
Adequacy, Accuracy, Scalability, and Uncertainty of Architecture–based Software
Reliability: Lessons Learned from Large Empirical Case Studies

Katerina Goševa–Popstojanova, Margaret Hamill, and Xuan Wang
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506-6109
{katerina, maggieh, xwang}@csee.wvu.edu

Abstract

Our earlier research work on applying architecture–based
software reliability models on a large scale case study allowed
us to test how and when they work, to understand their limi-
tations, and to outline the issues that need future research. In
this paper we first present an additional case study which con-
firms our earlier findings. Then, we present uncertainty anal-
ysis of architecture–based software reliability for both case
studies. The results show that Monte Carlo method scales
better than the method of moments. The sensitivity analysis
based on Monte Carlo method shows that (1) small number of
parameters contribute to the most of the variation in system
reliability and (2) given an operational profile, components’
reliabilities have more significant impact on system reliabil-
ity than transition probabilities. Finally, we summarize the
lessons learned from conducting large scale empirical case
studies for the purpose of architecture–based reliability as-
sessment and uncertainty analysis.

1. Introduction

Although the architecture–based estimation of software re-
liability has a long tradition, there are still many open ques-
tions with respect to the realism of the underlying assump-
tions, adequacy, accuracy, and scalability of these models. The
goal of this paper is to evaluate empirically these questions
based on large scale software applications. It applies the ex-
perimental set-up and methods for data extraction presented in
our earlier work [11] on additional case study which allows us
to further explore the architecture–based software reliability
models empirically and draw common conclusions. Further-
more, we apply the methods for uncertainty analysis devel-
oped in our earlier work [9], [10] on these two large scale case
studies and study how the uncertainty of the parameters values
propagates into the uncertainty of the reliability estimate.

The type of empirical studies presented in this paper is
called observational since, unlike controlled experiments, the
subjects under study are not perturbed. Observational studies
are typically easier to plan and scale better than controlled ex-
periments. Further advantages include the capability to incor-
porate complexity, unpredictability, and dynamism. The fact
that observational studies that include several subjects can be

considered as one form of replicated experiment provides ba-
sis for generalization of results. However, it is harder to inter-
pret the results of the observational studies since researchers
do not have the same control as in experiments.

Next, we summarize the related work and emphasize
our contributions. Although numerous papers were devoted
to architecture-based software reliability modelling, most of
them either do not include numerical illustrations [14], [15] or
illustrate the models on simple made-up examples [1], [13],
[23], [24]. A few papers that so far applied the theoretical re-
sults on real case studies did not include building the software
architecture [12] or identification of faults [6], [8], [9], [10].

A number of papers that presented empirical studies based
on large software applications are related to our work, al-
though their focus and goals were different. Next, we briefly
compare our work to these studies. Unlike the previous work
that was focused on clustering individual execution profiles
in their original form [2], [3], [21], we build the dynamic as-
pects of the software architecture based on the data extracted
from the individual execution profiles. This task requires re-
solving several challenging problems such as decomposition
of the system into components, aggregating a large number
of execution profiles, and identifying the end points of soft-
ware executions. Earlier work aimed at fault analysis for large
case studies [19], [20] was only focused on identification of
faults from modification (i.e., change) logs based on simpli-
fied heuristics. In our case, this information is not sufficient.
Therefore, our approach includes software executions to de-
tect failures, and then identification of the location of faults
that caused these failures based on several accurate methods.

Last but not least, we build the architecture–based software
reliability models and conduct uncertainty analysis based on
Monte Carlo simulation and method of moments. It should
be emphasized that we have generalized our earlier results on
Monte Carlo simulation and method of moments [9], [10] to
account for the uncertainty in (1) the reliability estimates for
components that in their current version do not reveal any fail-
ures and (2) transition probability estimates for potential tran-
sitions that are not observed during specific number of execu-
tions.

The rest of the paper is organized as follows. The methods
for uncertainty analysis are briefly described in section 2. The
experimental setup and the empirical results from the two case

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

studies are presented in section 3. The methods for uncertainty
analysis are applied on both case studies in section 4. Finally,
lessons learned and concluding remarks are given in section 5.

2. Methods for uncertainty analysis

In order to estimate the system reliability using
architecture–based model we need to know the dynamic
aspects of the software architecture (structure and relative
frequencies of components interactions) and software fail-
ure behavior (components’ reliabilities or failure rates).
We use state–based approach to build the architecture–
based software reliability model [7]. In this approach
states represent active components and arcs represent
the transfer of control. First, the architecture is mod-
eled with a discrete time Markov chain (DTMC) with
a transition probability matrix P = [pij], where pij =
Pr {control is transferred from component i to component j}.
Then, components failure behavior is considered (i.e., re-
liability Ri of each component is estimated) and a model
that combines software architecture with components failure
behavior is built. Our methodology for uncertainty analysis
[9] is not tied to a particular architecture–based software reli-
ability model. In this paper we use the model first presented
in [1] which uses composite method to combine software
architecture with failure behavior and provides close form so-
lution for the software reliability as function of components’
reliabilities and transition probabilities R = f(Ri, pij).

For a given software architecture, there are two sources of
uncertainty in software reliability: the way components inter-
act (i.e., transition probabilities) and the components’ failure
behavior (i.e., components’ reliabilities). Regardless of the ac-
curacy of the mathematical model, if considerable uncertainty
exists in estimation of the parameters (as it usually does), the
traditional approach of computing the point estimate of the
software reliability is not appropriate. Alternatively, we can
treat unknown parameters as random variables and quantify
the uncertainty of system reliability. In this paper we use two
methods for uncertainty analysis: Monte Carlo simulation [9]
and method of moments [10].

2.1. Monte Carlo simulation

Monte Carlo simulation is an approximate method for es-
timating reliability of the system when the parameters can be
represented by well defined probability distributions. The ap-
proach we used in our earlier work [9] did not allow us to take
into account the uncertainty due to the following cases:

• Observing zero failures for some components fi = 0.
The traditional reliability estimate for a software compo-
nent that in its current version has not failed will result in
reliability equal to 1. Even worse, when none of compo-
nents have failed (i.e., the testing does not reveal any fail-
ures), the estimate of the system reliability will be equal
to 1. Of course, unless we do exhaustive testing without
replacement, we can never be sure that the reliability of a
software component or a software system is 1.

• Observing zero counts for the transfer of control (i.e.,
transitions) nij = 0. Not all transitions with zero counts

are improbable. In some cases, zero count might mean
that none of the test cases have triggered the transfer of
control between components i and j. Thus, potential
transitions should not be excluded simply because they
were not observed during specific number of executions.

The classic solution to the problem of estimating compo-
nents reliability based on failure–free executions is based on
the Bayesian framework [17]. The number of successes ri in
ni executions, given component reliability Ri (0 ≤ Ri ≤ 1),
follows the binomial distribution(

ni

ri

)
Rri

i (1 − Ri)ni−ri . (1)

Within the Bayesian framework a priori knowledge about the
parameter of interest, here Ri, is represented by the prior dis-
tribution. In this case we use as a prior distribution the conju-
gate distribution Beta(ai, bi) given with equation

f(Ri) =
Γ(ai + bi)
Γ(ai)Γ(bi)

Rai−1
i (1 − Ri)bi−1 (2)

where ai > 0 and bi > 0. Here we concentrate on the case
when no prior information is available and use the “ignorance”
uniform prior Beta(1, 1) in which case the posterior distribu-
tion reduces to Beta(ri + 1, ni − ri + 1).

We solved the problem of observing zero counts for the
transfer of control in two steps. First, we ran a static code
analysis tool to determine whether the transition is not pos-
sible (i.e., the transition count will always be zero nij = 0)
and therefore pij = 0. When the static code analysis shows
that the transition is possible, but no transitions were observed
during specific number of executions, the transition probabil-
ity is likely to be close to 0, but is not improbable. To account
for this case, as in the case of components reliability when no
failures were observed, we use Bayesian framework.

For each component, the control will be transferred to one
of at most n components. Let rij denote the number of times
the control was passed from component i to component j in
ni executions. Then, the data follows the multinomial distri-
bution (

ni

ri1ri2 . . . rin

)
pri1

i1 pri2
i2 . . . prin

in (3)

for rij = 0, 1, 2, . . . , ni and
∑n

j=1 rij = ni. It is im-
portant to emphasize that the number of categories in the
multinomial distribution will typically be less than n be-
cause, as described earlier, some of the transitions are im-
probable. We assume that the rows in the transition proba-
bility matrix are independent and distributed accordingly to
Dirichlet distribution, that is, for the ith row in the transi-
tion probability matrix we choose Dirichlet prior distribution
Dirichlet(αi1, αi2, . . . , αin) given by

f(pi1, . . . , pin) =
Γ(αi1 + . . . + αin)
Γ(αi1) . . . Γ(αin)

n∏
j=1

p
αij−1
ij (4)

where αi1, . . . , αin > 0, pij ≥ 0, and
∑n

j=1 pij = 1. As
in case of components reliabilities, we use the “ignorance”
uniform prior Dirichlet(1, 1, . . . , 1), which leads to posterior
distribution Dirichlet(ri1 + 1, ri2 + 1, . . . , rin + 1).

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

2.2. Method of moments

Method of moments is an approximate analytical approach
that can be applied to any architecture-based software reliabil-
ity model that has a close form solution for the system reliabil-
ity. It consists of expanding R = f(Ri, pij) by a multivariable
Taylor series about the point at which components reliabilities
and transition probabilities take their expected values. Method
of moments is an approximate method because of the omission
of higher order terms in the Taylor series expansion. The ex-
pressions for the mean E[R] and the variance Var[R] of the
system reliability based on the first and second order Taylor
series expansion, which are not given here due to space lim-
itation, can be found in [10]. Since deriving the expression
for the system reliability and the corresponding Taylor coeffi-
cients by hand is cumbersome and can be done only for small
systems, we used Mathematica to automate the process.

In general, method of moments only requires sample esti-
mates of the moments of components’ reliabilities and tran-
sition probabilities (i.e., no distribution must be specified).
However, in cases when zero failures are observed for some
components or zero counts are observed for some probable
transitions, sample means and higher central moments will be
zero and will not allow to account for uncertainty of these pa-
rameters. In these cases, it is necessary to use Bayesian ap-
proach and estimate the moments of the posterior distributions
given in section 2.1.

3. Empirical results

In this section we briefly summarize the results for the
GCC C compiler given in our earlier work [11] and present
the results of a new case study Indent. We chose these two ap-
plications due to the following reasons. (1) Both projects use
Concurrent Version System (CVS) and have multiple releases
available. (2) A regression test suite is available with each re-
lease of the software, including drivers to automatically run
the test suite and checkers that compare the outputs of the test
cases to the expected results. The drivers and the checkers
play the role of a test oracle in our studies. (3) Changes made
to the source code (e.g., fixing faults, adding new functional-
ity) are recorded in source code change log files. Developers
of GCC also record new test cases in the test change log files.
(4) Different sizes of the case studies allow us to explore the
scalability of architecture–based software reliability models.

In our experimental setup we use the regression test cases
of a newer version to test an older version, which enables more
failures to happen and allows us to detect higher number of
faults. Special care was taken to exclude test cases (includ-
ing failures) designed to test features implemented in newer
versions. The basic facts of the case studies are as follows.

• GCC C compiler is a part of the GNU Compiler Collec-
tion [26]. We experimented with 5 releases of GCC. The
latest considered release, 3.3.3, has over 300,000 lines of
code and 2,126 test cases designed to test the C proper
part of GCC.

• Indent [27] is a C code beautifier which changes the ap-
pearance of C programs. We experimented with 10 re-

leases of Indent. The latest considered release 2.2.9 has
around 11,000 lines of code and regression test suite with
158 test cases.

It should be noted that the regression test suites represent
one possible operational profile, which is not necessarily rep-
resentative of the real usage of GCC C compiler and Indent.
However, this fact does not limit the validity of our results
since our goal is to test empirically the theory of architecture–
based software reliability rather than to estimate the reliability
as seen by the users.

3.1. Determining dynamic aspects of the software ar-
chitecture

To collect the information on software executions we in-
strument the software applications with gprof profiler [28].
Since our model requires the knowledge of frequencies of con-
trol transfer, we use the call graph profiles produced by gprof.

We ran the 2,126 test cases designed to test the C proper
part of GCC 3.3.3 using the instrumented version of GCC
3.2.3. The corresponding 2,126 execution profiles contained
1,759 unique functions. We mapped these 1,759 functions to
108 files, and then grouped these files into 13 components that
have clearly defined functionality and interfaces. While map-
ping functions to files was straightforward, assigning files to
components appeared to be difficult and time consuming pro-
cess since the available documentation was outdated. The pro-
cess of identifying all functions (and correspondingly compo-
nents) where the execution could end was not trivial as well
since this information is not contained in the execution pro-
files produced by gprof. Analyzing the code of GCC C com-
piler we concluded that each software execution started and
ended in functions that belong to component 13.

We ran 158 test cases of Indent version 2.2.9 using the
instrumented version of Indent 2.2.0. We determined that the
58 unique functions shown in the execution profiles belong to
9 files and we decided to build the architecture–based software
reliability model at file level. Following the same process as
in case of GCC, we determined that each software execution
started and ended in component 6.

3.2. Determining software failure behavior

One of the advantages of using GCC and Indent regres-
sion test suites is that the information about whether each test
case has failed or passed is automatically provided. Although
helpful, in our case this information is not enough. In order to
be able to estimate components’ reliabilities, it is required to
detect the location of faults that had caused the failures, that
is, to establish a cause–effect relationship between faults and
failures which for applications of this size is not a trivial task.

The C proper part of GCC was executed on a total of 2,126
test cases out of which 111 failed. Instead of using some
kind of simplifying heuristics, we decided to develop accu-
rate methods for identification of the faults that led to these
failures. These methods, two automatic and two manual, are
briefly described next. For detailed description the reader is
referred to [11].

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

Method I ties the names of the failed test cases (indication
of a failure) with the changes to files given in the source code
change logs (indication of fixing faults) indirectly through in-
formation extracted from test case change log files. Method
II is based on searching the bug–tracking system Bugzilla
[25] for the Problem Report numbers given in GCC log files.
Method III consists of executing the same test suite on later
versions of GCC (i.e., GCC 3.3, 3.3.1, 3.3.2, and 3.3.3) in
order to determine when the corresponding test case stopped
failing. After finding the version in which the fault was fixed,
we repeated the first method to trace the location of the faults
in files. For all the remaining failed test cases we searched
manually the CVS logs available on the GCC Web site [26].

Overall, we identified the faults that led to 85 failures of
GCC C compiler version 3.2.3 (43, 6, 24 and 12 using Meth-
ods I-IV, respectively). In addition, we identified that seven
test cases failed because they were designed to test features
added after the version 3.2.3. This means that we were able
to resolve 92 out of 111 failed test cases. Some of the 19 un-
resolved failures are due to faults that are either not known or
not fixed yet and cannot be identified using any of the methods
discussed above. Another reason for not being able to identify
faults that led to some of the failures is the lack of consistency
(or discipline) in the process of recording the fixes.

A summary of files and components affected by fixing
faults for 85 failures is given in Table 1. Thus, 67.06% of
failures were due to faults in one component, 21.18% to faults
in two components, and 11.76% to faults in three to eight com-
ponents. Similar results were obtained in [18] for a large in-
dustrial software application which consisted of 750,000 lines
of code. In that study 15% – 23% of failures were associated
with changing more than one component. Similarly, analy-
sis of nearly 200 anomalies from seven NASA spacecraft sys-
tems led to conclusion that multiple corrections are made to
fix some anomalies [16].

Number Fail- % of Number of Fail- % of
of files ures fail- components ures fail-
affected ures affected ures

1 36 42.35 1 57 67.06
2 23 27.06 2 18 21.18
3 6 7.06 3 5 5.88
4 12 14.12 4 3 3.53
5 2 2.35 5 1 1.18
6 2 2.35 8 1 1.18
8 3 3.53

14 1 1.18

Table 1. Faults distribution for GCC

Out of 158 test cases available in the regression test suite
of Indent version 2.2.9, 34 test cases failed when executed on
Indent version 2.2.0. For identification of the location of faults
that led to these 34 failures, we used Method III described ear-
lier in this section. The .diff files which showed the difference
between the expected and the actual output file were also help-
ful. Overall, we identified faults that led to 27 failures. Three
additional failures were excluded since they were designed to
test features added to Indent after the version 2.2.0. We could
not identify the faults that led to four failures. One of these

four failed test cases was still failing on version 2.2.9, which
means that the faults related to this failure were not fixed.

As it can be seen from Table 2, 88.89% of Indent failures
were due to faults in one file, that is, 11.11% of failures were
caused by faults is two files. Obviously, the fault–failure re-
lationships for smaller case studies such as Indent tend to be
simpler when compared to larger and more complex case stud-
ies such as GCC C compiler.

Number of files affected Failures % of failures
1 24 88.89
2 3 11.11

Table 2. Faults distribution for Indent
The results of our experiments clearly demonstrate that

the relationship between faults and failures is complex and
raise interesting questions, mainly unexplored in the literature.
Since establishing links between faults and failures is not a
trivial task, several simplistic assumptions were made in the
past. For example, in [5] and [21] it was assumed that failures
are traced back to a unique fault in a module. A similar as-
sumption is made in most software reliability growth models
[4]. Although this assumption simplifies the analysis, obvi-
ously, it is not realistic. 32.94% GCC C compiler failures and
11.11% of Indent failures were tracked to faults in more than
one component. Another example is the heuristic used in [19]
and [20] which was based on the assumption that only changes
made to one or two files are related to fixing faults. Although
the results for Indent, which is considerably smaller and sim-
pler application, agree with this heuristic, the results for GCC
C compiler show that 30.59% of failures required fixing faults
in more than 2 files (see Table 1).

The existing architecture–based software reliability mod-
els assume that components fail independently and each com-
ponent failure leads to a system failure. As the results in Ta-
bles 1 and 2 show, we can be confident that this assumption is
valid for 67.06% of GCC C compiler failures and 88.89% of
Indent failures. Further study of the fault–failure relationship
is out of the scope of this paper. Instead of making simpli-
fying assumptions, for estimation of components’ reliabilities
we decided to consider only the failures that were caused by
faults in a single component. Thus, we consider a subset of the
regression test suite as an operational profile for the system.
Our future work will address the problem of how to account
for failures that require changes in multiple components.

4. Uncertainty analysis

4.1. Uncertainty analysis based on Monte Carlo sim-
ulation

For sampling from the posterior Beta and Dirichlet dis-
tributions we used the Bayesian Markov chain Monte Carlo
(MCMC) method which allows drawing samples from the
joint posterior density, including much more complex situa-
tions in which the likelihood and prior distribution are not con-
jugate. Specifically, we used Gibbs sampling [22], a special
case of the Metropolis-Hastings algorithm. For the numerical
results presented in this paper, we did the sampling using the
WinBUGS software [29].

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

We checked the convergence of MCMC simulations with
considerable care. The first method consisted of running mul-
tiple Markov chains simultaneously and setting sample moni-
tors to view trace plots of the samples. If the trace plots appear
to be overlapping one another, we can be reasonably confi-
dent that convergence has been achieved. We also assessed the
accuracy of the posterior estimates by calculating the Monte
Carlo error for each parameter. This is an estimate of the dif-
ference between the mean of the sampled values (which are
used as estimates of the posterior mean for each parameter)
and the true posterior mean. We ran the simulation until the
Monte Carlo error for each parameter of interest was less than
about 5% of the sample standard deviation. Once the con-
vergence has been achieved accordingly to these two criteria,
we ran the simulation for a further 20,000 iterations to obtain
samples of the posterior distribution.

The frequency chart presented in Figure 1 gives the fre-
quency of occurrence for different values of system reliability
of GCC. The range of the reliability is [0.999799, 0.999959]
and the distribution is skewed to the left. We have also esti-
mated the percentiles, i.e., certainty bands. Furthermore, we
calculated the sensitivity by computing rank correlation coef-
ficients between every parameter and system reliability. High
correlation coefficient means that the parameter has a signif-
icant impact on software reliability (both through its uncer-
tainty and its model sensitivity). Positive coefficients indicate
that an increase in the parameter is associated with an increase
in the reliability. As it can be seen from the sensitivity chart
shown in Figure 1, 98.4% of the reliability variation is due
to only 10 out of 97 parameters. All 10 of these parameters
represent reliabilities. Even more, 86.6% of the system relia-
bility variation is due to reliabilities R12, R13, R1, and R3. Of
course, using different operational profile will lead to different
system reliability estimate and most likely to different set of
parameters that will have high impact on system reliability.

In addition to the mean reliability, we estimated sev-
eral other characteristics of the system reliability distributions
shown in Table 3. It is obvious that the reliability of Indent
has lower mean than GCC C compiler, as well as wider range
([0.7706, 0.8582]). The higher variability of the reliability es-
timates of Indent is confirmed by the coefficient of variability
which is three orders of magnitude higher that the coefficient
of variability of GCC C compiler. Furthermore, the distribu-
tion of the Indent reliability is skewed slightly to the right and
it has a smaller peak (see Figure 2).

Mean Coefficient of Skewness Kurtosis
variability

GCC 0.999910 0.000018 -0.6861 3.8563
Indent 0.8144 0.0192 0.0227 2.985

Table 3. Reliability distributions characteristics

As it can be seen from the sensitivity chart presented in
Figure 2, similarly as in case of GCC, a few parameters con-
tribute to the most of the variability of the system reliability.
Specifically, 10 out of 43 parameters are responsible for 99.6%
of the variation in the reliability estimate. Also, given an op-
erational profile, components’ reliabilities have significantly
higher impact on the variability of the reliability estimate than

Figure 1. Uncertainty analysis for GCC

the transition probabilities. Thus, nine of the 10 parameters
that contribute to 99.6% of the variance are reliability param-
eters. The reliabilities of only four components (i.e., R7, R6,
R3, and R8) contribute 76.4% to the variance of system reli-
ability. The only transition probability that has a significant
contribution to the variance of the reliability estimate is p6,end

with 12.8% contribution to the variance.
We also explored the accuracy of the architecture–based

software reliability models by comparing the mean reliability
provided by the model with the actual reliability estimated by
R = 1−F/N , where F is the number of system failures in N
test cases1. The values of the actual reliability are 0.972490
for GCC C compiler and 0.8378 for Indent, which when com-
pared to the values of the mean reliability given in Table 3 lead
to errors of 2.82% and 2.80%, respectively.

4.2. Uncertainty analysis based on method of mo-
ments

Method of moments requires derivation of a symbolic
close form solution for the system reliability R = f(Ri, pij)

1Test cases designed to test features added to later versions, unresolved
failures, and failures that led to fixing faults in multiple components are ex-
cluded both from the failed and the total number of test cases.

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

Figure 2. Uncertainty analysis for Indent

and computation of the partial derivatives. Since the complex-
ity of the reliability expression, the number and complexity of
the partial derivatives, and the number of terms in the expres-
sions for the mean and variance increase with the number of
components and non-zero transition probabilities, the method
of moments does not scale well. Thus, for GCC C compiler
case study, on a standard desktop (Intel IV processor and 2GB
RAM), Mathematica ran out of memory while estimating the
partial derivatives needed for the terms of the variance expres-
sion for the first order Taylor series approximation.

Since the Indent case study has a smaller number of com-
ponents and sparser transition probability matrix, we were
able to estimate the mean and variance of the system relia-
bility for the first order Taylor series approximation. These
values are as follows: E[R] = 0.8183, Var[R] = 0.0012, and
the coefficient of variability is 0.0416.

5. Lessons learned and concluding remarks

In this paper we presented the uncertainty analysis of
architecture–based software reliability based on empirical re-
sults obtained from two large scale software applications. Our
results are based on innovative approaches to efficiently ex-

tract and more accurately analyze large amounts of empirical
data. To the best of our knowledge, this is the largest and the
most comprehensive empirical study ever used for assessment
and uncertainty analysis of architecture–based software relia-
bility. Based on the results presented in this paper, we have up-
dated the list of lessons learned presented in our earlier work
[11]. The first set of lessons learned is related to conducting
empirical studies on architecture–based software reliability.

1. Large quantity of data has to be extracted and analyzed.
For large systems manual examination of the execution
profiles and change logs is almost impossible. Rather,
automatic methods for efficient data extraction and anal-
ysis are needed.

2. Decomposition of the system into components may not
be an easy task due to the large scale of the system and
outdated documentation.

3. Identification of faults that led to failures is not triv-
ial. Better format for keeping track of problem reports
and source code changes, which will allow to distin-
guish changes made to fix faults from other changes
(e.g., adding new functionality), need to be developed
and adopted in practice.

The following lessons learned are related to the observa-
tions made about reliability estimations.

1. Relationships between faults and failures are complex
and almost unexplored in the literature. Our results show
that many simplifying assumptions made in the past are
not valid and may lead to errors in the analysis.

2. Some phenomena can only be observed on large scale
empirical studies. For example, smaller case studies tend
to have simpler fault–failure relationships.

3. The architecture–based software reliability models pro-
vide accurate estimates when compared to the actual re-
liability. These estimates, however, are based on a subset
of failures which can clearly be attributed to single com-
ponents. Once more sound relationships between faults
and failures are established, the current state of the art in
architecture–based reliability has to be enhanced to ac-
count for them.

4. Monte Carlo simulation scales better than the method of
moments since it does not require any symbolic deriva-
tions, that is, the system reliability can be estimated nu-
merically for each simulation run using the parameters’
values sampled from the specified probability distribu-
tion functions.

5. Monte Carlo simulation provides richer set of measures
than method of moments. These include reliability distri-
bution function and percentiles. The results of the sensi-
tivity ranking of the parameters accordingly to the con-
tribution to the variance show that (1) a few parameters
contribute to the most of the variation in system relia-
bility and (2) given an operational profile, components’

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

reliabilities impact system reliability more significantly
than transition probabilities.

As a conclusion, we believe that, similarly to more ma-
ture fields such as physics and medicine, software reliability
engineering research should go through cycles of theoretical
and experimental results. Thus, the experiments carried out to
test a theory or explore a new domain should be followed by
theoretical research that will account for the newly discovered
phenomena.

Acknowledgements

This work is funded by NASA OSMA SARP under grant
managed through NASA IV&V Facility in Fairmont and by
NSF under CAREER grant CNS-0447715. The authors thank
the contributors of GCC and Indent for their help.

References

[1] R. Cheung, “A User-Oriented Software Reliability Model”,
IEEE Trans. Software Engineering, Vol.6, No.2, 1980,
pp. 118–125.

[2] W. Dickinson, D. Leon, and A. Podgurski, “Finding Failures by
Cluster Analysis of Execution Profiles”, Proc. 23rd Int’l Conf.
Software Engineering, 2001, pp. 339–348.

[3] W. Dickinson, D. Leon, and A. Podgurski, “Pursuing Failure:
The Distribution of Program Failures in a Profile Space”, Proc.
9th ACM SIGSOFT Symp. Foundations of Software Engineer-
ing, 2001, pp. 246–255.

[4] W. Farr, “Software Reliability Modeling Survey”, in Handbook
of Software Reliability Engineering, M. R. Lyu (Ed.), McGraw-
Hill, 1996, pp. 71–117.

[5] N. E. Fenton and N. Ohisson, “Quantitative Analysis of Faults
and Failures in a Complex Software System”, IEEE Trans.
Software Engineering, Vol.26, No. 8, August 2000, pp. 797–
814.

[6] S. Gokhale, W. E. Wong, K. Trivedi, and J. R. Horgan, “An
Analytical Approach to Architecture–Based Software Reliabil-
ity Prediction”, Proc. 3rd Int’l Computer Performance and De-
pendability Symp., 1998, pp. 13–22.

[7] K. Goševa-Popstojanova, A. Mathur, and K. Trivedi, “Compar-
ison of Architecture-Based Software Reliability Models”, 12th
Int’l Symp. Software Reliability Engineering, 2001, pp. 22-31.

[8] K. Goševa–Popstojanova, A. Mathur, and K. Trivedi, “Com-
parison of Architecture-Based Software Reliability Models”,
Proc. 12th Int’l Symp. Software Reliability Engineering, 2001,
pp. 22–31.

[9] K. Goševa–Popstojanova and S. Kamavaram, “Assessing Un-
certainty in Reliability of Component-Based Software Sys-
tems”, Proc. 14th IEEE Int’l Symp. Software Reliability En-
gineering, 2003, pp. 307–320.

[10] K. Goševa–Popstojanova and S. Kamavaram, “Software Re-
liability Estimation under Uncertainty: Generalization of the
Method of Moments”, Proc. 8th IEEE Int’l Symp. High Assur-
ance Systems Engineering, 2004, pp. 209–218.

[11] K. Goševa–Popstojanova, M. Hamill, and R. Perugupalli,
“Large Empirical Case Study of Architecture–based Software
Reliability”, Proc. 16th IEEE Int’l Symp. Software Reliability
Engineering, 2005, pp. 43–52.

[12] K. Kanoun and T. Sabourin, “Software Dependability of the
Telephone Switching System”, Proc. 17th Int’l Symp. Fault
Tolerant Computing, 1987, pp. 236–241.

[13] S. Krishnamurthy and A. Mathur, “On the Estimation of Reli-
ability of a Software System using Reliabilities of its Compo-
nents”, Proc. 8th Int’l Symp. Software Reliability Engineering,
1997, pp. 146–155.

[14] J-C. Laprie, “Dependability Evaluation of Software Systems
in Operation”, IEEE Trans. Software Engineering, Vol. SE-10,
No. 6, 1984, pp. 701–714.

[15] B. Littlewood, “Software Reliability Model for Modular Pro-
gram Structure”, IEEE Trans. Reliability, Vol. R-28, No.3,
1979, pp. 241–246.

[16] R. R. Lutz and I. C. Mikulski, “Empirical Analysis of Safety
Critical Anomalies During Operation”, IEEE Trans. Software
Engineering, Vol. 30, No.3, March 2004, pp. 172–180.

[17] K. W. Miller et al., “Estimating the Probability of Failure when
Testing Reveals no Failures”, IEEE Trans. Software Engineer-
ing, Vol.18, No.1, 1992, pp. 33- 43.

[18] K. Moller and D. Paulish, “An Empirical Investigation of Soft-
ware Fault Distribution”, Proc. 1st IEEE Int’l Software Metrics
Symp., 1993, pp. 82–90.

[19] T. J. Ostrand and E. J. Weyuker, “The Distribution of Faults in
a Large Industrial Software System”, Proc. ACM Int’l Symp.
Software Testing and Analysis, 2002, pp. 55–64.

[20] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the Bugs
Are”, Proc. ACM Int’l Symp. Software Testing and Analysis,
2004.

[21] A. Podgurski et al., “Automated Support for Classifying Soft-
ware Failure Reports”, Proc. 25th Int’l Conf. Software Engi-
neering, 2003, pp. 465–475.

[22] C. P. Robert and G. Casella, Monte Carlo Statistical Methods,
Springer–Verlag, Second Edition, 2000.

[23] H. Singh, V. Cortellessa, B. Cukic, E. Guntel, and V. Bharad-
waj, “A Bayesian Approach to Reliability Prediction and As-
sessment of Component Based Systems”, Proc. 12th Int’l
Symp. Software Reliability Engineering, 2001, pp. 12–21.

[24] S. Yacoub, B, Cukic, and H. Ammar, “Scenario-Based Relia-
bility Analysis of Component-based Software”, Proc. 10th Int’l
Symp. Software Reliability Engineering, 1999, pp. 22–31.

[25] http://www.bugzilla.org

[26] http://gcc.gnu.org/

[27] http://www.gnu.org/software/indent/indent.html

[28] http://www.gnu.org/software/binutils/manual/gprof-
2.9.1/html mono/gprof.html

[29] http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

17th International Symposium on Software Reliability Engineering (ISSRE'06)
0-7695-2684-5/06 $20.00 © 2006

