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1. Introduction 

The predictive quality of software reliability models 
is affected by the ability to estimate the correct 
operational profile. However, building an operational 
profile is not an easy task, especially for a new product. 
Therefore, uncertainty analysis of the operational profile 
and software reliability are of essential importance. In this 
paper, we present the uncertainty analysis of architecture-
based software reliability models [2] using entropy, a 
well-known concept from information theory [1]. Source 
entropy that measures the amount of uncertainty inherent 
in a Markov source is given by [1] 
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where iπ  is the steady state probability of state i and ijp  

are the transition probabilities. This single value is related 
to the number of paths that are statistically typical of the 
Markov chain. Thus, higher value implies exponentially 
greater number of typical paths. The entropy value is 
maximum when all the transitions that are exit arcs from 
each state are equiprobable.  

Source entropy was used in [3] to quantify the 
uncertainty present in a Markov model of software 
specifications. In this paper, we use the concept of source 
entropy to quantify the uncertainty of the operational 
profile and architecture-based software reliability models. 
In addition, conditional entropy is used to determine the 
uncertainty of components. 
 
2. Uncertainty of operational profile 

We illustrate our approach of uncertainty analysis on 
the European Space Agency application which consists of 
almost 10,000 lines of C code [2]. Discrete time Markov 
chain (DTMC) that represents software architecture is 
shown in Figure 1; components 1, 2 and 3 correspond to 
the Parse, Computational and Formatting subsystems 
respectively, while state E represents the completion of 
execution. Transition probability ijp represents the 

probability that the control will transfer from component i 
to component j. In order to estimate the source entropy we 
consider multiple software executions, i.e., add a 
transition (with probability 1) from state E to state 1.  

In the experiment presented in [2], two faulty 
versions (A and B) of the program were constructed. 
Estimated values of transition probabilities ijp and 

component reliabilities iR  for both faulty versions are 

given in Table 1.  

Using equation (1) we plot in Figure 2 the uncertainty 
of the operational profile as a function of 12p and 23p . In 

general, when transition probabilities are close to 0 or 1 
the number of typical paths will be small and the 
uncertainty will be low. The maximum uncertainty 0.5514 
is obtained when 5.02312 == pp . The uncertainty of the 

operational profiles A and B are 0.4707 and 0.4604, 
respectively. Thus, operational profile A is more 
uncertain than operational profile B, although the 
difference is not significant. 

 
 
 
 

 
 
 
 
 
 
 

 
Figure 1. Software architecture for the case study 

 
Version 12p  23p  1R  2R  3R  

A 0.5933 0.7704 0.8428 0.8346 1 
B 0.7364 0.6866 1 0.8346 1 

 
Table 1. Estimated parameters for versions A and B 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Uncertainty of the operational profile 

 
3. Uncertainty of software reliability 

Next, we consider the uncertainty of software 
reliability. In the model, the failure state F is added and 
the failure of component i is considered by creating a 
directed arc to F with transition probability )1( iR− . The 
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original transition probability ijp between the components 

i and j is modified into iji pR  which represents the 

probability that the component i produces the correct 
result and the control is transferred to component j.  

Again, we consider multiple software executions by 
adding transitions from both states E and F to the starting 
state 1. In Figure 3 we illustrate how the uncertainty H for 
versions A and B vary as functions of 12p and 23p .  As 

indicated by these figures, considering components failure 
behavior increases the uncertainty of both versions 
compared to the uncertainty due to operational profile 
(see Figure 2). Note that version B, which is more 
reliable, is less uncertain than version A. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Uncertainty of software reliability 
 
4. Uncertainty of components 

In this section we focus on the uncertainty of 
components using the conditional entropy [1]  
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In general, uncertainty of component i will be higher 
if it transfers the control to more components and the 
transition probabilities equiprobable. As it can be seen 
from Table 2, component 1 in operational profile A has 
the highest uncertainty since transition probability 12p is 

close to 0.5. The uncertainty of component 3 is zero 
because it is certain that the control will be transferred to 
E.  We also compute steady state probabilities ][ iππ =  

by solving Pππ =  (see Table 2). Since iπ can be 

interpreted as the expected execution rate of component i 
in the long run, it represents a measure of component 
usage which in addition to component uncertainty iH  can 

be used to identify critical components. Thus, components 
that have higher expected execution rate and higher 
uncertainty will require more testing effort.  

Uncertainties and expected execution rates of 
components for software reliability model are shown in 
Table 3. Comparing the results in Table 2 and Table 3, we 
see that the uncertainty of component 1 in version B 
remains the same because 11 =R . For all other 

components (1 and 2 in version A and 2 in version B) the 

component uncertainty increases due to 1<iR . In 

summary, components that have higher expected 
execution rate, higher component uncertainty and 
moderate reliability should be allocated more testing 
effort. 

iH  iπ  
 

Version A Version B Version A Version B 
State 1 0.9747 0.8321 0.3278 0.3085 

State 2 0.7773 0.8971 0.1945 0.2271 

State 3 0 0 0.1498 0.1560 

State E 0 0 0.3278 0.3085 

Table 2.  Uncertainties and expected execution rates of 
components for operational profiles 

 

iH  iπ  
 

Version A Version B Version A Version B 
State 1 1.4491 0.8321 0.3544 0.3166 

State 2 1.2958 1.3958 0.1772 0.2332 

State 3 0 0 0.1139 0.1336 

State E 0 0 0.2694 0.2781 

State F 0 0 0.0851 0.0386 

Table 3. Uncertainties and expected execution rates of 
components for software reliability models 

 
5. Conclusion 
 In this paper we have presented an approach of 
uncertainty analysis in software reliability. We use the 
concept of source entropy to quantify the uncertainty in 
operational profile and architecture-based software 
reliability models. It is shown that software systems that 
have uniform operational profile and moderate 
components reliabilities are more uncertain, and thus 
would require more testing effort. We further estimate the 
execution rate and uncertainty of each component using 
the theory of Markov chains and conditional entropy 
respectively. These measures can guide the process of 
identifying critical components and allocating testing time 
and resources. 
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