
Student paper ISSRE Copyright 2002

Entropy as a Measure of Uncertainty in Software Reliability
Sunil Kamavaram and Katerina Goseva-Popstojanova

Lane Department of Computer Science and Electrical Engineering
West Virginia University, Morgantown, WV 26506-6109

1. Introduction

The predictive quality of software reliability models
is affected by the ability to estimate the correct
operational profile. However, building an operational
profile is not an easy task, especially for a new product.
Therefore, uncertainty analysis of the operational profile
and software reliability are of essential importance. In this
paper, we present the uncertainty analysis of architecture-
based software reliability models [2] using entropy, a
well-known concept from information theory [1]. Source
entropy that measures the amount of uncertainty inherent
in a Markov source is given by [1]

∑∑−=
j

ijij
i

i ppH logπ (1)

where iπ is the steady state probability of state i and ijp

are the transition probabilities. This single value is related
to the number of paths that are statistically typical of the
Markov chain. Thus, higher value implies exponentially
greater number of typical paths. The entropy value is
maximum when all the transitions that are exit arcs from
each state are equiprobable.

Source entropy was used in [3] to quantify the
uncertainty present in a Markov model of software
specifications. In this paper, we use the concept of source
entropy to quantify the uncertainty of the operational
profile and architecture-based software reliability models.
In addition, conditional entropy is used to determine the
uncertainty of components.

2. Uncertainty of operational profile

We illustrate our approach of uncertainty analysis on
the European Space Agency application which consists of
almost 10,000 lines of C code [2]. Discrete time Markov
chain (DTMC) that represents software architecture is
shown in Figure 1; components 1, 2 and 3 correspond to
the Parse, Computational and Formatting subsystems
respectively, while state E represents the completion of
execution. Transition probability ijp represents the

probability that the control will transfer from component i
to component j. In order to estimate the source entropy we
consider multiple software executions, i.e., add a
transition (with probability 1) from state E to state 1.

In the experiment presented in [2], two faulty
versions (A and B) of the program were constructed.
Estimated values of transition probabilities ijp and

component reliabilities iR for both faulty versions are

given in Table 1.

Using equation (1) we plot in Figure 2 the uncertainty
of the operational profile as a function of 12p and 23p . In

general, when transition probabilities are close to 0 or 1
the number of typical paths will be small and the
uncertainty will be low. The maximum uncertainty 0.5514
is obtained when 5.02312 == pp . The uncertainty of the

operational profiles A and B are 0.4707 and 0.4604,
respectively. Thus, operational profile A is more
uncertain than operational profile B, although the
difference is not significant.

Figure 1. Software architecture for the case study

Version 12p 23p 1R 2R 3R

A 0.5933 0.7704 0.8428 0.8346 1
B 0.7364 0.6866 1 0.8346 1

Table 1. Estimated parameters for versions A and B

Figure 2. Uncertainty of the operational profile

3. Uncertainty of software reliability

Next, we consider the uncertainty of software
reliability. In the model, the failure state F is added and
the failure of component i is considered by creating a
directed arc to F with transition probability)1(iR− . The

1-p12

 1-p23

1

2

E

3

p23

p12

1

original transition probability ijp between the components

i and j is modified into iji pR which represents the

probability that the component i produces the correct
result and the control is transferred to component j.

Again, we consider multiple software executions by
adding transitions from both states E and F to the starting
state 1. In Figure 3 we illustrate how the uncertainty H for
versions A and B vary as functions of 12p and 23p . As

indicated by these figures, considering components failure
behavior increases the uncertainty of both versions
compared to the uncertainty due to operational profile
(see Figure 2). Note that version B, which is more
reliable, is less uncertain than version A.

Figure 3. Uncertainty of software reliability

4. Uncertainty of components

In this section we focus on the uncertainty of
components using the conditional entropy [1]

∑−=
j

ijiji ppH log . (2)

In general, uncertainty of component i will be higher
if it transfers the control to more components and the
transition probabilities equiprobable. As it can be seen
from Table 2, component 1 in operational profile A has
the highest uncertainty since transition probability 12p is

close to 0.5. The uncertainty of component 3 is zero
because it is certain that the control will be transferred to
E. We also compute steady state probabilities][iππ =

by solving Pππ = (see Table 2). Since iπ can be

interpreted as the expected execution rate of component i
in the long run, it represents a measure of component
usage which in addition to component uncertainty iH can

be used to identify critical components. Thus, components
that have higher expected execution rate and higher
uncertainty will require more testing effort.

Uncertainties and expected execution rates of
components for software reliability model are shown in
Table 3. Comparing the results in Table 2 and Table 3, we
see that the uncertainty of component 1 in version B
remains the same because 11 =R . For all other

components (1 and 2 in version A and 2 in version B) the

component uncertainty increases due to 1<iR . In

summary, components that have higher expected
execution rate, higher component uncertainty and
moderate reliability should be allocated more testing
effort.

iH iπ

Version A Version B Version A Version B
State 1 0.9747 0.8321 0.3278 0.3085

State 2 0.7773 0.8971 0.1945 0.2271

State 3 0 0 0.1498 0.1560

State E 0 0 0.3278 0.3085

Table 2. Uncertainties and expected execution rates of
components for operational profiles

iH iπ

Version A Version B Version A Version B
State 1 1.4491 0.8321 0.3544 0.3166

State 2 1.2958 1.3958 0.1772 0.2332

State 3 0 0 0.1139 0.1336

State E 0 0 0.2694 0.2781

State F 0 0 0.0851 0.0386

Table 3. Uncertainties and expected execution rates of
components for software reliability models

5. Conclusion
 In this paper we have presented an approach of
uncertainty analysis in software reliability. We use the
concept of source entropy to quantify the uncertainty in
operational profile and architecture-based software
reliability models. It is shown that software systems that
have uniform operational profile and moderate
components reliabilities are more uncertain, and thus
would require more testing effort. We further estimate the
execution rate and uncertainty of each component using
the theory of Markov chains and conditional entropy
respectively. These measures can guide the process of
identifying critical components and allocating testing time
and resources.

6. Acknowledgements
 This work is funded in part by grant from NASA
OSMA managed through the NASA Independent
Verification and Validation Facility, Fairmont, WV.

References

[1] R. Ash. Information Theory. Wiley, 1965.

[2] K. Goseva – Popstojanova, A. P. Mathur, and K. S.
Trivedi. Comparison of Architecture – Based Software
Reliability Models. Proc. 12th Int’l Symp. Software
Reliability Engineering, 2001, pp. 22-31.

[3] J. A. Whittaker and J. H. Poore. Markov Analysis of
Software Specifications. ACM Trans. Software Engineering
and Methodology, 2 (1), 1993, pp. 93-106.

Version A Version B

