obtained by the approximate hierarchical so-
lution of CTMC is equivalent to (14).

Component traces obtained during testing were used
for estimating both transition probabilities for state—based
models and path reliabilities for the experimental path—
based model [11]. Since the software architecture does not
contain loops it is obvious that the reliability obtained using



Figure 3. Composite model of a continuously
running application

path—based model [11] will be the same as the reliability
obtained using the composite state—based model [2]. For
a simple software architecture given in Figure 1 it is easy
to see that there are only three possible paths from compo-
nent 1 to component E. Their probabilities of occurrence
are given by (1 — p12), p12(1 — po3), and pyops3, while
the corresponding reliabilities are R, R; Ry, and Ry R2R3
respectively. The system reliability obtained using the algo-
rithmic path—based model [27] is a sum of paths reliabilities
weighted by the corresponding probabilities of occurrence
for each path which leads to the same equation as (12).

4.3. Parameter estimation and comparison of the
results

In this subsection we compare the estimates provided
by the models using empirical data from the case study’.
Each faulty version of the program and the oracle were ex-
ecuted on the same test cases generated randomly on the
basis of the operational profile. If their outputs disagree
it is necessary to determine the component that has failed.
Identification of the fault responsible for the failure is only
aimed at determining which component has failed. Faults
have not been removed and the number of failures includes
recurrences due to the same fault. The reliability of each
component was estimated using [19]
fi

Rizl— lim

ni—00 Ny

5)

where f; is the number of failures of component ¢ and n;
is the.number of executions of component ¢ in /V randomly
generated test cases. Component reliabilities estimated us-
ing (15) are given in Table 1. Since component 3 has not
failed during integration testing and operational use of the
program, there were no faults injected in this components
and it is assumed that R3 = 1.

!The number of significant figures is not intended to imply any accu-
racy in the estimates, but to illustrate the models.
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Ry
0.8428

R,
0.8346

Table 1. Components reliabilities

Transition probabilities were estimated using data ob-
tained from the component traces collected during testing.
Thus,

Rij

(16)

pii =

ij "
where n;; is the number of times control was transferred
from compo_nent i to component j and n; = E 5 TVij is .the
number of times control reaches component 7. Transition

probabilities for both faulty versions are given in Table 2.

Version P12 P23
A 0.5933 | 0.7704
B 0.7364 | 0.6866

Table 2. Transition probabilities

UNIX utility clock was used to measure the time spent
in components for the gold version of the program (without
faults injected). This function measures the time spent in a
component only if it is at least 100 ms. Since in this pro-
gram no component has execution time longer than 100 ms
the mean execution times presented in Table 3 were mea-
sured using multiple repetitions. This means that it was
not possible to test the hypothesis that components execu-
tion times are exponentially distributed. Components fail-
ure rates A; obtained using R; = u—+L/\ are one order of
magnitude smaller than execution rates u; which justifies
the hierarchical approach taken in [13].

p | 1/p2 | 1/ps
20 ms | 6.5ms | 76 ms

Table 3. Mean execution times of components
We estimate the actual reliability of the software as

R=1- lim E—

N—o00

a7

where F' is the number of system failures in N test cases
generated randomly based on the operational profile. Ta-
ble 4 compares the actual reliability with the reliability esti-
mations provided by the composite model (terminating ap-
plication [2] and single software run of continuously run-
ning application [13]), hierarchical model (terminating ap-
plication [12] and single software run of continuously run-
ning application [13}), and path—based models (experimen-
tal approach [11] and algorithmic approach {27]).

In general, results show that all the models give reason-
ably accurate estimations compared to the actual reliability
for each of the faulty versions. As expected, faulty version
B which contains faults only in component 2 is more reli-
able than faulty version A. The results also show a strong



Faulty || Actual Composite Hierarchical Path—based

Version || Reliability || Relability | Error Reliability | Error Reliability | Error
A 0.7393 0.7601 2.81% || 0.7571 2.41% || 0.7601 2.81%
B 0.8782 0.8782 0% 0.8753 0.33% || 0.8782 0%

Table 4. Comparison of the results

relation between the faults present in the components and
the way components interact. Thus, as it can be seen from
Table 2 transition probabilities p;» and pa3 are heavily af-
fected by the faults in component 1. It follows that the re-
moval of two faults from component 1 in faulty version A
which leads to faulty version B affects the expected num-
ber of times each component is executed during a single
software run (see Table 5). This implies that even if the
operational profile can be estimated accurately, the control
flow, that is, components utilization might be significantly
affected by some of the faults.

Version || V3 Vo V3
A 1 | 0.5933 | 0.4571
B 1 | 0.7364 | 0.5056

Table 5. Expected number of component’s
visits

Since our case study indicates that fault removal affects
the components reliabilities and the intra-component tran-
sition probabilities, in Figure 4 we illustrate how system
reliability R varies as a function of R; and p;5, assuming
a fixed value of Ry = 0.83462. The ranges chosen for pi2
and R, are [0.5,0.8] and [0.8, 1], respectively. The system
reliability then ranges from 0.6941 to 0.9173.

The above relation between faults in the components
and the way components interact has not been emphasised
in previous research studies on architecture—based software
reliability. This observation raises some interesting ques-
tions related to the sensitivity studies which usually assume
fixed values for transition probabilities. The influence of the
fault removal process on the components interaction and the
implications on the way sensitivity studies are conducted
need to be examined further in future experimental studies.

Finally, we emphasize that the estimates obtained us-
ing various models under the assumption that failure pro-
cesses associated across different components are mutually
independent are close to the actual reliability. However,
there might be cases where this assumption is too strong,
such as for example when most paths executed have compo-
nents within loops and these loops are traversed sufficiently
large number of times. Then, individual path reliabilities are
likely to become low resulting in system reliability estimate
much below its true reliability. In path—based model this is-

2 Although faults in component | influence both py2 and pag3, system
reliability is not affected by pa3 since it is assumed that R3 = 1.
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0.50.8
Figure 4. R as a function of p;; and R,

sue can be resolved by collapsing multiple occurrences of a
component on an execution path into k occurrences, where
k is referred as the degree of independence [11]. In the
case of state—based models it is possible to consider Markov
chain of higher order [9].

4.4. An example of software architecture with loops

Next we consider a hypothetical example of a software
architecture as in Figure 5 which has an additional transi-
tion from component 2 to component 1. This example is
meant to illustrate how the components executed within a
loop affect application reliability.

P2

Lp,

19, Py

P12

Figure 5. Program architecture with a loop
For the example in Figure 5 the application reliability
obtained using the composite model (1) is given by

R-—( ~pi2)Ri+pi2(1— P21‘P23)31R2+p12P2331R233

1 - pr2pa1 R Ry
(18)



p21 = 0.25

Figure 7. R as a function of p,, and R; for
p21 =0.75

Using this formula we plot in Figures 6 and 7 the varia-
tion in application reliability R as a function of p12 and R,
for different values of po;; the values for Rz, R3, and pa3
for this plot are fixed, with Ry = 0.8346, R3 = 1, and
pes = 0.25. Note that unlike the example without loops
(see Figure 4), application reliability as a function of either
p12 (with Ry fixed) or R, (with pp, fixed) is non-linear.
As indicated by these figures, higher values of transition
probability ps; result in smaller application reliability due
to the large number of times components 1 and 2 are exe-
cuted within a loop.

The expected number of times that components are exe-
cuted during a single execution of the software application
obtained using (4) are given by

_ 1

© 1 -puapn’
As explained earlier the values of V; are the clear indica-
tion of the component usage. It can be seen from Table 6

that V; and V; are significantly higher for higher values of
transition probability po; .

i Vo =p12Vi, Va=pasVa. (19)
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D21 Vl V2 V3
0 1 0.8 (0.2
025 || 1.25 |1 0.25
0.5 1.67 | 1.33 | 0.33
0.75 || 2.5 2 0.5

Table 6. Expected number of component’s
visits: p;2 = 0.8 and p23 = 0.25

In our hypothetical example the number of paths is infi-
nite due to the existence of a loop. If we consider all possi-
ble paths the application reliability is

R =[(1-pi2)Ri +p12(1 — p21 — p2s) 1R

+p12p23 R1 R2 R3]
(1 + pr2pa1 RiR2 + (prapar RiR2)? + - -]

(20)

which leads to the same solution as in the case of the com-
posite model (18). Path-based approach [11] restricts the
number of paths to ones observed experimentally. For the
purpose of a comparative evaluation, we consider samples
of test cases for the path—-based approach that result in the
same values of the transition probabilities as the ones used
for the state—based models. Table 7 compares the reliability
estimations provided by the composite model [2], hierar-
chical model [12], and path-based model [11]. In view of
Table 7 the following observations are made. The error of
hierarchical solution compared to the exact solution from
the composite model increases for higher values of transi-
tion probability pe;. This is due to the fact that the values
of variances of the number of times each component is ex-
ecuted increase with ps;. Further, the path-based approach
results in estimates close to the composite state—based ap-
proach even with a small number of paths that we have
considered. Finally, as anticipated by the remarks in previ-
ous subsection considering intra-component dependency by
collapsing multiple occurrences of a component into a sin-
gle occurrence (k = 1) leads to reliability estimates much
higher than in the independent case. Although the observa-
tions reported above can not be validated with respect to an
actual reliability, they do help us to outline the issues that
need the attention in future experimental studies.

D21 Com- || Hierar- || Path-based | Path-based
posite chical || independent | dependent
0 0.7313 || 0.7293 0.7623 0.7623
0.25 || 0.6873 || 0.6740 0.6809 0.7208
0.5 0.6261 || 0.5909 0.6039 0.7266
0.75 || 0.5351 {| 0.4542 0.5256 0.7383
Table 7. Comparison of the results:

R, = 0.8428, R2 = 0.8346, P12 = 0.8, and

P23 = 0.25




5. Conclusion

The paper establishes a clear theoretical relationship
among architecture-based software reliability models
that have been proposed in the past mostly by ad hoc
methods. Then, it illustrates the models application on
the case study and compares their estimations based on
the empirical data. Results show that the estimations
obtained by all models fit reasonably well with the actual
reliability. Results also show a strong relation between
faults present in the components and the way components
interact which has not been emphasised in previous studies
on architecture-based software reliability. This relation
and its implications on the way sensitivity studies should
be conducted are the subjects of our future research. In
principle, a single case study cannot give considerable
confidence that the same results will apply in different
software systems. In order to validate the results of this
paper, architecture—based software reliability models need
to be applied to other software systems, preferably with
more complex architecture.
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