
Estimating the probability of failure when software runs are dependent:
An empirical study

Katerina Goseva-Popstojanova and Margaret Hamill
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506-6109
E-mails: Katerina.Goseva@mail.wvu.edu, mhamill@mix.wvu.edu

Abstract—The assumption of independence among successive
software runs, common to many software reliability models,
often is a simplification of the actual behavior. This paper
addresses the problem of estimating software reliability when
the successive software runs are statistically correlated, that
is, when an outcome of a run depends on one or more of
its previous runs. First, we propose a generalization of our
previous work using higher order Markov chain to model a
sequence of dependent software runs. Then, we conduct an
empirical study for exploring the phenomenon of dependent
software runs using three software applications as case studies.
Based on two statistical approaches, we show that the outcomes
of software runs (i.e., success or failure) for two of the
case studies are dependent on the outcome of one or more
previous runs, in which case first or higher order Markov chain
models are appropriate. Finally, we estimate the parameters of
the appropriate models and discuss the effects of dependent
software runs on the estimates of the software reliability.

I. INTRODUCTION

Significant amount of research work has been done in
developing software reliability models. However, exploring
the validity of the assumptions and relaxing the restrictions
have not received an adequate attention. Although some
of the underlying assumptions may be unrealistic and do
not apply universally, they still are used commonly due to
the tractability of the resulting mathematical models. The
lack of experimental data disproving these assumptions also
contributes to their widespread use.

Among the basic assumptions made by various models,
in this paper we address the validity of the assumption that
successive software runs (i.e., executions), and consequently
successive software failures, are mutually independent. (It
should be noted that this is different from considering the
independence of component failures within a single run
addressed in [6] and references therein.)

As adaptive and real-time systems become more widely
used, it is easy to understand why successive runs may not
be independent. For example, in a real-time control system
the sequence of input values to the software tend to change
slowly, that is, successive inputs are very close to each other.
For this reason, given a failure of a software for a particular
input, there may be a greater likelihood of it failing for
successive inputs. Similarly, in applications that operate on
demand similar types of demands often tend to occur close

together, which can also result in a series of related software
runs.

Most software reliability models assume that software
is tested by randomly selecting test cases throughout the
input space. However, in practice this assumption may not
be true. For example, test cases may be grouped by high
level functionality or even by requirements. In such cases,
a series of related (not independent) tests are run. Further,
testing is usually conducted in such a way to increase the
effectiveness, leading to detection of as many faults as
possible. Thus, once a failure is observed a series of related
tests are often run in order to help isolating the cause of
failure.

Another reason that may lead to stochastic dependence of
successive software runs is related to the extent to which
the internal state of a software has been affected and on the
nature of operations undertaken for execution resumption
(i.e., whether or not they involve state cleaning) [8].

To summarize, the assumption of independence of suc-
cessive software runs may be violated in many practical
situations. As a result, if a software failure occurs there is
likely an increased chance that another failure will occur
shortly there after. We say that software failures occur in
clusters if failures have tendency to occur in groups, that is,
if the times between successive failures are short for some
periods of time and long for other periods of time.

In this paper we propose a generalization of our previous
work on modeling a sequence of dependent software runs
[5] to include higher order Markov chains. It should be
noted that while the probability theory of Markov chains
has been extensively developed, relatively little attention
has been paid to statistical inference concerning Markov
chain models, both in general and in software reliability
estimation in particular. This is no surprise since the theory
is elegant, whereas statistical inference is generally more
difficult mathematically and also gives rather “messy” cal-
culations in practice [1]. In this paper we present empirical
analysis based on three software applications. We first use
two statistical approaches to identify the order of the Markov
chain. Then, we illustrate the effect of dependent software
runs on the estimates of software reliability.

The remainder of this paper is organized as follows.
The related work is presented in section II. The software

20th International Symposium on Software Reliability Engineering

978-0-7695-3878-5/09 $26.00 © 2009 IEEE

DOI 10.1109/ISSRE.2009.24

21

reliability models capable of accounting for dependency
among successive software runs are presented in section III,
followed by the description of statistical methods used for
testing the order of the Markov chain model given in
section IV. The experimental setup and the case studies are
described in section V. The empirical results are presented
in section VI. Finally, the concluding remarks are given in
section VII.

II. RELATED WORK

Software reliability models are used to both quantify the
current reliability and predict future reliability. The assump-
tion that successive software failures are independent is a
standard assumption that applies to each software reliability
growth model presented in [4]. According to [7] one of
the reasons “Why conventional reliability theory fails” for
software is that the runs are not always independent.

Failure correlation has not been explored extensively in
the literature. In fact, to the best of our knowledge there
are only a few published papers on the topic. The Fourier
series model proposed in [2] can be used for analyzing
clustered failure data, especially those with cyclic behavior.
The Compound-Poisson software reliability model presented
in [10] considers multiple failures that occur simultaneously
in bunches within a specified time. Modeling the correla-
tion between successive executions of the software fault-
tolerance technique based on recovery blocks was presented
in [11].

This paper builds on our previous work which proposed a
software reliability modeling framework capable of incorpo-
rating the possible dependence among successive software
runs [5]. Markov renewal process (MRP) formulation al-
lows the model to be constructed in two stages. First, the
outcomes (i.e., pass/fail) of successive software runs are
used to construct a Discrete Time Markov Chain (DTMC)
model. Then, considering the execution times of the software
runs a model in continuous time is built. The result is a
Semi Markov Process (SMP) which describes both failure
and execution behavior. The model naturally introduces
dependence among successive software runs, that is, the
independence among software runs is a special case of the
proposed model.

The work presented in [5] was generalized in [3]. Follow-
ing the same approach based on Markov renewal processes,
authors in [3] considered more than one type of failure,
as well as the cases of restarting with repair and without
repair. Neither our previous work [5] nor the generalization
presented in [3] addressed the statistical inference of the
proposed models and did not include empirical studies based
on real software applications.

In this paper we focus on the generalization and empirical
evaluation of the discrete time Markov model which rep-
resents the outcomes of a sequence of dependent software
runs. Incorporating the software execution behavior through

the distribution of software run’s execution time, although
fairly straightforward, is left as a future work.

III. MODELING DEPENDENT SOFTWARE RUNS

We start this section with introducing the notation and the
basic definitions. Then, for completeness, we present a brief
summary of our previous work which models a sequence
of dependent software runs by a first order Markov chain
in which the probabilities of the outcome of different runs
depend only on the immediately preceding run. Then, we
propose a generalization consisting of second and higher
order Markov models.

Note that throughout the paper it is assumed that we have
a steady-state behavior so that the probabilities of a software
run passing or failing do not change with time. In statistical
terms this means that the sequence of events is considered
to be a stationary process.

A. Definitions and notation

The outcome of each software run can be treated as a
binary random variable such that 0 represents a successful
execution and 1 represents a failed execution. Let P (i)
denote the probability of outcome i (i = 0, 1). Let P (i, j)
denote a joint probability that in two successive runs the
first outcome is i and the second outcome is j. Similar
definition applies for P (i, j, k) and other higher level joint
probabilities.

The probability of observing an outcome j given that the
previous outcome was i is called a transition probability
and is denoted by P (j|i). Note that textbooks and articles
on stochastic processes usually denote the transition proba-
bilities by pij [12]. In this paper, in addition to the standard
pij notation, to avoid confusion we also use the conditional
probability notation P (j|i) in some places.

The successive events are independent if the transition
probabilities do not depend on the preceding event, in which
case P (j|i) = P (j), for all i, j, which leads to P (i, j) =
P (i)P (j|i) = P (i)P (j), for all i, j.

If the independence model is not valid, a simple alter-
native for modeling a sequence of runs is a stationary first
order Markov chain in which the probabilities of a different
events depend on the immediately preceding event, but not
on earlier events. Let P (k|i, j) denote the conditional proba-
bility of observing an outcome k, given that the previous two
outcomes were i and j. Thus, P (k|i, j) actually represents
another notation for the transition probability p ijk. The
sequence of events can be modeled with a first order Markov
chain if P (k|i, j) = P (k|j), for all i, j, k.

If a Markov chain of any order is assumed to be an
appropriate model for a sequence of events, then the ob-
served frequencies of different sequences may be used to
estimate different probabilities and to determine the order
of the Markov chain.

22

Let ni denote the observed frequency of outcome i. Let
nij denote the observed frequency of pairs of events in
which outcome i is followed by outcome j. A similar
definitions can be introduced for n ijk and so on. It follows
that the total number of software runs is N1 =

∑
i ni and

the total number of pairs is N2 =
∑

i,j nij and so on. We
assume that software runs come in one sequence, in which
case N1 = N2 + 1 = N3 + 2 = . . . since the total number
of runs is greater than the total number of pairs, which in
turn is greater than the total number of triplets and so on.

In the statistical tests we need the marginal frequencies
for which we use the notation in which a dot in the suffix
implies summation over that suffix. For example, the number
of pairs that start with outcome i is given by ni. =

∑
j nij

while the number of triplets that finish with outcome k is
n..k =

∑
i,j nijk

B. First order Markov model

The simplest generalization of a sequence of independent
software runs is to consider that the probability of a specific
run passing or failing depends only on the outcome of the
previous run. Let Zm be a binary valued random variable
that represents the outcome of the mth trial, such that
0 represents a successful execution and 1 represents a
failed execution. The sequence of dependent Bernoulli trials
{Zm; m ≥ 1} defines a first order discrete time Markov
chain shown in Figure 1, which has two states: 0 and 1
regarded as success and failure, respectively. Its transition
probability matrix is given by

P =
[

p00 p01

p10 p11

]
, 0 ≤ pij ≤ 1;

∑
j pij = 1. (1)

0 1

p00 p11p01

p10

Figure 1. First order Markov model

The probability p01 = P (1|0) (p11 = P (1|1)) is the
conditional probability of failure on a software run given
that the previous run has succeeded (failed). It can be shown
that the unconditional probability of failure on the (m+1)st
run is given by [5]:

P{Zm+1 = 1} = p01 + (p11 − p01) P{Zm = 1}. (2)

In the special case where p01 = p11, Figure 1 actually
represents a sequence of independent Bernoulli trials. Equa-
tion (2) reduces to P{Zm+1 = 1} = p01 = p11, which
simply means that the failure probability does not depend
on the outcome of the previous run. In other words, each
run has independent probabilities of succeeding or failing.

On the other hand, when p01 �= p11 the DTMC describes
a sequence of dependent Bernoulli trials which accommo-
dates dependence among successive executions. In this case
the outcome of the software execution (success or failure)
depends on the outcome of the previous run as in equation
(2).

The relation between the conditional probabilities shows
the presence or the lack of failure clustering. Specifically, if
p11 > p01, successive software runs are positively correlated,
that is, if a failure occurs in mth run, there is an increased
chance that a failure will occur in (m+1)st run. Obviously,
this leads to failures clustering. Now consider the case when
p11 < p01, that is, successive software runs are negatively
correlated. In this case, if a software failure occurs in mth
run, there is an increased chance that a success will occur
in the next run, and so there is a lack of clustering.

The boundary cases when p00 = p11 = 1 or p00 = p11 =
0 are excluded from the analysis since they are trivial, with
no practical interest. This implies that the DTMC in Figure 1
is irreducible and aperiodic [12].

As described earlier p01 and p11 are conditional probabil-
ities of failure, given that the previous run has succeeded
and failed, respectively. Of interest here is to derive the
unconditional probability of failure per run θ, which in this
case is equal to the probability P (1) that the Markov chain
is in state 1. Since for a stationary chain P{Zm+1 = 1} =
P{Zm = 1} = θ from (2) it follows that

θ = P (1) =
p01

p01 + (1 − p11)
=

p01

p01 + p10
. (3)

Of course, the same solution can be derived by solving the
Markov chain defined by transition probability matrix (1).

C. Higher order Markov models

More generally the probabilities of the outcomes of differ-
ent runs may depend on the r preceding events, that is, can
be modeled with an rth order Markov chain. Any Markov
chain of order r with c possible states can be regarded as a
Markov chain of first order with cr possible states specified
by the set of r consecutive values of the original variable.
Thus, in case of a sequence of software runs with two
possible outcomes (c = 2) representing failure and pass,
the second order Markov chain (r = 2) can be represented
with first order chain with four states ((00), (01), (10) and
(11)) and transition probability matrix given by:

P =

⎡
⎢⎢⎣

p000 p001 0 0
0 0 p010 p011

p100 p101 0 0
0 0 p110 p111

⎤
⎥⎥⎦ (4)

where 0 ≤ pijk ≤ 1 and
∑

k pijk = 1.
In a second order Markov chain each event depends on the

two immediately preceding events. Thus, p ijk = P (k|ij) in
(4) denotes the conditional probability that the outcome k is

23

observed, given the previous outcomes were i and j, that is,
the transition probability from state (ij) to state (jk) in the
first order representation of the second order Markov chain.
The state transition diagram which represents the second
order Markov chain is presented in Figure 2.

00 01

p000 p001

p010

10 11

p011

p111

p110p101

p100

Figure 2. Second order Markov model

The unconditional probability of failure in any run in the
case of the second order Markov chain is

θ = P (01)+P (11) =
p001(p011 + p110)

p001(p011 + p110) + p110(p001 + p100)
(5)

It should be noted that in case when P (k|ij) = P (k|j) (i.e.,
p001 = p101 and p011 = p111) the second order Markov
chain reduces to a first order Markov chain in which case
(5) reduces to (3).

In general, a sequence of software runs with rth order
dependence can be modeled with r order Markov chain.
Due to lack of space the corresponding equations are not
presented in the paper, although they are used for estimation
of the unconditional failure probability for one of the case
studies in section VI.

IV. TESTS FOR THE MARKOV CHAIN ORDER

In practice the appropriate model for a given sequence of
software runs is usually unknown and has to be determined
from the data. In this section we present two methods for
testing whether the successive software runs are indepen-
dent, or if an output of a run is affected by one or more
of its immediately preceding runs [1]. The first method is
based on comparing the observed and expected frequencies
of different sequences and performing a χ2 goodness-of-fit
test, while the second method is based on the information
theory.

A. Tests based on χ2 goodness-of-fit

The first step is to test the data for independence. For that
purpose we compute the frequency of different pairs of runs.
If the successive runs are independent, the expected number
of times outcome i is followed by outcome j in total of N2

pairs is given by

eij = N2P (i, j) = N2P (i)P (j). (6)

In order to compare this with observed frequency n ij we
estimate the values of P (i) and P (j) as P̂ (i) = ni./N2 and

P̂ (j) = n.j/N2, which when substituted in (6) leads to

êij = ni.n.j/N2. (7)

The estimated values of eij are then compared with the
observed frequencies nij by means of χ2 goodness-of-fit
test. If the assumption of independence is correct then

χ2 =
∑
i,j

(nij − êij)2

êij
(8)

is approximately a χ2 random variable with one degree of
freedom1. Two comments are in order here. The approxima-
tion of (8) with χ2 distribution is better for larger sample
sizes. In addition, for the approximation to apply the values
of the expected frequencies should be reasonably large. In
judging ‘reasonably large’ it has been suggested to use the
same criteria as in the case of testing independence in a
contingency table: less than 20% of the expected values
should be smaller than 5 and none should be less than 1
[1].

If the observed value of the test statistics is not sig-
nificantly large then there is a good agreement between
the observed frequencies nij and expected frequencies êij .
Specifically, if the value of the statistics (8) is smaller than
the critical value of the χ2 distribution for one degree of
freedom and α level of significance (i.e., χ2 < χ2

1;α) then
the independence assumption cannot be rejected. Otherwise,
the independence assumption is rejected and the next step is
to test if the first order Markov chain is an adequate model.

The statistical test for the first-order Markov chain is a
straightforward generalization of the test of independence;
it compares the observed frequencies n ijk of all possible
triplets (i.e., 000, 001, 010, . . .111) with the expected fre-
quencies eijk calculated based on the assumption that the
process can accurately be represented by a first order Markov
chain.

If successive observations can be accurately represented
with a first order Markov chain, the expected number of
times outcome i is followed by outcome j which is then
followed by outcome k is given by

eijk =
∑
i,j,k

nijkP (i, j, k) =
∑
i,j,k

nijkP (i, j)P (k|i, j)

=
∑
i,j,k

nijkP (i, j)P (k|j). (9)

The probabilities P (i, j) and P (k|j) may be estimated from
the triplets nijk as:

P̂ (i, j) = nij./N3 (10)

P̂ (k|j) = njk./nj.. (11)

It follows that
êijk = nij.njk./nj.. (12)

1In general, the degree of freedom for c different outcomes is (c− 1)2.

24

The goodness-of-fit test statistics

χ2 =
∑
i,j,k

(nijk − êijk)2

êijk
(13)

has been shown to be asymptotically a χ2 random variable
with c(c − 1)2 degrees of freedom if a first order Markov
chain is appropriate. In our case, c = 2 so the χ2 distribution
has two degrees of freedom.

The same procedure can be used to test for higher order
dependencies. It should be noted, however, that the χ 2

approximation gets poorer as the order increases. The reason
behind this is the fact that the number of possible sequences
of length p given by cp increases and many of them may
have zero frequencies, even for a quite large sample size.
However, when the number of outcomes is small (two as in
our case or possibly three), the χ2 goodness-of-fit test can
be used up to about third order dependency or even higher,
depending on the amount of data available [1].

When the χ2 approximation is invalid one can look at a
few observed sequences and compare them by eye with the
theoretical expected frequencies. An alternative, more useful
approach is to use the information theory as described next.

B. Tests based on information theory

The amount of information associated with an event which
has probability p can be measured by log(1/p) = − log p.
(The logarithmic base is 2.) With c outcomes, having respec-
tive probabilities P (i), the average amount of information,
often called entropy or average uncertainty, is given by

H = E[− log p] = −
∑

i

P (i) log P (i). (14)

The maximum value of H is log c (in our case log 2 =
1) and this occurs when the outcomes are equally probable
for all i. The estimate Ĥ1 is obtained by substituting the
estimate P̂ (i) = ni/N1 in equation (14).

In order to test whether the successive events are indepen-
dent, Ĥ1 may be compared with the estimate of the average
uncertainty for pairs of software runs, which is given by

H(pairs) = −
∑
i,j

P (i, j) log P (i, j) (15)

If the successive runs are independent then H(pairs) = 2H1.
Otherwise, H1 < H(pairs) < 2H1. It appears that it is the
difference between H(pairs) and H1 which measures the
conditional uncertainty about an event given the preceding
event:

H2 = H(pairs) − H1. (16)

The estimate Ĥ(pairs) is obtained using P̂ (i, j) = nij/N2.
Since it is unadvisable to mix frequencies obtained from
sequences of different length, for the estimate of H1 in
equation (16) the estimate P̂ (i) = ni./N2 is substituted in
(14).

Similar procedure is followed for higher order depen-
dencies. For example H3 = H(triples) − H(pairs). The
sequence H0 = log c, H1, H2, . . . is a decreasing sequence
which measures the conditional uncertainty for each order
of dependence. The difference between the successive values
of Hi, given by Ti = Hi − Hi+1, measures the amount of
information gained by basing the predictions on the previous
i runs rather than on the previous (i−1) runs. Thus, at each
stage the question arises as to whether

T̂i = Ĥi − Ĥi+1 (17)

is significantly large. In fact, if Ĥi and Ĥi+1 are both
estimated from the frequencies of sequences of length (i+1),
then it can be shown that the statistics

2 · ln 2 · Ni+1 · T̂i (18)

is the same as the likelihood ratio test statistics for testing
the null hypothesis that the sequence of events is an (i−1)th
order Markov chain. Thus, the information theory statistics
(18) is asymptotically χ2 distributed with the following
degrees of freedom:

i Degrees of freedom
0 c − 1
1 (c − 1)2

≥ 2 ci−1(c − 1)2
(19)

This also means that we can expect a significance test on
T̂i to have the same disadvantages as the χ2 goodness-of-fit
test with respect to the χ2 approximation not being valid
for higher order Markov chains, especially if the number of
outcomes is large and/or the sample size is small.

However, even when the χ2 approximation is not valid,
the values of conditional uncertainty Ĥi lead to a greater
understanding of the problem and provide a valuable visual
aid in determining the appropriate model for the observed
sequence. When the values of Ĥi are plotted against i
it is often possible to see the point at which Ĥi starts
to decrease relatively slowly and hence to ascertain the
order of dependency. In that regard, the graphical approach
based on the sequence of conditional uncertainties Ĥi is
complementary to and often more reliable than a series of
significance tests based on the χ2 approximation.

V. EXPERIMENTAL SETUP AND CASE STUDIES

The experimental setup used for our research is presented
in Figure 3. The baseline experiment is to run the test cases
in a order given in the original regression test suite or other
available test pools (the left branch in Figure 3).

One of our goals is to test whether the order of running
the test cases affects the outcome of each individual run
(i.e., pass and fail), which typically is due to the existence
of an internal state that (in addition to the input) affects the
output of a software execution. Therefore, we first parse the

25

Test for first & higher
order Markov chains

Test for independence
of successive test cases

[Fails]

Run the provided test
suite in the original order

Compare the outputs of the
original & reordered test suites

Reorder test cases
using random sampling

Run the reordered
test suite

Estimate software
reliability

[Passes]

Figure 3. Experimental setup

original test suite and extract the individual test cases. Next,
we run 30 test suites, each with the test cases rearranged
in a different random order (the right branch in Figure 3).
Any change in the outcome (i.e. pass in original test suite
becomes a failure in the reordered test suite) shows that the
outcome depends on the order of execution due to an internal
state which is not reset between test runs.

For the test suite with the original order of the test cases
and randomly reordered test suites we use the statistical tests
for the order of the Markov model described in section IV.
Finally, after selecting the appropriate model, we estimate
the probability of failure (i.e., the software reliability).

It should be noted that the above described process was
automated to the largest possible extent.

A. Description of the case studies

For empirical evaluation of the assumption of indepen-
dence and studying the effect of dependent software runs
on failure probability (i.e., software reliability) we use four
case studies based on three real software applications: Indent
[15], GCC [14] and Space [16].

We chose the open source applications Indent and GCC
since regression test suites are available with each release of
these applications, including drivers to automatically run the
test suites and checkers that compare the outputs of the test
cases to the expected results. The drivers and the checkers
play the role of a test oracle in our studies.

The experimental setup for the open source programs
Indent and GCC was similar – we used the regression test
suite of a newer version to test an older version, which
enables more failures to happen. Special care was taken to
exclude test cases designed to test features implemented in
newer versions. For both applications we ran the test cases in
the order given by the developers. The basic facts of Indent
and GCC are as follows:

• Indent is a C code beautifier which changes the ap-
pearance of C programs [15]. The release considered in
this paper (2.2.0) has around 11,000 lines of code (with
around 5,900 lines of non-comment code). We ran the
158 test cases available in the regression test suite of
Indent version 2.2.9 on version 2.2.0. After removing
the test cases not intended for testing the version 2.2.0
we were left with 152 test cases in the regression test
suite, out of which 27 failed.

• GCC C compiler is a part of the GNU Compiler
Collection [14]. The release considered in this paper
(3.2.3) has over 300,000 lines of code. We ran the
regression test suite designed to test the C pre-processor
(CPP) part of GCC release 3.3.3 to test GCC 3.2.3.
After removing the test cases not intended for testing
the version 3.2.3 the regression test suite consisted of
2,424 test cases, out of which 158 failed.

Our third case study, Space, is an interpreter for an array
definition language (ADL), used within a large aerospace
application. The source code and test cases for Space were
downloaded from [16]. The program consists of over 6200
lines of non-comment code. There are 33 versions of Space
available at [16], each containing a single fault which was
discovered during development and testing. The test suite
for Space available at [16] was constructed in two stages.
The first 10,000 test cases were randomly generating test
cases for the study [13]. Additional test cases were added
by the authors of [9] until each executable statement or edge
in the control-flow graph was exercised by at least 30 test
cases. The total number of test cases used in our study is
13,5552. In this study we experimented with two versions:
Space A with one fault and Space B with five faults. We ran

2We have omitted the last 30 test cases which all seem to be testing what
happens when given one parameter does not name an existing file.

26

the same test suite of 13,555 test cases in the order given at
[16] on both Space A and Space B vesrions. The number of
failed test cases was 709 for Space A and 2,369 for Space
B.

It should be noted that the regression test suites of Indent
and GCC or the test suite available for Space represent
one possible operational profile, which is not necessarily
representative of the real usage of these programs. This
fact, however, does not limit the validity of our results since
our goal is to illustrate and validate empirically the theory
for assessing software reliability in case when successive
software runs are dependent, rather than to estimate the
reliability as seen by the users.

VI. EMPIRICAL RESULTS

The experimental setup proved that none of our case
studies has an internal state that can, in addition to the input,
affect the outcome (i.e., pass or fail) of a software run. Thus,
the outcome of each individual run was the same, regardless
of the order in which test cases were run. Furthermore, the
hypothesis that the successive software runs are independent
cannot be rejected at significance level of 0.05 for the
randomly reordered test suites for all case studies.

Next, we present the detailed empirical results for the four
case studies, with sequences of test cases ran in the original
order provided by the developers or other researchers.

A. Analysis of Indent

We start our presentation of the results with Indent. The
value of χ2 statistics for the test of independence given by
equation (8) is 11.70140. Since this value is greater than
the critical value χ2

1;0.05 = 3.84146 the null hypothesis of
independent software runs is rejected.

Based on the frequencies of sequences with length three,
and using the equation (13) we get χ2 = 0.17504 which
is smaller than the critical value χ2

2;0.05 = 5.99146. This
means that the null hypothesis that the sequence of software
runs can be modeled with a first order Markov chain cannot
be rejected at significance level of 0.05, that is, the model
shown in Figure 1 is an appropriate model for the sequence
of test cases in the regression test suite of Indent.

The same conclusion can be reached based on the infor-
mation theory approach. Based on the frequencies of the
sequences with length three, the estimates of Hi, T̂i =
Ĥi − Ĥi+1, statistics 2 ln 2 · Ni+1T̂i, and the critical value
χ2

df ;0.05 for degrees of freedom (df) given in (19) are given
in Table I. Since the value of the statistics 2 ln 2 · N3T̂2 =
0.17467 is smaller than the critical value χ2

2;0.05 = 5.99146
the hypothesis that the sequence of software runs can be
modeled by a first order Markov chain cannot be rejected.
Note that H4 cannot be estimated since the sequence 1101
has not been observed (i.e., its corresponding probability is
0), which means that T̂3 = Ĥ3 − Ĥ4 and the corresponding

statistics cannot be computed. These are annotated with ‘–’
in the Table I.

As it can be seen in Figure 4 which plots the values of
the conditional uncertainty Hi for i = 1, 2, 3, there is a big
drop from Ĥ1 to Ĥ2 indicating that the average conditional
uncertainty when the previous outcome is known is relatively
small, that is, the first order Markov chain models well the
sequence of Indent runs which confirms the results of the
χ2 tests.

i Ĥi T̂i = Ĥi − Ĥi+1 2 ln 2 · Ni+1T̂i χ2
df ;0.05

1 0.68008 0.04727 9.89578 3.84146
2 0.63280 0.00084 0.17467 5.99146
3 0.63196 – – –

Table I
TESTS BASED ON INFORMATION THEORY FOR INDENT

0.50

0.55

0.60

0.65

0.70

1 2 3

Hi

i

Figure 4. Conditional uncertainty of Indent

Next, we estimate the parameters of the first order Markov
chain and discuss the effects of dependent software runs on
estimate of software reliability. The estimate of the transition
probabilities, again based on sequences of length three, are
given by P̂ (j|i) = p̂ij = nij./ni... The corresponding
transition probability matrix P given by (1) then becomes

P =
[

0.86992 0.13008
0.59259 0.40741

]
. (20)

As discussed in section III-B since p11 = 0.40741 >
p01 = 0.13008 the runs are positively correlated. Thus, the
probability of failure when the previous run has failed p 11 =
0.40741 is over three times larger than the probability of
failure when the previous run has succeeded p01 = 0.13008.
We estimate the unconditional probability of failure per
execution θ = 0.18000 using equation (3). The fact that
p11 > θ (i.e., 0.40741 > 0.18000) shows that failures tend
to cluster, i.e., the probability of a failure given a failure
occurred in the previous execution p11 is 2.26 times greater
than the unconditional failure probability θ. This observation
is very important when the goal is to predict one or multiple
step probability of observing a given outcome (i.e., pass or
fail) of a software run.

Further, the independent model which leads to θ ind =
0.17763 underestimates the failure probability compared to
the result provided from the dependent model θ = 0.18000,

27

that is, the independent model provides an optimistic esti-
mate of the software reliability.

B. Analysis of GCC

Using the tests based on comparing the observed and
expected frequencies of sequences in case of GCC rejects
the independent model, as well as the first and second order
Markov chain models since, as it can be seen from Table II,
in each of these cases the estimate of χ2 statistics is greater
than the corresponding critical value at 0.05 significance
level χ2

df ;0.05.
The null hypothesis that the sequence of software runs

can be modeled by a third order Markov chain cannot be
rejected based on the results presented in the last row in
Table II. It should be noted, however, that 12 out of 32
expected frequencies are smaller that 5, which exceeds the
20% recommendation given in [1]. In this case, as in general,
the χ2 approximation may not be valid when the values of
expected frequencies are not reasonably large, which often
happens when testing for higher order dependency.

This case study is a good illustration for using the
information theory approach to support the hypothesis that
a higher order Markov chain is a good model for a sequence
of software runs. Based on the estimates given in Table III
the hypotheses that the independent model and the first
and second order Markov chains are adequate models are
rejected. This approach does not allow us to test the third
order model since H5 cannot be estimated due to the fact
that the probability of observing the sequence 11101 is zero
(i.e., no such sequence has been observed in our sample).

However, when the values for Hi are plotted against i
one can notice that there is a big drop from Ĥ1 to Ĥ2,
as well as from Ĥ2 to Ĥ3. The drop from Ĥ3 to Ĥ4 is
one magnitude lower which indicates that the increase of
the order beyond the third order is unlikely to have any
practical significance. Thus, the graphical approach based on
the information theory also supports the third order model.

Based on the sequences of length five, the transition
probabilities pijkl = P (l|ijk) are estimated as p̂ijkl =
nijkl./nijk.., which leads to the transition probability matrix
given by (21). The unconditional probability of failure at any
software run θ = P (001) + P (011) + P (101) + P (111) =
0.06413, is slightly lower that θind = 0.06518. It appears
that in case of GCC the independence assumption leads to
underestimating the software reliability. The reason behind
this phenomenon is the fact that the conditional probability
of a passing run P (0|ijk) is greater than the conditional
probability of a failure P (1|ijk) (i.e., pijk0 > pijk1) for all
sequences ijk except for the sequence 111 (see the transition
probability matrix (21)).

C. Analysis of Space A

Space A is a version of Space program with one fault
(number 24). Based on the comparison of the observed and

Model χ2 χ2
df ;0.05

Independent 213.98101 3.84146
First order 48.86036 5.99146
Second order 16.14053 9.48773
Third order 10.08294 15.5073

Table II
RESULTS BASED ON χ2 TESTS FOR GCC

i Ĥi T̂i = Ĥi − Ĥi+1 2 ln 2 · Ni+1T̂i χ2
df ;0.05

1 0.34799 0.03792 127.37602 3.84146
2 0.31007 0.01161 38.97881 5.99146
3 0.29846 0.00474 15.92001 9.48773
4 0.29372 – – –

Table III
TESTS BASED ON INFORMATION THEORY FOR GCC

0.20

0.25

0.30

0.35

0.40

1 2 3 4

Hi

i

Figure 5. Conditional uncertainty of GCC

expected frequencies χ2 = 0.02501, which is smaller than
the critical value χ2

1;0.05 = 3.84146. This means that at 0.05
significance level we cannot reject the hypothesis that the
sequence of runs of Space A is independent.

The same result is obtained using the information theory
approach. Thus, the value of the statistics 2 ln 2 · N2T1 =
0.02483 is smaller than the critical value χ2

1;0.05 = 3.84146,
which means that null hypothesis that the sequence of
runs is independent cannot be rejected. Even more, as it
can be seen in Figure 6 the values of the conditional
uncertainty Hi are very close, which basically means that
the average conditional uncertainty does not decrease with
the knowledge of one or more preceding events.

The likely reason for this result is the fact that the first
10,000 test cases in the testing suite of Space are randomly
distributed and 654 of total 709 failures are associated
with these 10,000 test cases. In addition, very few of the
remaining 55 failures associated with the last 3,555 test
cases occur in clusters (i.e., close to each other) which
leads to observed frequencies very close to the expected
frequencies under the assumption of independence. The
estimate of the unconditional failure probability of Space
A is θind = 0.05231.

D. Analysis of Space B

Next we present the analysis of the results of a version
of Space with five faults (number 3, 8, 14, 23, and 33).
The results of the χ2 test based on the comparison of the
observed and expected frequencies of sequences are given

28

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.96284 0.03716 0 0 0 0 0 0
0 0 0.78161 0.21839 0 0 0 0
0 0 0 0 0.85000 0.15000 0 0
0 0 0 0 0 0 0.56522 0.43478

0.88636 0.11364 0 0 0 0 0 0
0 0 0.75000 0.25000 0 0 0 0
0 0 0 0 0.86957 0.13043 0 0
0 0 0 0 0 0 0.32258 0.67742

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

0.20

0.25

0.30

0.35

0.40

1 2 3 4

Hi

i

Figure 6. Conditional uncertainty of Space A

Model χ2 χ2
df ;0.05

Independent 936.75542 3.84146
First order 815.92354 5.99146
Second order 462.18663 9.48773
Third order 258.16469 15.50730

Table IV
RESULTS OF THE χ2 TESTS FOR SPACE B

in Table IV. Obviously, the hypotheses that the sequence
of Space B runs is independent or can be modeled with
up to the third order Markov chain are all rejected since
the estimates of the χ2 statistics are much higher than the
corresponding critical values.

The same observation is made using the approach based
on information theory; the estimates of the statistics 2 ln 2 ·
Ni+1T̂i for i = 1, 2, 3, 4 are all much higher than the
corresponding critical values of χ2 distribution with the
appropriate degrees of freedom at significance level 0.05.
Further, as it can be seen from the plot of the conditional
uncertainty Hi shown in Figure 7 there is a noticeable drop
even from Ĥ4 to Ĥ5. We did not run additional tests for
higher order Markov chains since the accuracy of the χ 2

approximation of both test statistics decreases with the order
of the chain and it is considered that the χ2 goodness-of-fit
test can be used up to about third order dependency, even
in case when the number of possible outcomes is small [1].

Space B is an example of a case study for which Markov
chain model of any order may not be an appropriate model.
In this specific case the reason for this result is the way
Space test suite was created, with the first 10,000 tests
randomly selected and the remaining 3,555 test cases added
until each executable statement or edge was exercised by
at least 30 test cases. In particular 1,510 out of the total

0.50

0.55

0.60

0.65

0.70

1 2 3 4 5

Hi

i

Figure 7. Conditional uncertainty of Space B

2,369 failures of Space B were distributed among the first
10,000 test cases. To test our hypothesis that the results are
due to the way Space test cases were arranged in [16], we
ran the tests for the order of the Markov chain model on
the subset of the first 10,000 randomly generated test cases.
The value of χ2 based on the comparison of the observed
and expected frequencies is 0.02354, which is smaller than
the critical value χ2

1;0.05 = 3.84146, leading to conclusion
that at the significance level of 0.05 the assumption of
independence cannot be rejected. The result was confirmed
by the test based on the information theory and the graph of
the conditional uncertainty. This means that the successive
software runs of Space B consisting of the first 10,000 test
cases are independent, with unconditional failure probability
θind = 0.15100.

In other words, the reason the independent and Markov
models up to the third order failed on the whole test pool of
13,555 test cases (see Table IV) was due to the way the
reminding failures (i.e., 859) were distributed among the
3,555 additional test cases. Namely, we identified a large
number of uninterrupted sequences of failures, likely due to
the fact that these 3,555 test cases were added to improve
the coverage of some statements and edges and thus in
large numbers were triggering same faults. As expected, this
type of behavior could not be modeled as in independent
sequence or Markov model, which was confirmed by the
fact that, when run on the sequence of outputs from 3,555
test cases, the statistical tests rejected the hypothesis of
independence and up to the third order Markov chain,
similarly to the results presented in Table IV.

29

VII. CONCLUSION

In this paper we have addressed the estimation of prob-
ability of failure (i.e., software reliability) when successive
software runs are dependent. The contributions include gen-
eralization of the previous work to accommodate higher
order dependencies and an empirical study based on three
real software applications. We used two different approaches
for testing the order of dependency, one based on the
difference between the observed and expected frequencies
of sequences and the other based on the information theory.
It appeared that the conditional uncertainty, when plotted
for different possible orders of dependency, can be used as
a complementary approach to the two statistical tests, which
is especially useful when testing higher order models for
which the χ2 approximation may not be valid.

A brief summary of the empirical results is as follows:

• The test of independence failed for both open source
case studies: Indent and GCC. The appropriate models
for these two applications are the first and third order
Markov chains, respectively. The good fit likely is due
to the fact that in regression test suites similar test cases
often tend to occur close together, which tend to result
in a series of related software runs. It is interesting
to note that the independence assumption in case of
Indent led to underestimating the unconditional failure
probability, while in case of GCC in overestimating
the unconditional failure probability. In either case, the
conditional probabilities of failure differed significantly
depending on the immediately preceding run in case of
Indent, that is, on the three preceding runs in case of
GCC. This observation is very important, especially if
the goal is to use the model to predict one or multiple
step probability of observing a given outcome (i.e., pass
or fail) of a software run.

• The independence of successive runs was not rejected
for Space A case study, which basically has a small
number of failures, mainly distributed among the part of
the test pool consisting of a large number of randomly
selected test cases. On the other side, the independence
and Markov chain models up to the third order were
rejected for the Space B case study. Detailed analysis
of the sequence of outputs showed that this results were
due to the way test cases were generated and arranged
in the test pool. The statistical tests on the first part of
the test pool which consisted of randomly generated test
cases showed a good fit with the independence model.
This observation leads to conclusion that researchers
and practitioners should thoroughly explore the data
when conducting empirical studies.

There may be case studies for which Markov chain model of
any order may not be appropriate. Considering other more
complex models of dependency is a topic of our future work.

ACKNOWLEDGMENTS

We thank Arin Zahalka and Jeffrey Zemerick for their help
with data collection. This work was supported by NASA
OSMA SARP grant managed through NASA IV&V Facility
and by the NSF grants CNS-0447715 and CCF-0916284.

REFERENCES

[1] C. Chatfield, “Statistical Inference Regarding Markov Chain
Models”, Applied Statistics, Vol.22, 1973, pp. 7-20.

[2] L. H. Crow, N. D. Singpurwalla, “An Empirically Developed
Fourier Series Model for Describing Software Failures” IEEE
Trans. on Reliability, Vol.R-33, No.2, June 1984, pp.176-183.

[3] Y-S. Dai, M. Xie and K-L. Poh, “Modeling and Analysis of
Correlated Software Failures of Multiple Types”, IEEE Trans.
on Reliability, Vol.54, No.1, Mar. 2005, pp. 100-106.

[4] W. Farr, “Software Reliability Modeling Survey”, in Hand-
book of Software Reliability Engineering, M. R. Lyu (Ed.),
McGraw-Hill, 1996, pp. 71-117.

[5] K. Goseva-Popstojanova and K. S. Trivedi, “Failure Cor-
relation in Software Reliability Models”, IEEE Trans. on
Reliability, Vol.49, No.1, Mar. 2000, pp. 37-48.

[6] K. Goseva-Popstojanova, M. Hamill and X. Wang, “Ade-
quacy, Accuracy, Scalability, and Uncertainty of Architecture-
based Software Reliability: Lessons Learned from Large Em-
pirical Case Studies”, 17th Int’l Symp. on Software Reliability
Engineering (ISSRE 2006), Nov. 2006, pp. 197-203.

[7] D. Hamlet, “Are We Testing for True Reliability?”, IEEE
Software, July 1992, pp. 21-27.

[8] J. Laprie and K. Kanoun, “Software Reliability and System
Reliability”, in Handbook of Software Reliability Engineer-
ing, M. R. Lyu (Ed.), McGraw-Hill, 1996, pp. 27-69.

[9] G. Rothermel, R. H. Untch, C. Chu and M. J. Harrold,
“Prioritizing Test Cases for Regression Testing”, IEEE Trans.
on Software Engineering, Vol.27, No.10, 2001, pp. 929-948.

[10] M. Sahinoglu, “Compound-Poisson Software Reliability
Model”, IEEE Trans. on Software Engineering, Vol.SE-18,
No.7, July 1992, pp. 624-630.

[11] L. A. Tomek, J. K. Muppala and K. S. Trivedi, “Modeling
Correlation in Software Recovery Blocks” IEEE Trans. on
Software Engineering, Vol.19, No.11, 1993, pp. 1071-1086.

[12] K. S. Trivedi, Probability and Statistics with Reliability,
Queuing and Computer Science Applications, John Wiley &
Sons, New York, 2002.

[13] F. I. Vokolps and P. G. Frankl, “Empirical Evaluation of
the Textual Differencing Regression Testing Technique”, Int’l
Conf on Software Maintenance, Nov. 1998, pp. 44-53.

[14] http://gcc.gnu.org/

[15] http://www.gnu.org/software/indent/indent.html

[16] http://sir.unl.edu/portal/index.html

30

