
Empirical Evaluation of Factors Affecting Distinction Between Failing and Passing
Executions

Arin Zahalka, Katerina Goševa-Popstojanova, Jeffrey Zemerick
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506, USA
{azahalka, jzemeric}@mix.wvu.edu, katerina.goseva@mail.wvu.edu

Abstract—Information captured in software execution pro-
files can benefit verification activities by supporting more cost-
effective fault localization and execution classification. This
paper proposes an experimental design which utilizes execution
information to quantify the effect of factors such as different
programs and fault inclusions on the distinction between passed
and failed execution profiles. For this controlled experiment
we use well-known, benchmark-like programs. In addition to
experimentation, our empirical evaluation includes case studies
of open source programs having more complex fault models.
The results show that metrics reflecting distinction between
failing and passing executions are affected more by program
than by faults included.

I. INTRODUCTION

In-house pre-release testing often involves running a large
collection of tests as part of the process of uncovering
faults. In the early stages when software still contains a
multitude of faults, a large number of tests may fail of
which many can be non-crashing, and therefore not obvious
failures. In the absence of an oracle, whether a test fails
or passes may require manual inspection, which for very
large test suites can become very cumbersome and time-
consuming. Regression testing may also share some of the
same difficulties: regression test suites often grow very
large over many releases. To further exacerbate the process,
debugging the failures observed is also time-consuming and
difficult. Thus, automating any part of the testing and bug-
fixing process can save a great deal of time and effort.
Some of the work conducted in automating the testing pro-

cess involves leveraging dynamic control flow information.
Different types of control flow have been utilized to priori-
tize and minimize test suites [8], [11], classify executions as
passed or failed [2], [10], [7], classify failed executions by
fault [18], [15], and identify possible fault locations in source
code [13], [12], [19], [23], [3]. The methods and approaches
proposed in these studies, either explicitly or implicitly,
rely, at least in part, on the assumption that the distinction
between a failed and a passed execution is reflected in the
control flow. The empirical results of some studies indicate
in a qualitative way that “failures often have unusual profiles
that are revealed by cluster analysis” [5], [6], while other
studies present accurate pass/fail classification of executions
using control flow profiles [2], [10].

Motivated by the assumption that control flow profiles
reflect some degree of distinction between failed and passed
executions, this study explores the behavior of this dis-
tinction under specific factors. In particular, we employ a
two-factorial design where we treat programs and faults as
the two factors (independent variables) that we manipulate.
This allows us to study the effect of including a various
number of faults. For each program under consideration we
control the number of faults injected into the code and call
this factor the fault-inclusion factor. Note that we do not
control the inherent type or location of faults. Rather, in our
experiments faults are randomly selected from the existing
faults available for each particular program.
Focusing on control flow execution profiles at function

level (as this level of information capture has been shown
to be effective [10], [14], [16]), we use clustering as a natural
way to group similar executions together. We propose a set
of distinction metrics which measure different aspects of
the results of the groupings (i.e., clusters) and use a com-
bination of controlled experimentation and case studies to
explore how these clustering distinction metrics are affected
by varying fault-inclusion levels and/or programs. In this
context, we further refine our main goal with the following
research questions:
RQ1 Do varying programs have varying distinction met-

rics? What is the magnitude of the effect programs
have on distinction metrics and is it statistically
significant?

RQ2 Do increasing fault-inclusion levels per program
affect the distinction metrics? What is the magni-
tude of this effect and is it statistically significant?

RQ3 Do distinction metrics display the same (increasing
or decreasing) trend across different programs as
the fault-inclusion levels per program increase?

The main contributions of this paper include:
• We propose a set of metrics which provide different
views on the clusters of program execution profiles
and collectively allow us to quantify and compare the
extent to which execution profiles of failed test cases
are distinct from the execution profiles of passed test
cases. It should be noted that these metrics are general,
as they do not depend on the type or granularity of the

2010 21st International Symposium on Software Reliability Engineering

1071-9458/10 $26.00 © 2010 IEEE

DOI 10.1109/ISSRE.2010.44

259

2010 IEEE 21st International Symposium on Software Reliability Engineering

1071-9458/10 $26.00 © 2010 IEEE

DOI 10.1109/ISSRE.2010.44

259

profile, nor do they depend on the clustering method.
• We develop an experimental framework based on a
well-defined experimental design that can be used with
different execution profiles, clustering techniques, and
response variables. Exploring our research questions by
means of formal experimental design allows us (1) to
control the factors with an explicit goal to distinguish
between the influence of different programs and the
influence of their corresponding fault-inclusion levels
on pass/fail clustering distinction; (2) to assess quan-
titatively the contribution of each factor on pass/fail
distinction; and (3) to conduct the analysis and evalu-
ation in a statistically sound context, including testing
the statistical significance of the results.

• To the best of our knowledge, this is the first study
to systematically explore and quantify the pass/fail
distinction of clustering function level control flow
profiles under varying fault-inclusion levels. This aspect
of our work, at least partially, was motivated by several
earlier studies (e.g., [10], [13]) indicating multi-fault
versions may degrade the results of proposed methods
compared to single-fault versions of the same program.

• Our empirical investigation combines a controlled ex-
periment with case studies based on two open source
programs. Both case studies have more complex fault
models and one of them is significantly larger than the
programs used as experimental objects. This allows us
to gauge the distinction between failing and passing ex-
ecutions in more complex settings and on a larger scale,
which typically is not feasible in controlled experiments
either because it is associated with an excessive cost or
because there is a lack of information to allow the level
of control required by experimentation.

The rest of this paper is organized as follows. Related
work is presented next. In section III we introduce the
notation and proposed distinction metrics. Details of the
experimental design are presented in section IV, followed by
a description of the empirical objects in our study. Section VI
presents the analysis of our results, and section VII presents
the threats to validity. Section VIII concludes the paper.

II. RELATED WORK

There has been much work capitalizing on control flow
execution events. One area is fault localization. The Taran-
tula fault-debugging visualization system [13] utilizes the
differences between the control flows of failed and passed
executions to rank suspicious parts of a program. Taran-
tula was tested on single-fault versions and multiple-fault
versions of the Space program (∼6K LOC, with injected,
real faults). Results with multiple faults (up to five) showed
decreased effectiveness. The study in [24] also experimented
with multi-fault space versions to determine the effect of
test-suite reduction on fault localization; though, faults were
not the focus. Several other fault localization studies ([19],
[12], [23], among others) have also utilized control flow

and have been compared to Tarantula using the Siemens
software which consists of multiple single-fault versions of
seven programs, each less than 1K LOC.
In [18], control flow at the function level was used to

group together executions failing due to the same fault.
Another study [15] proposed a failure indexing model to
encompass such techniques that find which failures are due
to the same fault. Numerous other studies used control flow
of test executions to help prioritize test cases, usually for
regression testing, so that faults are revealed earlier in the
testing process, including [8], [1], [11].
Another group of studies utilized control flow for execu-

tion pass/fail classification. In [2], control flow information
was used to build Markov models of executions to train a
classifier on single-fault versions of the Space program. In
[10], they found that control flow captured at the coarse
granularity of function visit counts made a ‘near-perfect’
predictor for pass/fail classification. Execution outcomes
of single-fault versions of a medium size program (60K
LOC) were classified with nearly 100% accuracy. However,
multiple-fault versions (two to six faults) had up to 18%
reduced accuracy.
In another group of studies [5], [6], the execution profiles

at various granularities (including function level) and of
various software products (ranging from 3K LOC to 300K
LOC) were clustered. The goal was to leverage the groupings
so as to find failed executions while reducing the number
of total executions examined in the process. It was found
that failures were often located in a different area of the ex-
ecution space than passed executions and that failures were
often each assigned to their own cluster. Based upon these
observations, several test selection methods were proposed
and evaluated. Function-level information was found to be
effective in these studies as well as in subsequent studies
[16]. Our study is close to these studies in that we also
cluster execution profiles with a focus on the way failed
executions cluster. However, our goal is to observe and
measure the extent of distinction between the failed and
passed executions and study the behavior of this distinction
under different fault-inclusions and across programs.
Another aspect of our work is in employing a statisti-

cal experimental design. Software quality assurance studies
incorporating statistical experimental design are relatively
few. Those include several studies focused on test case pri-
oritization, including [8], [1], [11], and on fault localization
[20], [7]. These studies had different goals and none of them
studied faults as a factor.

III. NOTATION AND DISTINCTION METRICS
The main goal of this paper is to quantitatively explore the

behavior of failed executions as reflected in clustering dis-
tinction metrics for different programs and fault-inclusions.
Techniques which depend on a distinction between failed
and passed executions, such as fault localization, failure
indexing, execution classification and test case prioritization,

260260

require three components: dynamic execution profile data,
a way to compare the profiles, and a method to group or
categorize profiles. In [15] techniques that group together
failures arising from the same fault (i.e., failure indexing
techniques) were each represented as an instantiation of
a tuple < F, D, C > – a fingerprinting function F , a
distance function D and a clustering function C. Although
our study has a different objective, the tuple notation fits
well. In this study we instantiate the tuple with function visit
count execution profiles for the fingerprinting function and
Euclidean distance and Hierarchical Agglomerative cluster-
ing for the distance and clustering functions, repectively.
It should be noted that our goal is not to explore the best
failure distinction fingerprinting function, distance metric or
clustering method. Rather, we take one of the commonly
used fingerprinting functions, distance metrics and clustering
methods and study the effect of programs and faults-included
on the resulting clustering distinction metrics. However,
the general experimental framework proposed in this paper
allows any dynamic fingerprinting function, comparison
method, and grouping method to be used to study their
effects on the distinction metrics presented here.

A. Clustering of Execution Profiles
In our study each faulty program version was run on

the Universal Test Suite supplied with that program. In all
experiments, whether or not a test case fails was ascertained
by differencing the output of the fault-free version with
the output of the faulty version. We entered the pass/fail
information as well as the control flow events into a
database. From the database, we extracted the function level
execution profiles for each test case of a faulty version. The
visitcount(V Cjk) of a function k is the number of times it
was explicitly called during execution of a test case j. The
control flow of a test suite is captured by VC = [V Cj] for
j = 1, ..., N test executions.
For each faulty version, we apply clustering to the N test

cases of its VC with the object of separating the Nf failing
execution profiles from the Np passing execution profiles.
Various clustering algorithms exist with no best method
for all situations. We implement Hierarchical Agglomerative
clustering which takes a step-wise approach to grouping,
where each of N execution profiles is initially assigned to
its own cluster. We utilize the often-used Euclidean distance
to calculate proximity of any two profiles and merge into one
cluster the two that are most similar. The agglomeration can
be cut-off at various stages of the merging process. In this
study, the clustering is cut-off where the number of clusters
equals 30% of the program’s test suite size, as in [5], [6].
Once the N test case execution profiles are clustered, each

test case belongs to some cluster Ci. We annotate with nCi

the number of test cases in a cluster Ci. Obviously, nCi
=

pCi
+fCi

where fCi
and pCi

are respectively the number of
failing and passing test cases in a cluster Ci. Clusters can
be categorized by fail membership into two types:

• A fail-pure cluster (FPC) is one in which all members
are failed test cases (nCi

= fCi
).

• A mixed-fails cluster (MFC) has at least one failed test
case (fCi

> 0) and one passed test case (pCi
> 0).

B. Clustering Distinction Metrics
In order to assess to what extent the execution profiles of

failed test cases are different from the execution profiles
of passed test cases and to gauge the effect of program
and fault-inclusion factors on the results, we introduce four
clustering distinction metrics. It should be noted that these
metrics are general, as they do not depend on the type
or granularity of the profile, nor do they depend on the
clustering method.
Fail-Purity (FP) is the percentage of all failed executions

that are distinct from any passed executions (i.e., are found
in FPCs)

FP =

∑
∀Ciε{FPC} fCi

Nf

× 100 (1)

Analagous to the Fail-Purity metric is the Pass-Purity
metric, measuring the percentage of all passed executions
distinct from any failed executions. However, since our
interest is with the failed executions, we focus only on
the Fail-Purity metric. To get a sense of this metric’s
physical meaning, consider the system’s unreliability as the
portion of all test cases that fail. From a clustering view-
point, unreliability has two contributions: unreliability due
to failures from fail-pure clusters (FPCs) and unreliability
due to failures from mixed-fails clusters (MFCs). Thus,
R̄system = R̄FPC + R̄MFC .
Because the failures found in FPCs show the highest

distinction with regard to passes, it is desirable that system
unreliability be due mostly to these types of failures. Thus,
the FP metric is the portion of system unreliability due to
failures in FPCs (i.e., FP = R̄FPC/R̄system)
Ideally, FP would be 100% meaning that all failed execu-

tion profiles are distinct from passed execution profiles. Such
distinction may, for example, be useful in fault localization
or test case prioritization. When FP is less than 100%, the
remaining portion of failed executions are similar to (and
clustered with) passed test cases in MFCs In some of these
MFCs, a failed execution may be clustered mostly with other
failed executions, thus exhibiting a high degree of distinc-
tion, or it may be clustered with mostly passes, exhibiting
a low degree of distinction. This latter category of MFC
clusters, contributing to the MFC portion of unreliability
(R̄MFC), motivates the following two metrics.
Low-Distinction-Failures (LDF) is a metric focused on

the mixed-fails clusters (MFCs). It indicates the portion
of all failures that are found in clusters containing a low
proportion of failed executions, i.e. these fails are similar to
many passed executions. The precise proportion of failures
considered a low proportion can be user-defined. In this

261261

study, we consider clusters with less than 75% failures (i.e.,
more than one quartile passes) to exhibit low distinction.

LDF =
∑

∀CiεMFC|
fCi
nCi

<0.75

fCi

Nf

× 100 (2)

Low values of LDF are desirable since that would indicate
that not many of the failed executions in MFCs exhibit
low distinction. The ideal case FP = 100% corresponds
to LDF = 0%. However, even if FP < 100%, it is still
possible that LDF = 0%. In that case, the failures not in
FPC may be located in clusters with populations of relatively
few passes, thus displaying high distinction. From the LDF
metric, we learn whether or not MFCs contain predominately
failed executions. However, the LDF metric does not reveal
how these failed executions are spread across the MFCs.
Mixed-Fails Entropy Potential (HMFC) is a measure

of how close to uniform the distribution of failures across
the mixed-fails clusters (MFCs) is. The HMFC metric is
an indication of the portion of entropy that comes from the
dispersion of failed test cases across MFCs in relation to
the maximum entropy. Here, the maximum entropy is the
most uniform dispersion possible for the failed executions
across the mixed clusters. (Measuring the entropy in relation
to its maximum enables comparison.) Like the LDF metric,
HMFC focuses on the failed executions in MFCs (mixed-
fails clusters), collectively annotated Nf MFC .

HMFC =
H

Hmax

× 100 (3)

where the dispersion entropy of the mixed clusters

H = −
∑

∀CiεMFC

fCi

Nf MFC

× log(
fCi

Nf MFC

) (4)

and the maximum dispersion entropy of the mixed clusters

Hmax = −
∑

∀CiεMFC

feCi

Nf MFC

× log(
feCi

Nf MFC

) (5)

Note that feCi
is the number of fails that would be in

cluster Ci if the mixed-fails were to be evenly distributed
amongst the MFCs. Lower HMFC values are desirable as
they indicate less entropy potential; that is, the mixed fails
are distributed less evenly and thus there is more distinction.
These mixed fails may or may not be clustered with many
other passed executions; a viewpoint imparted by LDF.
Average Percent Fails Found (APFF) measures the

ability of a test selection method to find early-on the failed
executions from among all test executions. This metric is
adapted from [8] where it was used to evaluate test prioriti-
zation techniques. In our context, APFF is used as a metric
to evaluate test case selection methods whose objective is
to discover failed executions based upon the clustering. A
higher APFF value is desirable, indicating that more of the
failed executions were found earlier in the selection process.

APFF reflects the rate of failure discovery as clusters
are inspected. Clusters are ordered by some criteria and
test cases are selected from these clusters in that order. To
calculate APFF, each test case is assigned a priority rank
according to the order it is to be inspected. We focus on
discovery of the failed test cases where FTi is the rank or
ordering position of the ith failing test execution uncovered
while examining the ordered clusters.

APFF = 1−
FT1 + FT2 + ... + FTNf

N ∗Nf

+
1

2N
(6)

The equation above finds the area of the curve formed by
plotting the fraction of the test suite examined versus the
fraction of the failed executions uncovered. A larger area
reflects an earlier detection of failures. For details see [8].
In [5], several test selection methods were proposed based

upon clustering. Although any of these could be evaluated
using the APFF metric as it is a general metric, in this
study we focus on the small clusters method from [5] which
is motivated by their observation that failures are often
found in the smallest clusters. Thus far, we have seen that
the FP, LDF and HMFC metrics provide views of failure
distribution across clusters, but not on the sizes of the
clusters into which failures are distributed. Thus, we use this
test selection method, Smallest Clusters First (SCF), because
it gives another view of failure distinction - whether failed
executions are clustered into the smallest clusters.
In the SCF method, test case selection starts by ordering

the clusters from smallest to largest such that ∀j nCj ≤
nCj+1. Each test case within these clusters is assigned an
ordering1. First, the smallest cluster is identified and all test
cases within that cluster are selected and examined for failed
executions. Next, all the test cases in the next smallest cluster
are selected and examined, and so on. High APFF values
for this selection method indicate that failures are either
in small fail-pure clusters or are grouped with very few
passing executions. This type of distinction can be helpful in
observation testing scenarios where there are many test cases
to go through and focusing on the failing ones is desirable.
Each of the distinction metrics proposed above measures a

different aspect of the distinction between failed and passed
executions in clustering. Ideally, high FP, low LDF and
HMFC are preferred. For such an ideal case, test selection
methods can leverage the distinction and the APFF metric
would evaluate these methods favorably. Even with unfavor-
able values of FP, LDF, and HMFC , for some applications
such as observation testing, a test selection method like SCF
[5] can still capitalize on distinction as long as MFCs are
among the smaller clusters. In such a case, APFF values
would be high, indicating early identification of failures and
good distinction in regard to method performance.

1To simulate the results of averaged repeated random selection from a
cluster, failed test cases within a cluster are ordered such that they are
selected halfway through the cluster’s selection sequence.

262262

IV. EXPERIMENTAL DESIGN

A prime motivation in selecting an experimental design
was to study our research questions in such a way as
to be able to draw statistically sound observations and
conclusions of the effect of factors (independent variables)
on the response metrics (dependent variables). We also
wanted to avoid confounding factors. Thus, we chose a two-
factorial design rather than multiple one-factor designs. In
the two-factor design, we control the following factors (i.e.,
independent variables): programs and fault-inclusions.
The first step in our experimental work is creating faulty

versions of the programs. Each n-fault-inclusion version was
created by randomly selecting n faults from a program’s set
of faults and injecting them into the corresponding program.
To help control variability and address the specificity of
faults each experiment (program & fault-level combination)
was repeated by constructing other faulty versions of that
program containing an equivalent number of randomly se-
lected faults. In order to capture the execution profiles for
the fingerprinting function, we instrumented the source code
of each version using an in-house event-based profiler [25].
Another factor that is important to consider is the test

suite. The test inputs that the faulty versions are run on
are specific to each program. Since our study focuses on
the failed executions, creating subset test suites by varying
the test cases included (which may or may not trigger the
injected faults) would introduce confounding effects. Thus,
it is important to note that the test suite is a factor we
control by keeping it constant; it is not a factor that we vary
and study. Therefore, in order to minimize the influence of
the test suite, we utilize the superset of inputs (Universal
Test Suite) which does not exclude any fault injected in our
versions from manifesting into a failure, thus ensuring that
experimental units have the same common denominator.
In selecting an experimental structure that supports our

investigation, we considered the inherent attributes of our
factors. With a cross-design experiment, one would be able
to draw conclusions regarding the interaction effects of the
considered factors on the response variables. However, a
cross-design requires that each factor be applied equivalently
across each level of the other factors [17], which does
not apply to our study because faults are specific to the
program they inhabit. Faults have differing syntax, context,
location and dependencies in program code. Therefore, since
the faulty versions created for each fault-inclusion level
can only be injected with faults from the corresponding
program, the design requires the fault-inclusion factor to be
nested within each level of program factor (Figure 1). For
brevity, the figure specifies two programs (P1 and P2) for
the program factor; in fact, any number of programs can be
included in the experiment. Note that there are several repeat
observations for each n-fault-inclusion level. For example,
there are j repeat observations for program P1 with fault-
inclusion level 1-Fault: P11F1

to P11Fj
. Each observation

Program
Program 1 (P1) Program 2 (P2)

Fault-Inclusion Levels Fault-Inclusion Levels
1-Fault . . . m-Faults 1-Fault . . . n-Faults
P11F1

. . . P1mF1
P21F1

. . . P2nF1

...
...

...
...

...
...

P11Fj
. . . P1mFk

P21Fx
. . . P2nFy

Figure 1. Nested Design

within a fault-inclusion level corresponds to a faulty version
which has the same number of faults as other versions within
that level, but the particular faults injected into each of these
faulty versions vary and are selected at random from those
available to that particular program.

V. DESCRIPTION OF THE EMPIRICAL OBJECTS
Our study employs two empirical approaches, experi-

mentation and case studies, and involves four programs
of varying size and complexity: printTokens2 (http://www-
static.cc.gatech.edu/aristotle/Tools/subjects/), space (http://
sir.unl.edu/portal/index.html), Indent (http://www.gnu.org/
software/indent/), and GCC (http://gcc.gnu.org/). Details on
the programs used in this paper are summarized in Table I.
(All programs were run on a 3.06 GHz Intel Pentium4 with
2 GB RAM and running Ubuntu 8.04.1.)

Table I. OBJECTS IN EMPIRICAL STUDY
Program ∼LOC # Files #Funcs # Tests # Faults
printTokens2 402 3 18 4,054 9
space 6,200 1 157 10,000 23
Indent 2.2.0 10,000 9 56 155 ∼30
GCC 3.2.3 300,000 108 2506 2,417 ∼151

A. Experimental Objects
For the experimental part of our study we used two pub-

licly available C programs, printTokens2 (pT2) and space,
which have been widely used in fault-localization studies,
[8], [12], [1], [23] among many others. The lexical analyzer
pT2 originated from Siemens Corporate Research and has
been made available as part of the Siemens suite. It has
a fault-free version as well as ten faulty versions, each
containing exactly one injected fault. These faults were
inserted by the Siemens researchers in an effort to mimic
real-world faults. Nine of the faulty versions involve one line
of faulty code and one version involves four faulty lines of
code. Two of the faults cannot appear together in the same
version. A test suite of 4,115 test cases is also provided. On
our platform, some of these test cases produced no execution
data; thus we used 4,054 test cases. Also, we discarded pT2
version 10 due to segmentation faults.
The space program is an interpreter for an array definition

language and was developed by the European Space Agency.
It has a fault-free version and 38 faulty versions, each
containing exactly one injected fault. These faults are real in
that each was previously discovered as an actual fault of the
space program. The researchers who originally experimented
with space constructed a test suite of 10,000 randomly
generated test cases [22], which we used on our experiments.

263263

Most of the faults for space are located on one line of code
with a few involving up to two functions and four lines
of code. Six of the faulty versions were discared due to
segmentation faults. In addition, six of the faulty versions
were semantically equivalent to the oracle (i.e., had no failed
test cases). Furthermore, for three versions the majority of
test cases failed which are not realistic scenarios. Thus, the
remaining 23 faulty versions were used for our experiments.

B. Case Studies
Ideally, real-world, large scale programs would make great

objects for experimentation. However, experimenting with
large programs often is very costly and may not even be
possible due to lack of information (e.g., if fault locations
are not known one cannot run experiments that require fault
injection). In those cases, using case studies can provide use-
ful observations and reinforce experimental results. Hence,
we include two open source programs as case studies: the
medium-sized program Indent, used to beautify C code, and
the much larger GCC C compiler.
For these two case studies, we used an analysis method

similar to [9]. Indent and GCC each has available a Regres-
sion Test Suite run by a script which also acts as an oracle,
providing pass/fail label for each test case. Regression test
suites often contain test cases to test previous version failures
which have been addressed and corrected in the later version.
To allow a larger number of failures to be observed, we
executed a later version of the regression test suite on an
earlier version of the software. Care was taken to eliminate
the tests failing due to features introduced in later versions.
GCC is much larger than any of the programs in this study

and Indent and space are similar in size. Both Indent and
GCC have fault models that are considerably more complex
than any faulty version of pT2 and space. In earlier work [9]
we identified changes made to fix faults that led to many of
the failures (i.e., 27 out of 30 for Indent and 85 out of 151
for GCC). For Indent, 24 failures led to fixes in one file and
three were caused by faults spanning two files. As expected,
GCC’s fault model is even more complex: 49 failures were
due to faults spanning multiple files (with some up to 14
files). It should be noted that even faults within a single file
usually were affecting much more than a single line of code.

VI. ANALYSIS OF DISTINCTION METRICS
In this section we analyze the nested design shown in

Figure 1 and present the results. Using analysis of variance
(ANOVA) one can ascertain the influence, upon the metrics,
of the programs factor and also the influence of the fault-
inclusions factor nested within the programs factor. Further-
more, in cases where differences exit, the analysis results
answer the question of where the majority of the variability
in the distinction measures come from: the programs or the
various fault-inclusions within programs.
ANOVA analysis is a parametric method based on the

assumptions of normal populations and equal population

variances. Moreover, the experimental design is preferred
to be balanced since it lends to more robust analysis of
variance. The experiment is balanced if it has (i) the
same fault-inclusion levels applied to each program and
(ii) the same number of repetitions carried-out for each
program/fault-inclusion combination. A balanced design,
however, limits the number of fault-inclusion levels and
repeat observations to the number of versions possible for
the program with the fewest number of available faults. This
limitation is significant because sometimes a wider range
of factor levels may be necessary for an effect to be seen.
Thus, in order to leverage the information available, we
needed an analysis method robust to unbalanced designs.
The nonparametric variance analysis method for two-way
nested designs proposed in [21] makes no assumptions
on normality or homogeneity of population distributions,
nor does it make assumptions on the heteroscedasticity
of population variances. Furthermore, since this analysis
method allows for an unbalanced experimental design, the
number and specific values of levels, as well as the number
of repeat observations can vary (as shown in Figure 1). We
implemented the nonparametric method presented in [21]
using the R statistics package. The Box-adjusted Wald-type
statistic utilized in the analysis follows an F distribution
which is used to determine the following nonparametric null
hypotheses:

• HP
0 : There is no difference in the distributions of the

distinction metric (either FP, LDF, HMFC or APFF)
among any of the subject programs, and

• H
F |P
0 : There is no difference in the distributions (either

FP, LDF, HMFC or APFF) of the distinction measure
among the fault inclusion levels within programs.

These nonparemetric hypotheses are stronger than their para-
metric counterparts as they imply the parametric hypotheses.
In the unbalanced two-factor experiment
• Fault-inclusion levels spanned the range of faults avail-
able for each program: 1, 2, 5, 6, 7 faults for pT2 and
1, 2, 5, 6, 10, 15, 20 faults for space.

• Experimental runs per program/fault-inclusion combi-
nation were repeated with from at least nine up to 23
faulty versions.

The analysis of variance results for the two-factor experi-
ment are presented in Table II. We first address RQ1 related
to the effect of the varying programs on distinction metrics.
For each of the distinction metrics, variance in the respective
distributions between programs is statistically significant
(> 99.4% confidence interval). That is, the results yield
enough evidence to reject the null hypothesis HP

0 in favor
of the alternative hypothesis HP

a that there is a difference
in the distinction metric distributions across programs. The
program factor is responsible for contributing the majority
of the variance. For the LDF and HMFC metrics, 62% and
59% of variability, respectively, is due to the programs. Even
more notable are the FP and APFF metrics, with over 98%

264264

of their variability coming from the programs.
Table II. ANALYSIS OF VARIANCE FOR PROGRAMS (P) VS NESTED

FAULT-INCLUSIONS (F |P)

Distinction
Metric

Factor Wald-type
Box-Adjusted
Rank Statistic

p-value H0 Cont
to Var

Fail Purity P 153.2691455 1.15E-17 Rej 98.20%
(FP) F |P 2.808993457 0.017019 Rej 1.80%
Low Distinc-
tion Fails

P 9.261079462 0.003393 Rej 62.78%

(LDF) F |P 5.489803863 4.53E-05 Rej 37.22%
Mixed-Fails
Entropy Pot

P 8.144746239 0.005598 Rej 59.39%

(HMF C) F |P 5.570347305 8.74E-06 Rej 40.61%
Average %
Fails Found

P 327.4113655 7.38E-27 Rej 99.50%

(APFF) F |P 1.634288668 0.150367 DNR 0.50%

To address RQ2 and RQ3 we rely on Figure 2 which
shows the distinction metrics resulting from the two-factor
experiment and the two case studies. For pT2 and space the
boxplot summarizes the distinction metric restults for each
program/fault-inclusion combination. (The x-axis shows the
number of fault-inclusions and the y-axis shows the cor-
responding distinction metric result.) For the case studies
Indent and GCC at the right end of Figure 2 we show the
corresponding distinction metrics for one release of each
respective program. Both Indent and GCC have more faults
than pT2 and space (i.e., approximately 30 faults for Indent
and 151 faults for GCC). Next we take a closer look at the
results for each distinction metric.
Fail-Purity (FP) FP is the contribution to unreliability

due to the failures in the Fail Pure Clusters. Practically, to aid
the testing process, it is better to observe higher FP values
(i.e., more failing execution profiles are dissimilar from any
passing execution profiles). The FP boxplots in Figure 2
show overall higher FP values, and thus higher distinction,
for pT2 than for space. The effect of the fault-inclusion
levels on FP, although less prominent, is also statistically
significant (see Table II). However, pT2 and space show dif-
ferent trends as fault-inclusion levels increase. While FP for
pT2 shows a decreasing trend with diminishing distinction
as fault-inclusions increase, for the space program FP tends
to eventually increase with increasing fault-inclusions. We
see that case studies Indent and GCC, which have higher
number of more complex faults, have low FP values. Fail-
purity for GCC is from the lowest values observed.
Low Distinction Fails (LDF) is the part of unreliability

due to MFCs (clusters containing both failed and passed
test cases), specifically the clusters containing less than
75% failures. For the LDF metric, distinction is better with
lower values. Overall, pT2 tends to have lower LDF values
(i.e., higher distinction) than space. The differences in LDF
values for increasing fault-inclusion levels for each program
are statistically significant (see Table II). And similar to
distinction results reflected by FP, the LDF values tend
to increase for pT2 (decreasing distinction) and decrease
for space (increasing distinction). The case studies display

Figure 2. Distinction Metrics: FP, LDF, HMF C , APFF (x-axis shows the
number of fault-inclusions for each program)

much less distinction than the experimental programs. The
LDF value for Indent is much higher than for pT2 and
approximately the same as the higher range of space values.

265265

The GCC LDF value was from the highest observed.
Mixed-Fails Entropy Potential (HMFC) gives an in-

dication of the entropy that comes from the dispersion of
failed test cases in MFCs only. Lower values indicate less
entropy and thus, less uniform dispersion of failed execu-
tions among the mixed clusters. HMFC values for pT2 are
slightly higher than those for space, with entropy potential
tending to decrease for each program as fault-inclusion
levels increase. The differences due to the effect of fault-
inclusions per program are also statistically significant (see
Table II), contributing 40% to the variance. The case study
Indent has slightly higher entropy potential than multi-fault
versions of pT2 and space. GCC, however, has lowerHMFC

than either pT2 or space. The following observations are
interesting to note. The values ofHMFC are rather high (i.e.,
typically higher than 50%) which indicates significant (ap-
proaching uniform) dispersion of failing executions among
MFC clusters. However, HMFC decreases with increasing
levels of fault-inclusions, which means that as we observe
more failures their execution profiles tend to be similar and
group in larger numbers together.
Average Percent Fails Found (APFF) The APFF metric

reflects the rate failures are found as test cases are selected
starting from the smallest clusters. Higher values indicate
more failed test cases are found sooner in the selection
process. The APFF values are higher for pT2 than for space,
indicating that failed executions tend to cluster in smaller
clusters more for pT2 than for space. Visually, the boxplots
in Figure 2 show that APFF values for pT2 and space tend to
decrease slightly and converge as the fault-inclusion levels
increase. However, the differences due to the effect of the
fault-inclusions per program appear not to be statistically
significant. The case studies have lower APFF values than
pT2 and similar values to those for space.
Summary of the results. With regard to RQ1, we

conclude that there is a statistically significant difference of
distinction metrics between programs, with programs con-
tributing from 59% to as much as 99.48% to the variability.
In general, the metric values for pT2 are more distinct than
those for space, Indent and GCC (the notable exception is the
entropy metric). That is, the differences in executions appear
to manifest more and are captured better by the control flow
visit counts for pT2 than for space, Indent or GCC.
For RQ2 we seek to find if fault-inclusions affect the

distinction metrics. Indeed, it appears that distinction metrics
are affected as the fault-inclusion levels increase. The effect
of the fault-inclusions per program is statistically significant
for all distinction metrics except APFF. In general, fault-
inclusions per program contribute much less to the variabil-
ity of the differences than do the programs.
With respect to RQ3 the results show that the distinction

metrics do not always follow the same trend as the fault-
inclusions levels per program increase. Specifically, it is
clear that the trends of the FP and LDF distinction metrics
differ among programs; for pT2 the distinction decreases,

whereas for space it increases. On the other hand, for the
HMFC and APFF metrics, the trends with pT2 and space are
similar; both show an increasing distinction trend forHMFC

and a converging, slightly decreasing trend for APFF.
Taking all the metrics together for each program helps

further explore RQ3. Let us first focus on pT2 occupying
the leftmost column of Figure 2 boxplots. This program
shows high distinction for all but the entropy metric. We can
interpret that, as the fault-inclusions increase, the portion
of unreliability due to FPCs decreases (i.e., we observe
decreased FP), which results in a greater portion of failed
executions clustered in mixed clusters. These failing exe-
cutions are apparently dispersed into larger clusters (i.e.,
APFF values decrease) containing more passes (i.e., LDF
increases). However, as the fault-inclusions increase more of
these failing executions gather together in the same clusters
(i.e., HMFC decreases).
Intuitively, one may expect to observe the same decreasing

distinction for space as for pT2 with the increasing fault-
inclusion levels. However, looking at space’s boxplots shown
in the middle column of Figure 2, we observe that the
FP, LDF, and HMFC metrics for space show increasing
distinction as fault-inclusion levels increase. Maybe this is
not surprising if we consider that with increasing fault-
inclusions, we usually observe more failures. If these failed
executions have similar profiles they will tend to cluster
together, which will lead to more Failure Pure Clusters (i.e.,
higher FP) and/or more failed executions clustered together
in mixed clusters. The more failed executions cluster to-
gether, the lower will be the LDF and entropy measures.
What prompts this difference in behavior between pT2

and space? Examination of pT2’s failure behavior reveals
one possible explanation. As was reported in [4] for all
the Siemens programs collectively, we found that multi-fault
combinations of pT2 cause failures that can exhibit any of
independence, destructive and/or constructive interference.
On the other hand, space’s multi-fault combinations largely
exhibit independence in the failures manifested. It appears
that the more complex fault interactions of pT2 may result
in more different execution profiles and thus result in de-
creasing distinction.
As for the case studies Indent and GCC (the two points

in the right-most column of Figure 2), the distinction met-
ric results mostly indicate that these high fault-inclusion
programs exhibit low distinction of failing executions. The
notable exception is GCC’s lower entropy potential HMFC

value, which is on the low side of values for space’s 20-fault
versions. It appears that although GCC has low fail purity,
the large number of its failed executions in mixed clusters
are clustered together.

VII. THREATS TO VALIDITY
Our empirical study is subject to threats to validity

which we discuss in terms of construct, internal, conclusion,
and external threats. In case of construct validity we are

266266

concerned with ensuring that we are actually testing in
practice what we meant to test. A potential threat is in
having an empirical study with confounding factors. We
address this threat by conducting a two-factor experiment
that studies the effects of both programs and faut-inclusions.
Furthermore, the specificity of faults to their corresponding
programs is addressed by nesting the fault-inclusion levels
within programs. Since we do not have control over the types
of faults corresponding to a program, we select randomly
the faults to inject in the faulty versions of each program,
and perform repeat runs for each program/fault-inclusion
combination. Another potential threat to construct validity
is related to choosing a sufficient number of levels of the
fault-inclusion factor. Sometimes just the fact that several
levels of a factor are being investigated may not be enough;
the number of levels utilized and the actual values of the
levels used may be instrumental in determining if an effect
is demonstrated. To address this threat to validity we opted
for an unbalanced design which allowed us to fully utilize
the greater number of faults available for the space program.
Furthermore, we were careful to include most of the same
levels for both programs as well as spread out the levels
selected for space in order to avoid a multiplicative effect
on the results. The final threat to construct validity is related
to the mono-method bias, i.e., to the use of a single metric to
make observations. We addressed this threat by introducing
four distinction metrics, each measuring different aspects of
the groupings of failing and passing executions.
Threats to internal validity arise when there are sources

of influence that can affect the independent variables and/or
measurements. One potential source of influence is the
instrumentation of the code which can affect the results if not
done accurately. To ensure accuracy in collecting function
level events, we implemented an event-based profiler, rather
than use a sampling-based one. Another potential threat to
internal validity that can influence the results is the types of
injected faults, which is governed by the availability of faults
for each of the experimental object programs. We partially
addressed this threat by randomly selecting the fault(s) to
inject in multi-fault versions, and for each cell in our exper-
imental design ran repetitions with different combinations of
faults. Including two case studies which have significantly
more complex faults causing failures, additionally addresses
this threat to validity. Another potential source of influence
is the test suites used in the experiments for testing the faulty
versions. By using each program’s ‘universal’ test suite, we
ensure the following: (1) there are test cases that exercise
the faults injected in each faulty version and (2) variations in
the response variables (i.e., distinction metrics) which could
be due to the choice of test cases are eliminated.
In considering threats to conclusion validity, we exam-

ine the ability to draw correct conclusions (i.e, statistical
validity). We addressed this threat by utilizing a formal
statistical experimental design, as well as conducting repeat
observations for each cell (i.e., program/fault-inclusion com-

bination). Furthermore, we carefully checked our data for
validity of the assumptions made by the analysis methods
and applied an appropriate nonparametric statistical method,
which is also robust to unbalanced design.
External validity considerations determine to what extent

results can generalize. We performed our experiment on
programs widely used for empirical studies in related fields.
One program, pT2, is small and has faults seeded by humans,
while the other program, space, is medium-sized with real
faults detected during testing and operational usage. More-
over, we extend the analysis to case studies using two open
source programs whose faults are real and more complex.
Although the case studies do not include replication (results
are based on one release per case study) and thus are not
included in the statistical analysis, they help demonstrate the
trends and add further confidence to the observations.

VIII. CONCLUSIONS

We have presented an empirical study aimed at exploring
the distinction between the dynamic profiles of failing and
passing software executions. Specifically, we focused on the
control flow profiles at function level as they have been used
widely in work related to fault localization, failure indexing,
execution classification, and test case prioritization. Yet,
none of the related work explored and quantified the extent
of distinction between failing and passing executions and
the effect that different factors have on the distinction. We
used clustering as a natural way to group software execution
profiles and proposed a set of distinction metrics which
measure different aspects of the results of the groupings.
A major contribution of this work is the experimental

framework based on a well-defined experimental design,
which is not restricted only to the type and granularity of the
execution profile, clustering technique, and response vari-
ables used in this paper. It allows for incorporating additional
empirical objects and, more importantly, investigating other
fingerprinting functions, distances and clustering methods,
and other response variables. The quantification of the
contribution different factors may have on the distinction of
the failing and passing executions underpins the better under-
standing and utilization of dynamic fingerprinting functions
for automated verification and validation, fault localization
and other software quality assurance studies.
Another contribution of this work is related to the empiri-

cal observations made based on the experimental objects and
case studies. We see statistical evidence that the program
with its inherent characteristics contributes more signifi-
cantly to the variation in the clustering distinction metrics
than do the fault-inclusion levels. Thus, when testing is at
a phase where there are still a significant number of faults
present, the accuracy/feasability of techniques for automatic
identification of failed test cases and fault localization may
be influenced significantly by the program under study.
Furthermore, for a given program, our results show that

267267

increasing fault-inclusion levels does not always lead to
worse distinction between failing and passing executions.
We conclude with a brief description of the implications

of our work. (1) This paper illustrates the necessity of
conducting controlled multi-factor experiments which follow
the general principles of random selection and replication
for each cell of the experimental design. (2) The variability
among programs as reflected by the distinction metrics
emphasizes the fact that empirical studies must be conducted
on a variety of programs in order to be able to gauge
effectiveness, adjust approaches and methods, and ensure
external validity. (3) Fault-inclusion levels with multi-fault
versions need to be part of empirical studies since they
typically have statistically significant effect on distinction
metrics. How much influence they exert and what the trend
of that influence is seem to depend on the program and
the type of faults inherent to that program. (4) Variabil-
ity in distinction metrics decreases as the levels of fault-
inclusion increase. Therefore, it is important to use different
numbers of faults in experiments as well as a variety of
combinations of faults. (5) Experiments allow for controlled
manipulation of factors (i.e., independent variables), repli-
cation, and testing the statistical significance of the results,
which promotes sound and generalizable results. However,
since formal experiments must be carefully controlled, by
their nature they are “research-in-the-small”, which imposes
risk when one attempts to apply methods developed in a
laboratory to a real project. To avoid scale-up problems,
provide a realistic view and give check to experimental
results, we advocate the use of case studies based on typical
industrial scale programs (i.e., “research-in-the-typical”) in
combination with controlled experiments.

IX. ACKNOWLEDGMENTS
This work was funded in part by the NSF under the grants

CNS-0447715 and CCF-0916284.

REFERENCES

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In 27th Int’l Conf.
Softw. Eng., pages 402–411, 2005.

[2] J. Bowring, J. Rehg, and M. Harrold. Active learning for
automatic classification of software behavior. SIGSOFT Softw.
Eng. Notes, 29(4):195–205, 2004.

[3] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and K. Vaswani.
HOLMES: Effective statistical debugging via efficient path
profiling. In 31st Int’l Conf on Softw Eng (ICSE 2009),
Vancouver, Can, May 2009. ACM SIGSOFT and IEEE.

[4] V. Debroy and W. E. Wong. Insights on fault interference for
programs with multiple bugs. Int’l Symp. Softw. Reliability
Eng, pages 165–174, 2009.

[5] W. Dickinson, D. Leon, and A. Podgurski. Finding failures
by cluster analysis of execution profiles. In 23rd Int’l Conf.
Soft. Eng., pages 339–348, 2001.

[6] W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure:
the distribution of program failures in a profile space. In 8th
European Softw. Eng. Conf., pages 246–255, 2001.

[7] S. Elbaum, S. Kanduri, and A. Andrews. Trace anomalies
as precursors of field failures: an empirical study. Empirical
Softw. Eng., 12(5):447–469, 2007.

[8] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Trans.
Softw. Eng., 28(2):159–182, 2002.

[9] K. Goševa-Popstojanova, M. Hamill, and X. Wang. Adequacy,
accuracy, scalability, and uncertainty of architecture-based
software reliability: Lessons learned from large empirical case
studies. In 17th Int’l Symp on Softw. Reliability Eng., pages
197–203, 2006.

[10] M. Haran, A. Karr, M. Last, A. Sanil, A. Orso, A. Porter, and
S. Fouche. Techniques for classifying executions of deployed
software to support software engineering tasks. IEEE Trans
on Softw Eng, 33(5):287–304, 2007.

[11] D. Hyunsook and G. Rothermel. On the use of mutation faults
in empirical assessments of test case prioritization techniques.
IEEE Trans. on Softw. Eng., 32(9):733–752, 2006.

[12] J. Jones and M. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In 20th Int’l Conf. on
Autom. Softw. Eng., pages 273–282, 2005.

[13] J. Jones, M. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In 24th Int’l Conf. on
Softw. Eng., pages 467–477, 2002.

[14] D. Leon, W. Masri, and A. Podgurski. An empirical eval-
uation of test case filtering techniques based on exercising
complex information flows. In 27th Int’l Conf. Softw. Eng.,
pages 412–421, 2005.

[15] C. Liu, X. Zhang, and J. Han. A systematic study of failure
proximity. IEEE Trans. Softw. Eng., 34(6):826–843, 2008.

[16] W. Masri, A. Podgurski, and D. Leon. An empirical study of
test case filtering techniques based on exercising information
flows. IEEE Trans. on Softw. Eng., 33:454–477, July 2007.

[17] D. Montgomery. Design and Analysis of Experiments. J Wiley
and Sons, New York, NY, 2001.

[18] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang. Automated support for classifying
software failure reports. In 25th Int’l Conf. Softw. Eng., pages
465–475, 2003.

[19] M. Renieris and S. Reiss. Fault localization with nearest
neighbor queries. Int’l Conf. Autom. Softw. Eng., page 30,
2003.

[20] J. R. Ruthruff, M. Burnett, and G. Rothermel. Interactive fault
localization techniques in a spreadsheet environment. IEEE
Trans. on Softw. Eng., 32:213–239, 2006.

[21] A. Stavropoulos and C. Caroni. Rank test statistics for
unbalanced nested designs. Statistical Methodology, 5(2):93
– 105, 2008.

[22] F. I. Vokolos and P. G. Frankl. Empirical evaluation of the
textual differencing regression testing technique. In Int’l Conf.
Softw. Maintenance, page 44, 1998.

[23] W. Wong, Y., L. Zhao, and K. Cai. Effective fault localization
using code coverage. In 31st COMPSAC, pages 449–456,
2007.

[24] Y. Yu, J. A. Jones, and M. J. Harrold. An empirical study
of the effects of test-suite reduction on fault localization. In
ICSE ’08: Proc of 30th int’l conf on Softw. eng., pages 201–
210. ACM, 2008.

[25] J. Zemerick. Profiling, extracting, and analyzing dynamic
metrics. Master’s thesis, West Virginia University, 2008.

268268

