
Information and Software Technology 55 (2013) 1479–1495
Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Predicting failure-proneness in an evolving software product line
0950-5849/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2012.11.008

⇑ Corresponding author. Tel.: +1 515 451 2338.
E-mail addresses: sandeepk@iastate.edu (S. Krishnan), cstras@iastate.edu

(C. Strasburg), rlutz@iastate.edu (R.R. Lutz), Katerina.Goseva@mail.wvu.edu
(K. Goseva-Popstojanova), kdorman@iastate.edu (K.S. Dorman).
Sandeep Krishnan a,⇑, Chris Strasburg a,b, Robyn R. Lutz a, Katerina Goseva-Popstojanova c, Karin S. Dorman d

a Department of Computer Science, Iowa State University, Ames, IA 50011-1041, United States
b Ames Laboratory, US DOE, Iowa State University, Ames, IA 50011-3020, United States
c Lane Department of Computer Science and Electrical Engineering , West Virginia University, Morgantown, WV 26506-6109, United States
d Department of Statistics, Iowa State University, Ames, IA 50011-1210, United States

a r t i c l e i n f o
Article history:
Received 14 February 2012
Received in revised form 29 September 2012
Accepted 28 November 2012
Available online 12 December 2012

Keywords:
Software product lines
Change metrics
Reuse
Prediction
Post-release defects
Failure-prone files
a b s t r a c t

Context: Previous work by researchers on 3 years of early data for an Eclipse product has identified some
predictors of failure-prone files that work well. Eclipse has also been used previously by researchers to
study characteristics of product line software.
Objective: The work reported here investigates whether classification-based prediction of failure-prone
files improves as the product line evolves.
Method: This investigation first repeats, to the extent possible, the previous study and then extends it by
including four more recent years of data, comparing the prominent predictors with the previous results.
The research then looks at the data for three additional Eclipse products as they evolve over time. The
analysis compares results from three different types of datasets with alternative data collection and pre-
diction periods.
Results: Our experiments with a variety of learners show that the difference between the performance of
J48, used in this work, and the other top learners is not statistically significant. Furthermore, new results
show that the effectiveness of classification significantly depends on the data collection period and pre-
diction period. The study identifies change metrics that are prominent predictors across all four releases
of all four products in the product line for the three different types of datasets. From the product line per-
spective, prediction of failure-prone files for the four products studied in the Eclipse product line shows
statistically significant improvement in accuracy but not in recall across releases.
Conclusion: As the product line matures, the learner performance improves significantly for two of the
three datasets, but not for prediction of post-release failure-prone files using only pre-release change
data. This suggests that it may be difficult to detect failure-prone files in the evolving product line. At
least in part, this may be due to the continuous change, even for commonalities and high-reuse variation
components, which we previously have shown to exist.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

A software product line displays a high degree of commonality
among the products that comprise it. The products differ one from
another via a set of allowed variations. The commonalities are
implemented in files reused in every product, while the variations
are implemented in files available for reuse in the subset of prod-
ucts requiring those options or alternatives.

The high degree of commonality and low degree of variations
lead us to investigate whether we can learn something about pre-
dicting failure-prone files in the product line from information
about changes and failures experienced previously by the same
or other products in the product line.

We perform classification of files as failure-prone and not fail-
ure-prone (two-class classification) using supervised learning
methods. We define a failure-prone file to be a file with one or more
non-trivial post-release bugs recorded. File-level predictions are
then grouped at the component level to examine whether the level
of reuse has an impact on the prediction of failure-proneness at the
component level. For the Eclipse product line studied in this work,
we classify the components based on their level of reuse: Common
components reused in all products, High-reuse variation compo-
nents reused in more than two products and Low-reuse Variation
components reused in at most two products.

File-level predictions are also grouped at the product level to
investigate whether the classification capability improves for dif-
ferent products in the product line. Data at the product level is
an aggregation of data at the component level, i.e., the files in a

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.infsof.2012.11.008&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2012.11.008
mailto:sandeepk@iastate.edu
mailto:cstras@iastate.edu
mailto:rlutz@iastate.edu
mailto:Katerina.Goseva@mail.wvu.edu
mailto:kdorman@iastate.edu
http://dx.doi.org/10.1016/j.infsof.2012.11.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1480 S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495
product are the files of the components that belong to that partic-
ular product. Each file is in one and only one component, but may
be in multiple products.

Ongoing change is typical in product lines, including the one
studied here. Change proceeds along two main dimensions. The
first dimension is evolution of the product line in which, as the
product line matures, more products are built. These additional
products typically include new features (e.g., units of functionality
[1]). The changes also may propagate to other, previously built
products [2]. When the changes are incorporated into the product
line, the product line asset repository is updated so that future
products can reuse them.

The second dimension of product line evolution is change in an
individual product from one of its releases to another. This is sim-
ilar to the evolution and maintenance of a single system, except
that it may happen to each system in the product line.

In previous work [3], we found that even files implementing
commonalities experience change on an on-going basis and that,
as the product line evolves, fewer serious failures occur in
components implementing commonalities than in components
implementing variations. We also found that the common compo-
nents exhibit less change than the variation components over time.
This led us to explore, beginning in [4], whether the stabilizing
behavior of the commonalities as the product line evolves supports
prediction of failure-prone files.

The following research questions motivate the work reported in
this paper:

� Are there any change metrics that serve as good predictors for
which files are failure-prone as a product matures over
releases?
� Do any of these change metrics also serve as good predictors

across all the products and components in a product line over
time?
� Does our ability to predict the failure-prone files improve over

time across products as the product line matures?
� Does the ability to predict failure-prone files differ across com-

ponents belonging to different categories of reuse?
� How do datasets with different data collection and prediction

periods affect prediction performance?
� Do datasets with incrementally increasing data collection peri-

ods yield better results?

To investigate these questions, we explore here whether accu-
rate and meaningful predictions of failure-prone files can be made,
both across the sequential releases of a single product and across
the various products in a product line, taking into consideration
the periods of data collection and prediction. We study whether
there are good predictors of failure-prone files for individual prod-
ucts in the product line, whether there are good predictors across
the product line, and how they are related. We study whether pre-
dicting failure-prone files over shorter time gaps is easier as com-
pared to the standard prediction of failure-prone files six months
after release.

The results reported in this paper extend our previous work to
evaluate failure prediction for the Eclipse product line at the prod-
uct level to also consider the component level. In brief, the new
contributions first reported here include: (1) results from an inves-
tigation into whether any specific learner performed significantly
better than the J48 learner we previously used for classifying fail-
ure-prone files using change data on Eclipse, (2) a quantitative
evaluation of differences in defect prediction performance with re-
spect to alternative time periods for change data collection and
prediction, (3) findings from analysis of defect prediction for the
three categories of reuse levels described above (commonalities,
high-reuse variations, and low-reuse variations) across these peri-
ods, and (4) results from experiments using incrementally increas-
ing data collection periods.

Our data-driven investigation uses the large open-source pro-
ject Eclipse. Following Chastek et al. [5], we consider Eclipse to
be a product line. We distinguish evolution of a single Eclipse prod-
uct from evolution of the Eclipse product line and the evolution of
its components. We also build on previous work by Zimmermann
et al. [6] and by Moser et al. [7]. The authors in [6] studied defects
from the bug database of three early releases of an Eclipse product
at both the file and package level. They built logistic regression
models to predict post-release defects. At the file level, the models
had mixed results, with low recall values less than 0.4 and preci-
sion values mostly above 0.6. The authors in [7] found that change
metrics performed better than code metrics on a selected subset of
the same Eclipse dataset, and that the performance of the J48 deci-
sion tree learner surpassed the performance of logistic regression
and Naı̈ve Bayes learners.

Following [7], we use 17 change metrics collected over different
periods of Eclipse’s release cycle. Existing studies have used differ-
ent types of metrics for predicting failure-prone files, including
code metrics [8–12], change metrics [7,13–15] and previous de-
fects [16]. Such metrics are used either to classify files as defective
or not (binary), or to predict the number of defects per file. In gen-
eral, it is easier to perform classification than to predict the num-
ber of defects. In this study, we seek to classify files as failure-
prone or not with the goal being to predict whether files have
one or more post-release failures.

From a product line perspective, we are most interested in
observing whether predictive ability improves as the product line
evolves and whether the set of prominent predictors, identified
by a feature selection method based on gain ratio, changes both be-
tween products and as the product line evolves over time. In the
work described in this paper, we first replicate the decision tree
portion of the study presented in [7] to validate previous results
and then extend it by including four more recent years of data.

In our previous work [4], we used the J48 tree-based learning
algorithm for prediction. Our effort in this paper is not to identify
the most optimal machine learner; rather it is to investigate
improvement in prediction ability in an evolving product line.
However, to validate if the J48 learner is a good choice, we perform
a preliminary comparison analysis of the performance of 17 ma-
chine learners. Consistent with Menzies et al. [9,17] and Lessmann
et al. [18], we observe that there is no statistically significant dif-
ference between the performance of most machine learners. As a
result, in this work we continue our analysis with the J48 machine
learner as implemented in Weka [19].

We look at the evolution of one particular product, Eclipse Clas-
sic, over a period of 9 years. We observe the classification results
during its early evolution (versions 2.0, 2.1, and 3.0), as in [7],
but also look at its more recent evolution (versions 3.3, 3.4, 3.5,
and 3.6). We find some overlaps and some differences between
the most prominent predictors (identified based on gain ratio) over
the shorter and longer time periods for these components.

We then repeat the effort for three additional products in the
Eclipse product line, Eclipse Java, Eclipse JavaEE and Eclipse C/
C++, across the last four years of their evolution. We perform this
analysis for three types of datasets, distinguished by their data col-
lection and prediction periods. This is new work that has not been
reported previously. We observe mixed results, with very high re-
call and low false-positive rates when no distinction is made be-
tween pre-release and post-release defects. However, we find
that the recall rates drop significantly, if we use pre-release change
data to predict post-release defects. We also observe that classify-
ing failure-prone files using incrementally increasing data collec-
tion periods does not give better results even for commonality
components. All our data and results are available at [20].

S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495 1481
Several interesting findings resulting from the investigation are
described in the rest of the paper. The main observations of the
work are:

� Product evolution. As each product evolves, there is a set of
change metrics that are consistently prominent predictors of
failure-prone files across its releases.
� Product line evolution. There is some consistency among the

prominent predictors for early vs. late releases for all the con-
sidered products in the product line. For predicting post-release
failure-prone files using pre-release change data, the subset of
change metrics, Bugfixes, Revisions and Age are among the prom-
inent predictors for all the products across most of the releases.
� Component evolution. Looking at the evolution of components in

the different categories of reuse in the product line (i.e., com-
monalities, high-reuse variations and low-reuse variations),
we find that there is consistency among the prominent predic-
tors for some categories, but not among all of them. For predict-
ing post-release failure-prone files using pre-release change
data, the change metric Bugfixes appears to be prominent in
all three categories, although not across all releases. The change
metric Age is prominent for both high and low reuse variations
but not for commonalities.
� Prediction trends. As the product line matures, prediction of

post-release failure-prone files using pre-release change data
for four products in the Eclipse product line shows statistically
significant improvement in accuracy across releases, but not in
recall. Similarly, components in the three categories of reuse
show significant improvement in accuracy and false-positive
rate but not in recall. Further, there is no statistically significant
difference in performance improvement across releases among
the three categories of reuse.

The rest of the paper is organized as follows. Section 2 describes
Eclipse and gives the reasons for considering it as a software prod-
uct line. The approach to data collection and analysis is presented
in Section 3. Section 4 lists the research questions studied for this
work. Section 5 discusses the evaluation of 17 machine learners to
select a suitable learner for this study. Section 6 describes findings
for the evolution of single products. Section 7 reports findings as
the product line evolves and gives results of statistical tests to sup-
port the observations. Section 8 discusses results at the component
level across the three categories of reuse. Section 9 reports the per-
formance of prediction using incrementally increasing data collec-
tion periods. Section 10 considers threats to validity. Additional
related work is discussed in Section 11. Section 12 provides a sum-
mary and discussion of broader impact in the context of software
product lines.
2. Eclipse product line

A product line is ‘‘a family of products designed to take advan-
tage of their common aspects and predicted variabilities’’ [21]. The
systematic reuse and maintenance of code and other artifacts in
the product line repository has been shown to support faster devel-
opment of new products and lower-cost maintenance of existing
products in many industries [22–24,21]. As the common and vari-
ation code files are reused across products, they go through itera-
tive cycles of testing, operation and maintenance that over time
identify and remove many of the bugs that can lead to failures.
There is thus some reason to anticipate that the quality and reli-
ability of both the existing products and the new products may im-
prove over time.

The lack of available product line data, however, makes it hard
to investigate such and similar claims. The availability of Eclipse
data is a noteworthy exception. The Eclipse project, described on
its website as an ecosystem, documents and makes available bug
reports, change reports, and source code that span the evolution
of the Eclipse products.

Chastek et al. [5] were the first that we know of to consider
Eclipse from a product line perspective. Eclipse provides a set of
different products tailored to the needs of different user communi-
ties. Each product has a set of common features, yet each product
differs from other products based on some variation features. The
features are developed in a systematic manner with planned reuse
for the future. The features are implemented in Eclipse as plug-ins
and integrated to form products. The products in the Eclipse prod-
uct line are thus the multiple package distributions provided by
Eclipse for different user communities.
2.1. Products

Each year, Eclipse provides more products based on the needs of
its user communities. For Java developers, the Eclipse Java package
is available; for C/C++ developers, Eclipse provides the C/C++ distri-
bution package, etc. In 2007, five package distributions were avail-
able: Eclipse Classic, Eclipse Java, Eclipse JavaEE, Eclipse C/C++, and
Eclipse RCP. In 2008, two more products became available: Eclipse
Modeling and Eclipse Reporting. Year 2009 saw the introduction of
Eclipse PHP and Eclipse Pulsar. In 2010, Eclipse had twelve prod-
ucts, including three new ones: Eclipse C/C++ Linux, Eclipse SOA
and Eclipse Javascript. Fig. 1’s columns list the 2010 products.
New products are introduced by reusing the common components
and existing variation components, and by implementing any re-
quired new variations in new component files.

In this study we observe four products (Eclipse-Classic, Eclipse-
C/C++, Eclipse-Java, and Eclipse-JavaEE). Each product has a release
during the years 2007–2010, with Eclipse-Classic also having re-
leases for years 2002–2004. The yearly releases of Eclipse products
are given release names in addition to the release numbers: Europa
for year 2007, Ganymede for 2008, Galileo for 2009 and Helios for
2010. The release numbers corresponding to each release are 3.3
for Europa, 3.4 for Ganymede, 3.5 for Galileo, and 3.6 for Helios.
In the rest of the paper, to refer to a particular release of a product,
we mention the release name along with the release number, i.e.,
Classic-3.3 (Europa), Java-3.4 (Ganymede), etc. For the older re-
leases from 2002 to 2004 we refer to them using their release num-
bers, namely 2.0, 2.1 and 3.0, respectively.
2.2. Components

The products are composed of components which are imple-
mented as plugins. For the 2010 release, the components in the
Eclipse product line are shown in the first column in Fig. 1. The
individual cells indicate which components are used/reused in
each product.

Based on the level of reuse we observe three categories of com-
ponents: commonalities, high-reuse variations and low-reuse vari-
ations. Table 1 lists the components studied in this paper, grouped
by level of reuse.

The first category contains the common components reused in
all products. The large component RCP/Platform is the only com-
mon component reused across all products. Henceforth in the pa-
per, we abbreviate the RCP/Platform component to Platform.

The second category is the set of variation components with
high reuse, which are reused in more than two products but not
in all products. The number of products in which these compo-
nents are reused increases with each subsequent release from
2007 to 2010. The components in this category are EMF, GEF,
JDT, Mylyn, Webtools, XMLtools, and PDE.

Fig. 1. Eclipse product line for the year 2010 [http://www.eclipse.org/downloads/compare.php].

Table 1
List of components.

Category Component

Common Platform
High-reuse variation EMF

GEF
JDT
Mylyn
Webtools
XMLtools
PDE

Low-reuse variation CDT
Datatools
JEEtools

1482 S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495
The third category is the set of variation components with low
reuse. This category includes components that are reused only in
two products, and the number of products in which they are reused
does not increase with each release. The components in this cate-
gory are CDT, Datatools and Java EE Tools (called JEEtools here).

3. Approach

3.1. Data collection and integration

In order to both replicate and extend the work conducted by
Moser et al. [7], we collected CVS log data and bug tracking data-
base entries from May 2001 to May 2011 for the Eclipse-Classic
product. This data was partitioned into time periods corresponding
with 6 months before and after the release of Eclipse 2.0, Eclipse
2.1, Eclipse 3.0, Eclipse 3.3 (Europa), Eclipse 3.4 (Ganymede),
Eclipse 3.5 (Galileo), and Eclipse 3.6 (Helios). Fig. 2 shows the time
periods for each release.

We extracted the same set of 17 change metrics as in [7],
including identifying bug-fixes, refactorings, and changeset size
as listed in Table 2. A detailed description of these metrics is given
in [7]. For pre-Europa releases, i.e. releases 2.0, 2.1, and 3.0, as in
[6], we mined the CVS log data by looking for four and five digit
strings matching the bug IDs. For Europa and later releases, we
matched six-digit strings to bug IDs. A manual review of data in-
stances showed that no entries containing the word ‘‘bug’’ existed
which were not caught by this pattern match. Extracting the metric
Refactorings followed Moser’s approach, namely tagging all log en-
tries with the word ‘‘refactor’’ in them. Refactoring the code in-
volves restructuring parts of the code to improve code quality
while preserving its internal structure. The Age metric was calcu-
lated by reviewing all CVS log data from 2001 onward and noting
the timestamp of the first occurrence of each file name.

To determine changeset size, we used the CVSPS tool [25]. This
tool identifies files which were committed together and presents
them as a changeset. Slight modifications to the tool were required
to ensure that the file names produced in the changesets included
the path information to match the file names produced by our rlog
processing script.

We wrote custom scripts to parse the CVS logs, converting the
log entries into an SQL database. This data, along with changesets,
bugs, and refactorings, were used to compute the metric values for
each file. Finally, Weka-formatted files (ARFF) were produced. We
also found and corrected an error in the script we had used to ex-
tract the change data from the database into ARFF files in [4]. This
error had caused the data to be extracted beyond the stated end
date (beyond 6 months pre-release) for 13 of the 17 metrics.
Fig. 3 provides an overview of this process.

To ensure that the data resulting from the various input sources
all contained matching filenames (the key by which the data were
combined), and covered the same time periods, a few on-the-fly
modifications were necessary. In cases where a file has been
marked ‘‘dead’’, it is often moved to the Attic in CVS. This results
in an alteration of the file path, which we adjusted by removing
all instances of the pattern ‘‘/Attic/’’ from all file paths.

An artifact of using the CVS rlog tool with date filtering is that
files which contain no changes during the filter period will be
listed as having zero revisions, with no date, author, or other revi-
sion-specific information. This is true even if the file was previ-
ously marked ‘‘dead’’ on a branch. Thus, rather than examining
only the date range required for each specific release, we obtained
the rlog for the entire file history and determined the files which
were alive and the revisions which applied to each release.

To validate our approach, we compared our resulting file set for
the pre-Europa releases (2.0, 2.1 and 3.0) with the file sets

http://www.eclipse.org/downloads/compare.php

Fig. 2. Data timeline of Eclipse classic.

Table 2
List of change metrics [7].

Metric name Description

REVISIONS Number of revisions made to a file
REFACTORINGS Number of times a file has been refactored
BUGFIXES Number of times a file was involved in bug-fixing (pre-release bugs)
AUTHORS Number of distinct authors that made revisions to the file
LOC_ADDED Sum over all revisions of the number of lines of code added to the file
MAX_LOC_ADDED Maximum number of lines of code added for all revisions
AVE_LOC_ADDED Average lines of code added per revision
LOC_DELETED Sum over all revisions of the number of lines of code deleted from the file
MAX_LOC_DELETED Maximum number of lines of code deleted for all revisions
AVE_LOC_DELETED Average lines of code deleted per revision
CODECHURN Sum of (added lines of code – deleted lines of code) over all revisions
MAX_CODECHURN Maximum CODECHURN for all revisions
AVE_CODECHURN Average CODECHURN per revision
MAX_CHANGESET Maximum number of files committed together to the repository
AVE_CHANGESET Average number of files committed together to the repository
AGE Age of a file in weeks (counting backwards from a specific release to its first appearance in the code repository)
WEIGHTED_AGE PN

i¼1
AgeðiÞ�LOC ADDEDðiÞ
PN

i¼1
LOC ADDEDðiÞ

, where Age(i) is the number of weeks starting from the release date for revision i and LOC_ADDED(i) is the number of lines of

code added at revision i

Fig. 3. Data collection process.

S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495 1483
available from Zimmermann’s work [6]. We found that there were
a few differences in the two datasets due to the independent data
collection processes. While most of the files were common to both
datasets, there was a small subset of files which were unique to
each of them. For the three components, Platform, JDT and PDE,
in the 2.0 release, we included 6893 files as compared to their
6730 files. In the 2.1 release, we had 7942 files while they had
7888, and in the 3.0 release, we had 10,822 files as compared to
10,593 in theirs. Further inspection showed that there were some
differences in the list of plugins included in both studies. We also
observed that some files which were not present in the earlier
dataset did have revisions during the development and production
lifetime of the respective releases, and hence should have been in-
cluded in the analysis. We thus included those in our dataset.
Moser et al. [7] use a subset of the dataset used in [6] (57% of
Classic-2.0 files, 68% of Classic-2.1 files and 81% of Classic-3.0 files)
and annotate it with change metrics. Since this dataset is not pub-
licly available, we cannot compare our dataset with theirs. As dis-
cussed earlier, our dataset is comparable in size with the
Zimmermann dataset in [6] and hence larger than the Moser data-
set in [7].

3.2. Types of datasets

Based on the research that has been done in this area, it appears
that there are different types of datasets used in previous classifi-
cation studies. Some previous defect prediction studies have used
datasets that divide the time period into pre-release and post-re-

Table 3
Base probability for all releases for multiple products of Eclipse.

Product Release Total files UseAll_
vPredictAll
(%)

UseAll_PredictPost
and UsePre_
PredictPost (%)

Classic 2.0 6893 54.6 26.2
2.1 7942 45.9 23.3
3.0 10822 47.6 23.5
3.3 15661 32.1 16.7
3.4 17066 32.1 16.6
3.5 16663 24.0 11.9
3.6 17035 18.6 8.3

C/C++ 3.3 14303 36.7 18.3
3.4 15689 37.6 21.3
3.5 16489 32.6 16.6
3.6 16992 30.4 10.5

Java 3.3 18972 40.4 18.1
3.4 20492 32.4 17.8
3.5 20836 25.8 13.7
3.6 21178 21.2 8.6

JavaEE 3.3 35311 48.7 24.2
3.4 39033 34.8 16.5
3.5 39980 26.3 11.5
3.6 41274 19.1 6.6

1484 S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495
lease [6,7,26–28]. In these studies, metrics are collected for a spec-
ified period before the release of the software (typically 6 months)
and these metrics are used to predict the post-release defects six
months after release. Other studies have used datasets which do
not have such division of data into time periods. These include
datasets from the NASA MDP repository [29] and the PROMISE
repository [30]. MDP and PROMISE datasets provide static metrics
at file (or class) level but do not distinguish between pre-release
and post-release defects [33,34].

Studies using the NASA MDP and PROMISE datasets have shown
good prediction performance (e.g., [9,31,32]), applying cross-vali-
dation to predict the defective files. However, the high recall rates
in experiments carried out on these datasets may not be achievable
in our goal of a product line project predicting future failure-prone
files from past data.

Studies which have divided their data into pre-release and post-
release periods have observed mixed results in terms of prediction
performance. For studies on open-source systems, Zimmermann
et al. [6] report that for three releases of the Eclipse system, classi-
fying files as failure-prone or not gave low recall rates (the best
being 37.9% for Eclipse 3.0) when static metrics were used. Moser
et al. [7] reported much better results for the same releases of
Eclipse when change metrics were used with recall rates greater
than 60%. However, this dataset is not publicly available and hence
the reproducibility of the results is not certain. Recently, D’Ambros
et al. performed a study to provide a benchmark for existing defect
prediction strategies [28]. They report high AUC values (greater
than 0.85) for five open-source systems, when change metrics
were used. Studies from Microsoft by Nagappan et al. [14] report
very high recall and precision rates (both greater than 90%) when
using change burst metrics for predicting defect-prone binaries.
However, they also report that the same change burst metrics per-
form poorly for some open-source projects like Eclipse (recall rate
of only 51%).

To check the consistency of results across datasets with differ-
ent data collection and prediction periods, we experiment with
three existing approaches to classifying our datasets, each involv-
ing a different time period for collecting change and defect data.
For every release of the Eclipse products (i.e., 2.0, 2.1, 3.0, 3.3,
3.4, 3.5 and 3.6), we collected change and defect data for 6 months
before and after release. Except for release 2.1, which was released
in March, 2003 the other releases were in June of their respective
years. We partition this collected change and defect data in three
different ways to form the three types of datasets. We then com-
pare results among the three types of datasets as we investigate
the research questions.

� UseAll_PredictAll: This dataset uses the same approach as the
NASA MDP and PROMISE datasets [29,30]. For this type of data-
set, change data is collected for the entire twelve months (Jan-
Dec) of each release. Pre-release and post-release defects are
grouped into a single field. If a file has any defects associated
with it, we tag the file as defective; otherwise, the file is tagged
as non-defective. In this type of dataset we do not distinguish
between pre-release and post-release defects. Therefore, the
metric BUGFIXES is not included in the feature set, i.e., only
the other 16 change metrics are included.
� UseAll_PredictPost: This dataset is a variant of the approach

used in our earlier paper [4]. As with the previous dataset,
the change data is collected for the twelve months (Jan-Dec)
of each release. Pre-release defects are distinguished from
post-release defects. The number of pre-release defects
(defects in Jan-June) are counted and recorded in the BUGFIX-
ES metric. If a file has any post-release defects (defects in
Jul-Dec), it is tagged as defective; otherwise, the file is tagged
as non-defective.
� UsePre_PredictPost: This dataset uses the same approach as that
used by Zimmermann et al. [6] and others [7,26–28]. For this
dataset, change data is collected for six months (Jan-Jun) pre-
release, including the BUGFIXES metric. Again, pre-release
defects are distinguished from post-release defects. If a file
has any post-release defects (defects in Jul-Dec), it is tagged
as defective; otherwise, the file is tagged as non-defective.

One reason for wanting to distinguish pre and post-release de-
fects is that, since post-release defects are encountered and re-
ported by customers, they may have a higher impact on the
quality of the software as perceived by the customer. Additionally,
in terms of the practical utility of prediction, projects may seek to
use metrics collected from the pre-release period to predict post-
release defects. Using pre-release data to predict pre-release de-
fects or post-release data to predict post-release defects may have
limited practical value.
3.3. Data analysis

The base probabilities (proportion of defective files) for all re-
leases of all four products for the three datasets are given in Table 3.
The total number of files for each release of each product is given in
the third column. For the UseAll_PredictAll datasets, the percentage
of defective files is shown in the fourth. For both the UseAll_Predict-
Post and UsePre_PredictPost datasets, the percentage of defective
files is the same as shown in the last column. The percentage of
defective files in the UseAll_PredictAll dataset, which includes both
pre-release and post-release defects, are two to three times larger
than in UseAll_PredictPost and UsePre_PredictPost datasets, for all
products and releases.

In our previous work [4], the prediction was done at the product
level, for each product in the product line. In this work, we perform
prediction and analysis at the component level as well. Data at prod-
uct level is an aggregation of data at component level, i.e., the total
number of files in a product is an aggregation of the files of all the
components that belong to that particular product. For example,
Eclipse-Classic is composed of three components, Platform, JDT
and PDE. As such, the total files for any release of Eclipse-Classic is
an aggregation of all the files of Platform, JDT and PDE for that
release.

Table 4
Confusion matrix.

Predicted class

Not failure-prone Failure-prone

True class Not failure-prone n11(TN) n12(FP)
Failure-prone n21(FN) n22(TP)

S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495 1485
We perform an initial exploration using seventeen different
learners including Bayesian methods, decision tree methods, sup-
port vector techniques, neural network techniques and nearest
neighbor methods. Based on the results reported in Section 5, we
choose the J48 decision tree learner for the subsequent work. The
prediction results are obtained using 10-fold cross validation
(CV). We divide the dataset into 10 folds and use 9 folds for train-
ing and 1 fold for testing. This is done for each fold and the results
of the 10 folds are averaged. For some statistical tests, we repeat
the 10-fold CV multiple times as indicated in the text.

Based on the confusion matrix shown in Table 4, we use the fol-
lowing metrics of learner performance, consistent with [6,7].

PC ¼ ðn11 þ n22Þ
ðn11 þ n12 þ n21 þ n22Þ

� 100% ð1Þ

TPR ¼ n22

ðn21 þ n22Þ
� 100% ð2Þ

FPR ¼ n12

ðn11 þ n12Þ
� 100% ð3Þ

Precision ¼ n22

ðn12 þ n22Þ
� 100% ð4Þ

The metric PC, also known as Accuracy, relates the number of
correct classifications to the total number of files. The metric TPR,
also known as Recall, relates the number of files predicted and ob-
served to be failure-prone to the total number of failure-prone
files. It is also known as the probability of detection. The metric
Precision gives the number of files that are actually failure-prone
within the files that are predicted as failure-prone. The measure
False Positive Rate (FPR) relates the files incorrectly classified as fail-
ure-prone to the total number of non-failure-prone files. We use
these metrics to compare our results with those by Moser et al.
[7] and Zimmermann et al. [6]. In addition to these metrics, we also
use the Area Under the ROC Curve (AUC) as a performance metric.

In addition to the prediction results obtained from 10-fold
cross-validation, we identify the metrics which are most promi-
nent. We find the Gain Ratio (GR) for each metric. GR has been
found to be an effective method for feature selection [35]. Informa-
tion Gain (IG) favors features with a larger number of values,
although they actually have less information [36]. GR improves
upon IG by normalizing it with the actual intrinsic value of the fea-
ture. Gain Ratio is calculated as

GRðC; aÞ ¼ ðHðCÞ � HðCjaÞÞ=HðaÞ ð5Þ

where H is the entropy function, C is the dependent variable (CLASS)
and a is the feature being evaluated. We modified the J48 code in
Weka to output the gain ratio weights assigned to the nodes of
the tree based on the number of correctly classified files from the
total number of files.

Based on the GR of the features we perform a step-wise greedy
feature selection approach. We first select the feature with the
highest GR to perform classification. We then add the feature with
second-highest GR to the dataset and repeat the classification. If
there is significant improvement in classification performance, this
feature is added to the prominent predictor list. Features are added
in decreasing GR order until no additional feature significantly im-
proves classification performance. We repeat the procedure for
each release of each product (or component). Note that the signif-
icance levels reported by this procedure are not literal (since pre-
dictors are pre-screened by GR and the t-test is not valid because
the 10-fold CV values are not independent). As a result, this feature
selection procedure neither guarantees the best set of predictors
nor that each predictor actually significantly improves prediction,
but it is a reasonable procedure to identify likely important predic-
tors in a standard way.

Finally, we investigate an incremental prediction approach that
uses increasing amount of change data (instead of the usual
6 months) to predict the failure-prone files in the remaining post-re-
lease months. We increment the change data period from 6 months
to 11 months, in steps of 1 month, while simultaneously reducing
the post-release failure-prone file data from 6 months to 1 month.

Note that in order to control the family-wise error rate (FWER)
at the 0.05 level due to multiple statistical tests performed in this
paper (Sections 6.3, 7.2, and 8.2 with 12 tests in each section), we
use a cut-off significance value of 0.05/36 = 0.001.

4. Research questions

This paper explores the following research questions for each of
the three types of datasets described above: UseAll_PredictAll, Use-
All_PredictPost and UsePre_PredictPost.

RQ1. Classifier selection
(i) Is there a specific machine learner that is significantly better
than other learners for classifying failure-prone files using
change data?
RQ2. Single product evolution
(i) How do our results related to learner performance compare
with previously published results?

(ii) Does learner performance improve as a single product
evolves?

(iii) Is the set of prominent predictors consistent across releases
of a single product?
RQ3. Product line evolution
(i) Does learner performance improve as the product line
evolves?

(ii) Is the set of prominent predictors consistent across products
as the product line evolves?
RQ4. Evolution of components at different levels of reuse
(i) Does the learner performance improve for components in
each category of reuse (commonalities, high-reuse variation
and low-reuse variation)? Does performance differ across
categories of reuse?

(ii) Is there a common set of best predictors across all categories
of reuse?
RQ5. Incremental prediction
(i) Does performing incremental prediction (increasing the per-
iod of change data collection) improve the prediction
performance?

The next five sections address these five sets of research ques-
tions in turn.
5. Classifier selection

In this section, we explore RQ1 from the list of research ques-
tions. In our previous work [4], we used the J48 machine learner

1486 S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495
to perform classification of failure-prone files. In the past, research-
ers have shown that prediction performance is not crucially depen-
dent on type of classification technique used. Menzies et al. [9,17]
and Lessmann et al. [18] observed that there is no statistical differ-
ence between the performance of most learners. However, there
were a few learners that performed significantly worse than
others.

We wanted to check whether J48 performs well enough when
compared to other learners. Hence, we performed analysis similar
to that of Lessmann et al. [18]. We evaluated a total of 17 classifiers
over the 11 distinct component datasets identified in Table 1. The
goal of this research is not to find the best classification algorithm.
Hence, we do not delve into the details of each classifier. All the 17
chosen classifiers are implemented in the Weka machine learning
software [19]. The classifiers used are listed in Table 5.

We evaluated the performance of the 17 classifiers over the 11
components for the 2007 Europa release. As this was part of a pilot
study and as we were interested in observing the general trends,
we did not consider all the releases. We measured the AUC and
Table 5
List of classifiers.

Type Classifier

Statistical Naive Bayes
Bayesian networks
Logistic regression
Bayesian logistic regression

Decision tree methods J48
ADTree
LADTree
RandomForest

Support vector methods Voted perceptron
SPegasos
SMO

Neural network methods RBF network
Nearest neighbor methods IBk
Others DecisionTable

OneR
Bagging with J48
RandomSubSpace with J48

Fig. 4. Diagram for AUC and TPR Ran
the recall (TPR) values for each learner-component combination.
To test whether the differences in AUC or TPR are significant, we
carried out the Friedman test. A p-value < 2.2 � 10�16 suggested
that the hypothesis of equal performances among the classifiers
was unlikely to be true. This shows that there is a statistically sig-
nificant difference between some pairs of learners. This was true
when comparing AUC as well as TPR values. We then conducted
the post hoc Nemenyi tests to find where was the difference, and
represented the results with Demsar’s Critical Difference (CD) dia-
gram [37]. For 11 datasets and 17 classifiers the CD value was 7.45
at a significance level of 0.05.

The results of Nemenyi tests for the AUC and TPR values are
shown in Fig. 4. When using AUC as the performance measure,
we find that there is no statistical difference between the top 10
classification algorithms. Furthermore, we observe that there is
no significant difference between the performance of the J48 lear-
ner and the observed best performer, RandomForest, both in terms
of AUC and TPR. Since our focus is not on analysis of classifier per-
formances, we do not present the details of the ranking of the dif-
ferent classifiers.

Fig. 4 shows the results for the UseAll_PredictAll dataset (i.e., for
each component, the change metrics and defect data encompass
the entire 12 months). Similar results are observed for the Use-
All_PredictPost and UsePre_PredictPost data. Due to space limita-
tions, we do not show all the results here. In all, there are 6
cases (three types of datasets and two performance metrics, AUC
and TPR). Although the individual rankings differ for each case,
there is no statistical difference between the performance of J48
and the best learner in 5 out of 6 cases. Only for one case is there
a statistically significant difference, (AUC ranking for UsePre_Pre-
dictPost dataset). Since J48’s performance was good overall, we
continued our analysis in this paper with J48.
6. Single product evolution

In this section we discuss the performance of the J48 machine
learner and the sets of prominent predictors for a single product,
Classic, in the Eclipse product line. We look at each of the questions
listed in RQ2 in Section 4.
ks of UseAll_PredictAll Dataset.

S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495 1487
6.1. How do our results related to learner’s performance compare with
previously published results?

Older releases of Eclipse did not have many components. Plat-
form, JDT and PDE were the important components, and the combi-
nation of these three components was distributed as Eclipse SDK.
This combination of components is now one product called Eclipse
Classic in the Eclipse product line. Moser et al. in [7] looked at three
releases, 2.0, 2.1 and 3.0 of this product. We performed classification
on the same three releases for this product using the J48 learner.

Table 6 compares our results with the results by Zimmermann
et al. [6] and Moser et al. [7]. The authors in [6,7] used pre-release
data to predict post-release defects. Hence we compare their re-
sults with our results for the UsePre_PredictPost dataset of
Eclipse-Classic for releases 2.0, 2.1 and 3.0.

We see that our results using change data are better than the re-
sults of Zimmermann et al. [6] which are based on using static
data. The values of PC and Precision are similar to theirs, while
the TPR and FPR values are much better. The TPR values reported
by Moser et al. [7] are higher than the TPR values we observed. It
should be noted that the dataset used in [7] is signiificantly smal-
ler. Because that dataset is not publicly available, we are unable to
further investigate the discrepancy of the results.

A reason for the difference in results may be the different num-
ber of files used by Moser et al. and us. The datasets used in [7]
consisted of significantly smaller subsets of the files in [6], i.e.,
57% of the 2.0 files, 68% of the 2.1 files, and 81% of the 3.0 files,
which was mentioned to be due to incomplete CVS history. Instead,
we use the dataset used in [6] as a reference point. As described in
Section 3.1, our datasets are comparable in size to the datasets in
[6], with few differences between them.

6.2. Does learner performance improve as a single product evolves?

We next add to the analysis four additional releases of the same
product, Eclipse Classic, for the three types of datasets. The results
in Table 7 show values for PC, TPR, FPR and AUC over the seven
years for the three datasets, UseAll_PredictAll, UseAll_PredictPost
and UsePre_PredictPost. The comparison over the three datasets
reveals that results that may look promising when using a
Table 6
Comparison of classification performance for 2.0, 2.1, and 3.0 releases of Eclipse classic fo

Release Moser et al. [7] Zimmermann e

PC TPR FPR Precision PC TPR

Classic-2.0 82 69 11 71 77 24
Classic-2.1 83 60 10 65 79 22
Classic-3.0 80 65 13 71 71 38

Table 7
Comparison of results for newer releases (3.3–3.6) with older releases (2.0, 2.1, 3.0) of Ecl

Release UseAll_PredictAll U

PC TPR FPR AUC P

Classic-2.0 83.5 85.7 19.1 86.5 8
Classic-2.1 84.8 84.1 14.6 86.8 9
Classic-3.0 83.6 84.1 16.7 87.1 8

Classic-3.3 94.4 94.7 5.7 97.1 9
Classic-3.4 94.8 92.2 4.0 97 9
Classic-3.5 97.2 96.3 2.5 98.7 9
Classic-3.6 97.8 94.5 1.9 99 9

Estimated slope of improvement (in%) 2.0⁄⁄ 1.7 �2.3⁄⁄ 1.9⁄⁄ 1
p-value 0.0004 0.003 0.0001 0.0002 0
particular type of dataset need not hold for other types of datasets.
In our case, the results are promising for the UseAll_PredictAll and
UseAll_PredictPost datasets. However, when we look at more
practical datasets like the UsePre_PredictPost, the results are much
worse. PC, TPR, FPR and AUC values for UseAll_PredictAll and
UseAll_PredictPost datasets are improving with time. For the later
releases, the PC and TPR values are above 85% which is very
promising. Similarly the FPR values are as low as 2%. Quite opposite
to the other two datasets, for UsePre_PredictPost the TPR values for
the later releases of Eclipse-Classic are worse than for the older
releases. The highest TPR value for the later releases is 40% for
the Ganymede release.

We used statistical methods to test for differences in learner
performance in time and then estimate the magnitude of the
change in performance over time for each dataset. For each release
of the Classic product, we computed the average PC, TPR, and FPR
of the J48 learner over a 10-fold cross-validation. To reduce the
variance in these estimated statistics, we repeated the ten-fold
cross-validation 1,000 times.

First, we used one-way analysis of variance (ANOVA) to test for
constant mean PC, TPR, FPR and AUC across all releases. For all
three datasets, this hypothesis was resoundingly rejected (p-value
<5 � 10�16) for all four responses. The ANOVA assumption of nor-
mality was largely satisfied, except for response TPR on the Europa
release (p-value 4 � 10�4) for the UseAll_PredictAll dataset, for re-
sponse PC on the Ganymede release (p-value 2 � 10�3) for the Use-
Pre_PredictPost dataset, and for response PC on the Galileo release
(p-value 8 � 10�3) for the UseAll_PredictPost dataset. The equal var-
iance assumption was violated for all responses of all datasets
(based on Figner-Killeen test p-values < 5 � 10�16). As a precaution
against these violated assumptions, we carried out the non-para-
metric Kruskal–Wallis test which does not have assumptions about
distributions. The hypothesis of equal distributions was resound-
ingly rejected (p-value < 5 � 10�16) for all four responses (PC,
TPR, FPR and AUC) in all three datasets.

Given that there was change in PC, TPR, and FPR across releases,
we next sought to characterize the size and direction of the trend
over time. Our interest is in detecting possible trends in time and
since there are only seven releases (and only four in later sections),
we restrict our attention to linear trends. If the temporal trend is in
r UsePre_PredictPost Dataset.

t al. [6] This study

FPR Precision PC TPR FPR Precision

27 66 79 52 11 63
24 65 81 46 8 63
34 66 80 38 7 63

ipse classic.

seAll_PredictPost UsePre_PredictPost

C TPR FPR AUC PC TPR FPR AUC

8.3 77.0 7.6 90.2 79.3 52.0 11.0 73.7
0.2 79.0 6.4 91.7 81.1 46.0 8.2 72.8
9.7 78.6 6.9 91.9 80.2 37.9 6.8 70.5

5.7 87.3 2.6 96.3 84.4 25.2 3.7 65.1
5.6 86.5 2.6 96.0 87.9 39.8 2.5 75.0
6.4 85.7 2.2 96.6 89.1 23.1 1.9 65.8
6.9 85.9 2.1 95.4 92.0 19.4 1.4 68.0

.2⁄⁄ 1.3 �0.8⁄⁄ 0.8⁄⁄ 1.5⁄⁄ �3.6 �1.1⁄⁄ �0.5

.0001 0.007 0.0002 0.001 0.0002 0.004 8.6 � 10�05 0.22

1488 S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495
fact linear, then the estimated slopes are a more parsimonious and
precise summary of the trend than pairwise post hoc tests. To esti-
mate the linear trend in PC, TPR, and FPR over time, we fit a linear
mixed model to the 1000 repeated measures for each release using
R package nlme [38]. We estimated a separate variance for each re-
lease. The slopes and associated p-values for testing the null
hypothesis of no temporal trend are shown in the last row of Ta-
ble 7. Cells marked with �� denote values that are statistically sig-
nificant at the 0.001 level. For the UseAll_PredictAll dataset, PC
increased 2.0% per year (p-value 0.0004); TPR increased 1.7% per
year (p-value 0.003); FPR decreased 2.3% per year (p-value
0.0001) and AUC increased 1.9% per year (p-value 0.0002). How-
ever, for the UsePre_PredictPost dataset, only PC and FPR have an
improving trend, whereas TPR and AUC have a worsening, but
not significant, trend. PC increased 1.5% per year (p-value
0.0002); TPR decreased 3.6% per year (p-value 0.004); FPR de-
creased 1.1% per year (p-value 8.6 � 10�05) and AUC decreased
0.5% per year (p-value 0.22).

For the UsePre_PredictPost dataset it is difficult to assess
whether performance is increasing or decreasing over time. How-
ever, there is a clear reduction in the TPR and AUC for the Use-
Pre_PredictPost dataset as compared to the others. Thus, training
only on pre-release data makes it very difficult to successfully find
post-release failures. One likely reason for the high recall rates and
improving performance for the UseAll_PredictAll and UseAll_Predict-
Post datasets is that the changes made to correct the post-release
defects are included in the change data collection period. Another
possible reason for the worse performance of the UsePre_Predict-
Post dataset is the lower percentage of defects, i.e., it is a less bal-
anced dataset. Looking back at Table 3, we can see that the
percentage of defective files for the UsePre_PredictPost datasets is
between 6–27%, almost half of the percentage for the UseAll_Predic-
tAll datasets. However, since the UseAll_PredictPost datasets also
have high recall rates, class imbalance does not appear to be as
important as the period of collection of change data and prediction
data here. It appears that the continuous change observed [3] even
in the components that implement commonalities and high-reuse
variabilities makes classification more difficult.
6.3. Is the set of prominent predictors consistent across releases of a
single product?

We next explore whether the set of prominent predictors re-
mains stable across releases for a single product in the product
line, namely Eclipse Classic. To identify the prominent predictors,
Table 8
Comparison of prominent predictors for older releases of Eclipse classic.

Release Top 3 predictors from [7] Top predictors from

UseAll_PredictAll

Classic-2.0 Max_Changeset, Revisions, Bugfixes Revisions, Age, Auth
Classic-2.1 Bugfixes, Max_Changeset, Revisions Revisions, Ave_Chan
Classic-3.0 Revisions, Max_Changeset, Bugfixes Revisions, Max_Cha

Table 9
Prominent Predictors for Newer Releases of Eclipse Classic.

Release Top predictors

UseAll_PredictAll Use

Classic-3.3 (Europa) Max_CodeChurn, Age, Loc_Added, Authors Rev
Classic-3.4 (Ganymede) Authors, Revisions, Age, Ave_Changeset Rev
Classic-3.5 (Galileo) Ave_CodeChurn, Age, Ave_Changeset, Authors Rev
Classic-3.6 (Helios) Authors, Ave_Changeset Rev
we order the 17 change metrics with decreasing Gain Ratio (GR)
weights, and perform a step-wise feature selection approach fol-
lowed by classification of each feature selected subset using the
J48 machine learner. We run the following algorithm to perform
the step-wise feature selection:

1. Let m be the set of all metrics for the dataset.
2. Select m0 = maxGR(m).
3. Add m0 to the prominent predictor list.
4. Add m0 to temporary dataset d0.
5. Perform J48 classification on d0. Store result in R1.
6. Delete m0 from m.
7. While m – /, repeat steps 8–12.
8. Select m00 = maxGR(m).
9. Add m00 to d0.

10. Perform J48 classification on d0. Store result in R2.
11. If (R2 is statistically significantly better than R1) then {Add

m00 to prominent predictor list; R1 = R2}.
12. Delete m00 from m.
13. Output prominent predictors.

We performed the above steps for all releases of Eclipse-Classic
product. For each feature-selected dataset, we performed 10-fold
cross validation. To test whether a metric should be included in
the prominent predictor list, we compared the performance when
a new feature is added with the previous feature selected dataset
(that resulted in a prominent predictor) using the t-test. The fea-
ture with the highest GR is considered as prominent by default.
For example, to test if the feature with second highest GR should
be included in the prominent predictor set, we do a t-test between
10 outputs of 10-fold CV for the second dataset (when the highest
and second highest GR features are selected) and the 10 outputs of
10-fold CV of the dataset with only the highest GR feature. If the
improvment is significant, we add the feature with second highest
GR to the prominent predictor set. As multiple t-tests had to be
performed, we applied a Bonferroni correction to the p-value. Since
the number of t-tests to be performed were not known a priori
(due to all metrics not contributing towards GR), we took a conser-
vative approach for Bonferroni correction. A maximum of 16 t-tests
would be performed if all features contribute towards GR, and each
being a one-sided test to check for increase in the AUC value, we
compared the p-value returned by t-tests with 0.05/16 = 0.003125.

Results of the feature selection approach for the different re-
leases of Eclipse Classic across the three types of datasets are
shown in Tables 8 and 9. Table 8 gives the prominent predictors
this study

UseAll_PredictPost UsePre_PredictPost

ors Revisions, Weighted_Age Revisions, Loc_Deleted
geset Revisions, Weighted_Age Bugfixes, Max_Changeset

ngeset, Age Revisions, CodeChurn Bugfixes, Revisions

All_PredictPost UsePre_PredictPost

isions, Max_Changeset, Max_Loc_Added Revisions
isions, Age, Ave_Changeset Age, Bugfixes, Ave_Loc_Added
isions, Max_Changeset, Loc_Added, Authors Revisions, Bugfixes
isions, Authors, Bugfixes Loc_Added, Age

S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495 1489
for the older releases of Eclipse-Classic, while Table 9 gives the re-
sults for the newer releases. We find that in both tables the Use-
All_PredictAll and UseAll_PredictPost datasets have a prominent
predictor that is common across the respective sets of releases
(Revisions for older releases of UseAll_PredictAll, Authors for newer
releases of UseAll_PredictAll and Revisions for older and newer
releases of UseAll_PredictPost). However the UsePre_PredictPost
dataset does not have a prominent predictor that is common across
all the considered releases. The previous study by Moser et al. [7]
identified Bugfixes, Revisions and Max_Changeset as the most com-
mon predictors. Although it did not mention using any statistical
test to check for prominence, we find that there is some overlap
between those results and our results for the UsePre_PredictPost
dataset. We also find that Bugfixes and Revisions appear as promi-
nent in more than one release. For the newer releases, in addition
to Bugfixes and Revisions, we find that Age also appears in more
than one release.
7. Product line evolution

In this section we discuss how the performance of the machine
learner and the sets of prominent predictors change as the product
line evolves, looking at both of the questions in RQ3 given in
Section 4. In addition to the Eclipse Classic product studied in Sec-
tion 6, we applied the learning algorithm to three other products in
the Eclipse product line, Eclipse Java, Eclipse JavaEE, and Eclipse
C/C++.
Fig. 5. PC, TPR and FPR comparison of Eclipse produ

Fig. 6. PC, TPR and FPR comparison of Eclipse produc

Fig. 7. PC, TPR and FPR comparison of Eclipse produc
7.1. Does learner performance improve as the product line evolves?

Figs. 5–7 show the results for PC, TPR and FPR across four years
2007–2010, for the four products in Eclipse’s product line, for the
three types of datasets. The X-axis shows the four products and
the Y-axis shows the PC, TPR and FPR values.

As in the case with the Eclipse-Classic product, we observe that
across the product line, results show an improving trend for all
products in the UseAll_PredictAll and UseAll_PredictPost datasets.
In terms of correctly classified instances, all products have PC rates
above 94%. The true positive rates are almost all above 85% for both
these datasets. False positives show very low values, less than 6%
with the 2010 Helios release of the JavaEE product having the low-
est FPR for both datasets. For the UsePre_PredictPost dataset, we see
similar results as in Section 6, i.e., although the PC and FPR values
are improving with time, the recall values are low and do not show
improvement. The highest recall value is of 60% for the 2007 Euro-
pa release of the JavaEE product.

The plots of Figs. 5–7 appear to show some trends over time.
Specifically, PC appears to increase, FPR appears to decrease, while
TPR increases for two of the three datasets. To test whether this
tendency is a global and significant trend across products, we re-
gress each of these responses separately on time (release). We used
a linear mixed model with random intercept to account for covari-
ance due to repeated measures on the same product. The slope
values along with the corresponding p-values are shown in
Table 10. The estimated trends from these four years of data are
similar to the results obtained from the Classic product over seven
cts across releases for UseAll_PredictAll dataset.

ts across releases for UseAll_PredictPost dataset.

ts across releases for UsePre_PredictPost dataset.

Table 10
Performance trends for all products.

Release UseAll_PredictAll UseAll_PredictPost UsePre_PredictPost

PC TPR FPR AUC PC TPR FPR AUC PC TPR FPR AUC

Estimated slope of improvement (in %) 0.9⁄⁄ 0.7 �1.1⁄⁄ 0.6⁄⁄ 1.1⁄⁄ �0.2 �0.8⁄⁄ 0.5 1.4 �2.3 �0.6 �0.4
p-value 3.9 � 10�05 0.05 5.6 � 10�06 9.6 � 10�05 2.4 � 10�05 0.81 3.1 � 10�06 0.04 0.009 0.39 0.03 0.79

1490 S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495
years (Table 7), however none of the slopes estimated for the Use-
Pre_PredictPost dataset are significant, that is, the predictions do
not show a recognizable trend as the product line evolves.

In order to remove any bias in the results due to the changing
balance of the data across releases we repeated our experiments
with balanced data (equal number of positive and negative in-
stances). All the results from the statistical tests hold when bal-
anced data are used. The estimated trends are only marginally
different from the values using unbalanced data.

Similar to Section 6.3, there is no evidence to conclude any per-
formance trend in time for the UsePre_PredictPost dataset, but there
is an obvious reduced TPR for the UsePre_PredictPost dataset at all
releases relative to the others. Why this is so is a topic of current
research, but it seems that ongoing change [3] is altering the pat-
terns associated with failure as the products evolve in time. Prod-
ucts are made of both commonalities and variations, and it is
reasonable to suspect that failure patterns are more stable in com-
monalities. In Section 8, we check to see if files from commonalities
are easier to predict than files from variations.
7.2. Is the set of prominent predictors consistent across products as the
product line evolves?

In Section 6.3 we discussed the prominent predictors of failure-
prone files over time for the three types of datasets for the Eclipse-
Classic product. Here we investigate whether the set of prominent
predictors differs for different products in the product line. We use
the algorithm explained in Section 6.3 to identify the prominent
predictors.

Table 11 compares multiple products across the 2007–2010
(Europa, Ganymede, Galileo and Helios) releases. Each cell gives a
summary of the prominent predictors for that particular product
and in how many of the four releases they appeared as prominent.
We find that for the UseAll_PredictAll dataset, the Authors metric is
common across all releases of all products, followed by
Ave_Changeset which is prominent in three releases of each prod-
uct. For the UseAll_PredictPost dataset, Revisions is common appear-
ing in 15 of 16 releases across the four products. Authors and
Max_Changeset are the next most common. For the UsePre_Predict-
Post dataset, however, there is no common predictor across each
product and each release. Age is the most common predictor,
appearing in 11 of 16 releases across the four products. Bugfixes
Table 11
Prominent predictors at product level.

Dataset type Classic Java

UseAll_PredictAll Authors:4 Ave_Changeset:3
Age:3 Loc_Added:1
Max_CodeChurn:1
Ave_CodeChurn:1

Authors:3 Revisions:3
Ave_Changeset:2 Loc_Added
Age:1 Weighted_Age:1
Max_Changeset:1 CodeChur

UseAll_PredictPost Revisions:4 Max_Changeset:2
Authors:2 Ave_Changeset:1
Age:1 Max_Loc_Added:1
Loc_Added:1 Bugfixes:1

Revisions:3 Bugfixes:3 Auth
Max_Changeset:2 CodeChur
Age:1 Ave_Loc_Added:1

UsePre_PredictPost Bugfixes:2 Revisions:2 Age:2
Ave_Loc_Added:1 Loc_Added:1

Revisions:3 Age:3 Bugfixes:
Max_Loc_Added:1
and Revisions are the next most common prominent predictors
for the product line, appearing in 9 releases and 8 releases respec-
tively across four products.

The observations suggest that while there are predictors which
are common across all releases for the UseAll_PredictAll and Use-
All_PredictPost datasets, for the UsePre_PredictPost dataset no com-
mon predictor exists across all releases.
8. Evolution of components at different levels of reuse

We explore the learner performance and consistency of predic-
tors for components grouped by level of reuse (Commonalities,
High-reuse variations and Low-reuse variations) considering both
questions listed in RQ4 in Section 4.

8.1. Does the learner performance improve for components in each
category of reuse? Does performance differ across categories of reuse?

Failure prediction at the product level showed that the predic-
tion performance is improving across time only for PC and FPR,
but not for recall. Products are an aggregation of components, so
we wanted to observe whether there is an improvement in predic-
tion for components in the different reuse categories. Intuitively,
we expect that the learner performance would improve for each
category of reuse. Since commonalities are reused in every product,
change less and have fewer defects [3], we expect the J48 learner to
show better performance for higher reuse, i.e., performance
improvement for commonalities to be better than high-reuse vari-
ations which in turn would be better than low-reuse variations. To
explore this, we performed 10-fold cross validation using the J48
learner for the individual components.

We used a linear mixed effects model with random intercept to
estimate the slope of improvement and considered the main and
interaction effects of ‘‘time (year)’’ and ‘‘Type of reuse’’. The overall
increase/decrease rates for PC, TPR, FPR and AUC averaged across
all components for the three types of datasets are shown in
Table 12. The results are similar to the previous results obtained
for products. For UseAll_PredictAll and UseAll_PredictPost datasets,
we observe significant improvement trends for all the responses
(with the exception of FPR and AUC for UseAll_PredictAll). For the
UsePre_PredictPost dataset we see similar patterns as before,
although PC is significantly improving for components.
JavaEE C/C++

:1

n:1

Authors:4 Age:3
Ave_Changeset:3
Revisions:1 Loc_Deleted:1
Max_Changeset:1

Authors:4 Revisions:3 Ave_Changeset:3
Age:1 Max_Changeset:1

ors:3
n:1

Revisions:4 Authors:4
Max_Changeset:3 Age:1
Loc_Added:1 Refactorings:1
Max_CodeChurn:1

Revisions:4 Max_Changeset:3 Authors:2
Age:2 CodeChurn:1 Ave_Loc_Added:1
Max_CodeChurn:1 Max_Loc_Added:1
Ave_Changeset:1

2 Bugfixes:3 Age:3 Authors:1
Revisions:1
Ave_Code_Churn:1

Age:3 Revisions:2 Bugfixes:2 Authors:1
Ave_Loc_Added:1

Table 12
Performance trends for components at different levels of reuse.

Release UseAll_PredictAll UseAll_PredictPost UsePre_PredictPost

PC TPR FPR AUC PC TPR FPR AUC PC TPR FPR AUC

Estimated Slope of
Improvement
(in%)

1.9⁄⁄ 2.8⁄⁄ �1.1 1.5 1.6⁄⁄ 4.0⁄⁄ �0.9⁄⁄ 2.1⁄⁄ 1.4⁄⁄ �2.5 �1.0 �0.7

p-value 2.1 � 10�15 2.0 � 10�08 0.225 0.0017 5.5 � 10�12 1.9 � 10�07 2.5 � 10�07 1.4 � 10�10 5.9 � 10�05 0.08 0.0055 0.275

Table 13
Prominent predictors for components at different levels of reuse.

Dataset type Commonalities High-reuse variations Low-reuse variations

UseAll_PredictAll Authors:3 Ave_Changeset:2
Max_Changeset:2 Revisions:2
Max_CodeChurn:1 Age:1 Max_Loc_Added:1

Revisions:3 Authors:2 Ave_Changeset:2 Age:2
Max_Changeset:1 Ave_CodeChurn:1
Max_CodeChurn:1 Weighted_Age:1

Authors:4 Age:3 Max_Changeset:2
Revisions:1 Ave_Changeset:1

UseAll_PredictPost Revisions:3 Max_Changeset:3 Authors:3
Weighted_Age:1 Max_CodeChurn:1
Max_Loc_Added:1 Loc_Added:1

Revisions:4 Authors:3 Max_Changeset:2
Bugfixes:2 Age:2 Code_Churn:1 Ave_Changeset:1
Loc_Added:1

Max_Changeset:3 Loc_Added:3
Weighted_Age:2 Age:1 Authors:1 Bugfixes:1
Revisions:1 Max_CodeChurn:1

UsePre_PredictPost Bugfixes:2 Authors:2 Loc_Added:2 Age:1
Max_Changeset:1

Age:4 Bugfixes:2 Ave_Changeset:1
Weighted_Age:1 Max_Code_Churn:1

Age:3 Bugfixes:2 Weighted_Age:1
Max_Loc_Added:1 Revisions:1

S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495 1491
We found that with time, there is an improvement in learner
performance for each category of reuse for the UseAll_PredictAll
and the UseAll_PredictPost datasets. Similar to the results in Ta-
ble 10, most of the results for the UsePre_PredictPost dataset are
not statistically significant. For each dataset, when comparing the
different categories of reuse, we found that no category has a per-
formance increase that is significantly less (or more) than the over-
all improvement rate. Hence, the values in Table 12 indicate the
overall improvement rates for all three categories of reuse. In some
cases, as expected, commonalities seem to be classified better than
the other two categories, while for others, commonalities are clas-
sified worse, which does not confirm our intuition.

It should be noted that except for three components (Platform,
JDT and PDE), other components had change data for only four re-
leases (2007–2010). Due to limited data we are not able to conclu-
sively say whether one category of reuse performs better than the
others. In addition, the components are much smaller in size com-
pared to products and hence we expect more noise in the data at
the component level.
8.2. Is there a common set of best predictors across all categories of
reuse?

Next we explore whether the set of prominent predictors differ
across component categories. We use the algorithm described in
Section 6.3 for feature selection.

Table 13 lists the prominent predictors for the three reuse cat-
egories, for the three types of datasets. Each cell gives a summary
of the prominent predictors for that particular reuse category and
in how many of the four releases they appeared as prominent. We
observe that there is some overlap among the prominent predic-
tors for the three reuse categories. For the UseAll_PredictAll dataset,
the metric Authors is prominent and common across all three reuse
categories. Similarly for the UseAll_PredictPost dataset, Bugfixes and
Max_Changeset are common and prominent across all reuse catego-
ries. For the UsePre_PredictPost dataset, the metric Bugfixes is com-
mon across all reuse categories, although it appears as prominent
in only two of the four releases (2007–2010). Additionally, the
metric Age is also common between the two types of variations
(high-reuse and low-reuse) and appears in three or more releases.
Age is prominent for Commonalities in only a single release. This
indicates that while there are some metrics that are prominent
across all reuse categories, there are also differences among the
prominent predictors for the different reuse categories.

9. Prediction with incrementally increasing data collection
periods

In this section we explore RQ5. Results in Sections 6–8 showed
that predicting post-release failure-prone files using pre-release
change data gives low recall values. In this section we investigate
whether increasing the period of collecting change data improves
the prediction of failure-prone files. The UsePre_PredictPost type
of datasets use 6 months pre-release data to predict failure-prone
files 6 months post-release. We would like to investigate whether
using post-release change data in monthly increments, combined
with pre-release change data helps to better classify post-release
failure-prone files in the remaining months. In our incremental ap-
proach we begin from the UsePre_PredictPost dataset (i.e. using
6 months pre-release change data to predict 6 months post-release
failure-prone files). We increment the change data period from
6 months to 11 months in increments of 1 month, while simulta-
neously reducing the post-release failure-prone file data from
6 months to 1 month, i.e. our final dataset will have 11 months of
change data to predict failure-prone files in the 12th month.

Fig. 8 shows the results of incremental prediction for the four
products in the product line. We find that increasing the period
of change data does not improve recall values. One possible reason
is that as the period of change data increases (from 6 months to
11 months), the number of files that are failure-prone in the
remaining months reduces. As a result the J48 learner may not
have a sufficient number of defective files to learn from. We find
that for the last two iterations the recall values drop as compared
to the first four iterations.

Similar results are observed for the three reuse categories, as
shown in Fig. 9. Even commonalities, which should change less
and hence have a good classification performance, show low recall
values. In fact, the recall values for commonalities are in some
cases lower than for the other two reuse categories. High-reuse
variations have the highest recall values.

Results from Sections 6.3 and 7.2 indicated that using only pre-
release change data to predict post-release failure-prone files is
difficult. The results presented in this section indicate that even
when post-release change data are added to pre-release change
data predictions do not improve.

Fig. 8. Incremental prediction for four Eclipse products.

Fig. 9. Incremental prediction for three reuse categories.

1492 S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495
10. Threats to validity

This section discusses the threats to validity of the study.

10.1. Construct validity

A threat to the construct validity is the limited number of re-
leases in the study. While analyzing more releases might give addi-
tional insight into the trends, the 2007–2010 releases provide a
representative picture of the current product line situation. We
did not include the minor quarterly releases into our analysis be-
cause there were fewer users downloading them and because the
entries in the bug database for these minor releases were missing
data for several components. Furthermore, some of the minor re-
leases reported higher numbers of failures while others did not re-
port any. We plan to observe future releases as they become
available and incorporate the new data for analysis.

As mentioned by Moser et al. [7], a possible threat to construct
validity could be the choice of metrics used in this study. We fol-
lowed [7] in using a particular set of change metrics. In general,
there could be other change metrics that give different results.
We believe that our results are comparable to results from previ-
ous studies which evaluate the performance of different metric
sets in terms of classification of failure-prone files. Arisholm
et al. [39] observe process metrics to be the best metric set. How-
ever, they also report low recall and precision values (in the range
of 36–62%) when using process metrics.
10.2. Internal validity

Inaccuracies in our data collection process at one or more steps
could be one of the possible threats to internal validity of this
study. We performed manual and automated inspections on our
dataset to verify and validate its accuracy, including comparison
with data provided by Zimmermann et al. [6].

10.3. Conclusion validity

A threat to the conclusion validity of this study may be that we
performed analysis using only one machine learning algorithm,
namely J48. Moser et al. [7] additionally used Naı̈ve Bayes and lo-
gistic regression learners but found J48 to give the best results. In
this paper we also analyzed the performance of 17 machine learn-
ers, including J48 and found that there is no statistically significant
difference between the performance of J48 and learners with high-
er mean rank (e.g., Random Forest).

Another possible threat to the conclusion validity is the class-
imbalance problem. The datasets used in this study are imbal-
anced, i.e. the proportion of defective files is smaller than the per-
centage of non-defective files. Several studies have identified that
the learner performance improves when trained on balanced data,
using techniques such as over-sampling and under-sampling
[17,40]. A point to note in this case, is that our emphasis in this
work is on the trends in prediction performance as the product line
evolves. We carried out the tests to check performance trends (Sec-

S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495 1493
tions 6.3, 7.2 and 8.2) on both balanced and imbalanced datasets
and found that the slopes of the trends (either improving trend
or worsening trend) hold for both datasets. While the performance
may be improved using balancing methods, it appears that the
trends in defect prediction as the product line evolves do not de-
pend on the balancing of datasets.

A typical threat to conclusion validity relates to the validity of
the assumptions of the statistical tests and errors in statistical con-
clusions. As much as possible, we analyzed the validity of the sta-
tistical assumptions. Given the small number of releases, the linear
mixed effects models parsimoniously account for some correlation
among responses due to repeated temporal measures on the same
product or component, but far more complex correlation is likely.
Releases close in time are more likely to share common character-
istics. Further, many files, especially high reuse files, are included
in multiple products and hence contribute to multiple performance
responses. Improper modeling of the covariance can have a large
impact on estimated significance levels. The component datasets
do not suffer from the potentially unaccounted covariance due to
shared files because each file exists in only one component, so
the component p-values are likely the most reliable.

Finally, we included releases from products spanning 2002–
2010, but only the Classic product and its components were avail-
able prior to 2005, and the years 2005 and 2006 were not sampled.
In the future, we aim to collect data for more products and releases
and check whether the results still hold true.

10.4. External validity

An external validity threat to this study is the extent to which
these observations can be generalized to other product lines.
Eclipse is a large product line with many developers in an open-
source, geographically distributed effort. This may mean that the
development of the Eclipse product line is more varied in terms
of the people involved and the development techniques used than
in commercial product lines. Chastek, McGregor and Northrop con-
sider the open-source development to be largely beneficial in
terms of quality [5]. We hope to study other open-source software
product lines and have studied an industrial software product line
[41] to learn more about reuse, change and reliability in product
lines. We have made our dataset public so that other researchers
can validate the results of this study and/or use it to conduct other
types of analysis.

11. Related work

There have been few studies that consider defects in software
product lines or mine their bug/change tracking databases. As
noted earlier, the lack of available datasets for product lines has
seriously hampered investigation of the relationships between
product evolution and product quality, including the ability to pre-
dict failure-proneness. Inaccessibility of datasets is a pervasive
problem in many areas. For example, Catal and Diri recently re-
ported that only 31% of the 74 papers they reviewed used public
datasets, making it difficult to reproduce or extend results [42].

With regard to product lines, Mohagheghi and Conradi [43,44],
compared the fault density and stability (change) of the reused and
non-reused components in a system developed using a product
family approach. They found that reused components have lower
fault density and less modified code as compared to non-reused
components.

Recently we have also studied pre-release software faults in an
industrial software product line [41]. Our results showed that in a
software product line setting, faults are more highly correlated to
change metrics than to static code metrics. Also, variation compo-
nents unique to individual products had the highest fault density
and were most prone to change. We also showed that development
and testing of previous products benefited the new products in the
software product line.

Besides the work of [6] and [7] described previously, several dif-
ferent approaches for defect prediction also have used Eclipse as
the case study, giving additional insights into the role of various
product and process metrics in the Eclipse product line. D’Ambros,
Lanza and Robbes analyzed three large Java software systems,
including Eclipse JDT Core 3.3, using regression modeling, and
found correlations between change coupling (files that change to-
gether) and defects [45]. They found that Eclipse classes have, on
average, many more changes and more shared transactions than
classes in the other two systems studied. Kim et al. recently found
that the number of bug fixes in three large open-source systems,
one of them Eclipse JDT, increases after refactorings [46]. Schroter
et al. found that their predictive models (regression models and
support vector machines) trained in one version can be used to
predict failure-prone components in later versions (here, from ver-
sion 2.0 to 2.1 of Eclipse) [47]. Eaddy et al. found a moderate to
strong correlation between scattering (where the implementation
of a cross-cutting concern is scattered across files) and defects
for three case studies, one of which was an Eclipse component
[48]. Shihab et al. reported work to minimize the number of met-
rics in their multivariate logistic regression model [15]. In a case
study on the Eclipse dataset in [12], they identified four code and
change metrics. One change metric, i.e., total prior changes in the
6 months before the release, was in their short list.

Studies reported in [6,11,14,12,49] have used bug reports and
bug repositories such as Bugzilla for predicting defects and failures.
Jiang, Menzies, Cukic and others [50,10] have used machine learn-
ing algorithms successfully to perform defect prediction. Ostrand
et al. were able with high accuracy to predict the number of faults
in files in two large industrial systems [51]. Menzies et al. found
that a lower number of training instances provided as much infor-
mation as a higher number for predicting faulty code modules [17].
Zhang predicted the number of future component-level defects
reasonably well using a polynomial regression-based model built
from historical defect data [52].

There has been a significant amount of work in the area of fault-
proneness and/or failure-proneness prediction (often referred to as
defect prediction) for both open-source and commercial software.
With regard to open-source systems, Mockus et al. [53] investi-
gated the effectiveness of open-source software development
methods on Apache in terms of defect density, developer participa-
tion and other factors. They showed that for some measures of de-
fects and changes, open-source systems appear to perform better
while for other measures, the commercial systems perform better.
Paulson et al. [54] compared the growth pattern of open-source
systems with that for commercial systems. They found no signifi-
cant difference between the two in terms of software growth, sim-
plicity and modularity of code. They found, however, that in terms
of defect fixes, open-source systems have more frequent fixes to
defects. Rahmani, Azadmanesh and Najjar compared the prediction
capability of three reliability models on failure reports for five open
source software systems, finding that the failure patterns for open-
source software follow a Weibull distribution [55].

With regard to commercial systems, Fenton and Ohlsson [56]
related the distribution of faults to failures and the predictive accu-
racy of some widely used metrics. They found that pre-release
faults are an order of magnitude greater than the operational fail-
ures in the first twelve months. Lutz and Mikulski [57] analyzed
safety–critical anomalies in seven spacecraft and found that seri-
ous failures continue to occur with some frequency during ex-
tended operations. Recently, Hamill and Goseva-Popstojanova
[58] conducted a study of two large systems to identify the distri-
bution of different types of software faults and whether they are

1494 S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495
localized or distributed across the system. They analyzed different
categories of faults and their contribution to the total number of
faults in the system. Borretzen and Conradi [59] performed a study
of four business-critical systems to investigate their fault profiles.
They classified the faults into multiple categories and analyzed
the distribution of different types of faults.

Finally, Nagappan, Ball and Zeller have shown that predictors
obtained from one project are applicable only to similar projects
[11]. Products in a product line are certainly similar (i.e., share
commonalities), but further investigation is needed to understand
under what circumstances predictors from one product in a prod-
uct line are relevant to other products in the product line.

12. Conclusion

The work reported in this paper considers Eclipse as an evolving
product line and distinguishes evolution of a single Eclipse product
(Eclipse Classic) from evolution of the Eclipse product line and the
evolution of its components. We study the performance of the J48
learner across these three evolution dimensions for a large set of
change metrics extracted from Eclipse. A comparison is also made
between the results for three types of datasets that differ in the
data collection and prediction periods.

The research questions addressed are: (1) Whether there is a
difference between the performance of different machine learners
in classifying failure-prone files using change data, and whether
any particular learner is better than others, (2) whether learner
performance improves, i.e., whether the ability to predict failure-
prone files improves as the products and components mature over
time, (3) whether change metrics serve as consistent predictors for
individual products as they mature over time, (4) whether any of
these change metrics also serve as consistent predictors across
all the products as the product line matures over time, (5) whether
any of these change metrics serve as consistent predictors across
the components in different categories of reuse, and (6) whether
using change data that encompasses incrementally a larger time
period improves prediction of failure-prone files.

The highlights of the observations from the study are summa-
rized as follows:

In previous work, we used the J48 decision tree learner to clas-
sify failure-prone files. In experiments with other learners, in this
paper, we found that there is no statistically significant difference
between the performance of J48 and learners which perform
slightly better (e.g., Random Forest).

A replication study, comparing our results with results from
previous studies for the same releases of Eclipse-Classic showed
that while change metrics were better predictors than static met-
rics, predicting post-release failure-prone files using pre-release
data led to low recall rates. Although accuracy and false-positive
rates were impressive, the low recall rates suggest that it was dif-
ficult to classify failure-prone files effectively based on pre-release
change data.

A comparison between different types of datasets distinguished
by the data collection and prediction period showed that datasets
that do not distinguish pre-release period with post-release period
(similar to MDP) have better performance with respect to accuracy,
recall and false-positive rate.

From the product line perspective, prediction of failure-prone
files for four products in the Eclipse product line based on pre-re-
lease data did not show a recognizable trend across releases (i.e.,
the estimated trends were not statistically significant).

When comparing the prediction trends among the three catego-
ries of reuse (i.e., commonalities, high-reuse variations and low-re-
use variations), the results showed statistically significant
improvement in accuracy, but not statistically significant trends
for the other performance metrics.
As each product evolved, there was a set of change metrics that
were consistently prominent predictors of failure-prone files
across its releases. This set was different for the different types
of datasets (with respect to change and defect data collection per-
iod) considered in this study.

There was some consistency among the prominent predictors
for early vs. late releases for all the considered products in the
product line. This set was different for the different types of data-
sets considered here. For predicting post-release failure-prone files
using pre-release change data, the subset of change metrics, Bugfix-
es, Revisions and Age was among the prominent predictors for all
the products across most of the releases.

Looking at the evolution of the different categories of compo-
nents in the product line (i.e., commonalities, high-reuse variations
and low-reuse variations), we found that there was consistency
among the prominent predictors for some categories, but not
among all categories. For predicting post-release failure-prone files
using pre-release change data, the change metric Bugfixes appeared
to be prominent in all three categories, although not across all re-
leases. Metrics such as Age were prominent across more than one
category but not across all three of them.

It is still unclear whether it will become possible to detect post-
release failure-prone files across the products in an evolving prod-
uct line based on pre-release data. The high level of reuse in prod-
uct lines which encourages that hope is offset by the on-going
change and failures seen even in files implementing commonali-
ties. The results of the current study suggest that further investiga-
tion of failure prediction in both open-source and proprietary
product lines may yield a better understanding of how evolution
of individual products affects the prediction of failure-prone files
within product lines.
Acknowledgments

We thank the reviewers for several helpful suggestions that im-
proved this work. This work was supported by National Science
Foundation grants 0916275 and 0916284 with funds from the
American Recovery and Reinvestment Act of 2009. Part of this
work was performed while the third author was visiting the Cali-
fornia Institute of Technology and the Open University, UK.
References

[1] D.S. Batory, D. Benavides, A.R. Cortés, Automated analysis of feature models:
challenges ahead, Commun. ACM 49 (12) (2006) 45–47.

[2] Z. Stephenson, Change Management in Families of Safety-Critical Embedded
Systems, Ph.D. thesis, University of York, 2002.

[3] S. Krishnan, R. Lutz, K. Goševa-Popstojanova, Empirical evaluation of reliability
improvement in an evolving software product line, in: Mining Software
Repositories, MSR, 2011, pp. 103–112.

[4] S. Krishnan, C. Strasburg, R.R. Lutz, K. Goseva-Popstojanova, Are change
metrics good predictors for an evolving software product line? in: PROMISE,
vol. 7, 2011b.

[5] G. Chastek, J. McGregor, L. Northrop, Observations from viewing eclipse as a
product line, in: Proceedings on the Third International Workshop on Open
Source Software and Product Lines, 2007, pp. 1–6.

[6] T. Zimmermann, R. Premraj, A. Zeller, Predicting defects for eclipse, in:
Proceedings of the Third International Workshop on Predictor Models in
Software Engineering, 2007.

[7] R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction, in:
International Conference on Software Engineering, 2008a, pp. 181–190.

[8] N. Nagappan, T. Ball, Static analysis tools as early indicators of pre-release
defect density, in: Proceedings of the 27th International Conference on
Software Engineering, ICSE’05, ACM, New York, NY, USA, 2005, pp. 580–586.
ISBN 1-58113-963-2.

[9] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes to
learn defect predictors, IEEE Trans. Softw. Eng. 33 (1) (2007) 2–13. ISSN
0098-5589.

[10] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, A. Bener, Defect prediction
from static code features: current results, limitations, new approaches, Autom.
Softw. Eng. 17 (2010) 375–407. ISSN 0928-8910.

S. Krishnan et al. / Information and Software Technology 55 (2013) 1479–1495 1495
[11] N. Nagappan, T. Ball, A. Zeller, Mining metrics to predict component
failures, in: Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, ACM, New York, NY, USA, 2006, pp. 452–461. ISBN
1-59593-375-1.

[12] T. Zimmermann, N. Nagappan, A. Zeller, Predicting bugs from history, in:
Predicting Bugs from History, Springer, 2008, pp. 69–88. ISBN
9783540764397.

[13] R. Moser, W. Pedrycz, G. Succi, Analysis of the reliability of a subset of change
metrics for defect prediction, in: ESEM, 2008b, pp. 309–311.

[14] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, B. Murphy, Change Bursts as
Defect Predictors, in: ISSRE, 2010, pp. 309–318.

[15] E. Shihab, Z.M. Jiang, W.M. Ibrahim, B. Adams, A.E. Hassan, Understanding the
impact of code and process metrics on post-release defects: a case study on the
Eclipse project, in: ESEM, 2010.

[16] S. Kim, T. Zimmermann, J. Whitehead, A. Zeller, Predicting faults from cached
history, in: ICSE, 2007, pp. 489–498.

[17] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, Y. Jiang, Implications of ceiling
effects in defect predictors, in: Proceedings of the 4th International Workshop
on Predictor Models in Software Engineering, PROMISE ’08, ACM, New York,
NY, USA, 2008, pp. 47–54. ISBN 978-1-60558-036-4.

[18] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification
models for software defect prediction: a proposed framework and novel
findings, IEEE Trans. Softw. Eng. 34 (4) (2008) 485–496.

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
WEKA data mining software: an update, SIGKDD Explor. Newsl. 11 (2009) 10–
18. ISSN 1931-014.

[20] Data used for this study, 2011. <http://www.cs.iastate.edul~ss/EclipsePLPre-
dictionData.tar.gz>.

[21] D.M. Weiss, C.T.R. Lai, Software Product-Line Engineering: A Family-based
Software Development Process, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999. ISBN 0-201-69438-7.

[22] Software Engineering Institute, Software Product Lines. <http://
www.sei.cmu.edu/productlines/>.

[23] H. Gomaa, Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures, Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2004. ISBN 0201775956.

[24] K. Pohl, G. Böckle, F.J. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005. ISBN 3540243720.

[25] D. Mansfield, CVSps-Patchsets for CVS. <http://www.cobite.com/cvsps/>.
[26] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy, Cross-project defect

prediction, in: Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ACM, 2009.

[27] N. Nagappan, T. Ball, B. Murphy, Using historical in-process and product
metrics for early estimation of software failures, in: ISSRE, 2006b, pp. 62–74.

[28] M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect prediction approaches: a
benchmark and an extensive comparison, Empirical Softw. Eng. 17 (4–5)
(2012) 531–577.

[29] NASA IV&V Metrics Data Program. <http://mdp.ivv.nasa.gov>.
[30] PROMISE repository. <http://promisedata.org/>.
[31] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, D.R. Cok, Local vs. global

models for effort estimation and defect prediction, in: ASE, 2011, pp. 343–351.
[32] N. Bettenburg, M. Nagappan, A.E. Hassan, Think locally, act globally: improving

defect and effort prediction models, in: MSR, 2012, pp. 60–69.
[33] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic review of fault

prediction performance in software engineering, in: IEEE Transactions on
Software Engineering 99 (PrePrints), ISSN 0098-5589.

[34] D. Gray, D. Bowes, N. Davey, Y. Sun, B. Christianson, The misuse of nasa metrics
data program data sets for automated software defect prediction, in: EASE,
2011.

[35] S. Shivaji, J. Whitehead, R. Akella, S. Kim, Reducing features to improve bug
prediction, in: ASE, 2009, pp. 600–604.

[36] H. Wang, T.M. Khoshgoftaar, R. Wald, Measuring robustness of feature
selection techniques on software engineering datasets, in: IRI, 2011, pp.
309–314.

[37] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (2006) 1–30. ISSN 1532-4435. <http://dl.acm.org/citation.cfm?id=
1248547.1248548>.
[38] J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, R Development Core Team, NLME:
linear and nonlinear mixed effects models, R package version 3.1-103, 2001.

[39] E. Arisholm, L.C. Briand, E.B. Johannessen, A systematic and comprehensive
investigation of methods to build and evaluate fault prediction models, J. Syst.
Softw. 83 (1) (2010) 2–17.

[40] C. Drummond, R. Holte, C4.5, class imbalance, and cost sensitivity: why under-
sampling beats over-sampling, in: Workshop on Learning from Imbalanced
Datasets, 2003.

[41] T.R. Devine, K. Goseva-Popstajanova, S. Krishnan, R.R. Lutz, J.J. Li, An empirical
study of pre-release software faults in an industrial product line, in:
International Conference on Software Testing, Verification and Validation,
2012.

[42] C. Catal, B. Diri, A systematic review of software fault prediction studies,
Expert Syst. Appl. 36 (4) (2009) 7346–7354.

[43] P. Mohagheghi, R. Conradi, An empirical investigation of software reuse
benefits in a large telecom product, ACM Trans. Softw. Eng. Methodol. 17
(2008) 13:1–13:31.

[44] P. Mohagheghi, R. Conradi, O.M. Killi, H. Schwarz, An empirical study of
software reuse vs. defect-density and stability, in: Proceedings of the 26th
International Conference on Software Engineering, ICSE ’04, IEEE Computer
Society, Washington, DC, USA, 2004, pp. 282–292. ISBN 0-7695-2163-0.

[45] M. D’Ambros, M. Lanza, R. Robbes, On the relationship between change
coupling and software defects, in: Proceedings of the 2009 16th Working
Conference on Reverse Engineering, WCRE ’09, IEEE Computer Society,
Washington, DC, USA, 2009, pp. 135–144. ISBN 978-0-7695-3867-9.

[46] M. Kim, D. Cai, S. Kim, An Empirical Investigation into the Role of API-Level
Refactorings during Software Evolution, in: Proceedings of the 33rd
International Conference on Software Engineering (ICSE 2011), 2011, pp.
151–160.

[47] A. Schröter, T. Zimmermann, A. Zeller, Predicting component failures at design
time, in: Proceedings of the 2006 ACM/IEEE International Symposium on
Empirical Software Engineering, ISESE ’06, ACM, New York, NY, USA, 2006, pp.
18–27. ISBN 1-59593-218-6.

[48] M. Eaddy, T. Zimmermann, K.D. Sherwood, V. Garg, G.C. Murphy, N. Nagappan,
A.V. Aho, Do crosscutting concerns cause defects?, IEEE Trans Softw. Eng. 34
(4) (2008) 497–515.

[49] P.J. Guo, T. Zimmermann, N. Nagappan, B. Murphy, Characterizing and
predicting which bugs get fixed: an empirical study of microsoft windows,
in: Proc. of the 32nd ACM/IEEE International Conference on Software
Engineering, ICSE’10, vol. 1, ACM, New York, NY, USA, 2010, pp. 495–504.

[50] Y. Jiang, B. Cukic, T. Menzies, Can data transformation help in the detection of
fault-prone modules?, in: Proc of the 2008 Workshop on Defects in Large
Software Systems, DEFECTS ’08, ACM, New York, NY, USA, 2008, pp. 16–20.
ISBN 978-1-60558-051-7.

[51] T.J. Ostrand, E.J. Weyuker, R.M. Bell, Predicting the location and number of
faults in large software systems, IEEE Trans. Softw. Eng. 31 (2005) 340–355.
ISSN 0098-558.

[52] H. Zhang, An initial study of the growth of Eclipse defects, in: Proceedings of
the 2008 International Working Conference on Mining Software Repositories,
MSR ’08, ACM, New York, NY, USA, 2008, pp. 141–144. ISBN 978-1-60558-024-
1.

[53] A. Mockus, R.T. Fielding, J. Herbsleb, A case study of open source software
development: the Apache server, in: Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), ACM Press, 2000, pp. 263–
272.

[54] J.W. Paulson, G. Succi, A. Eberlein, An empirical study of open-source and
closed-source software products, IEEE Trans. Softw. Eng. 30 (2004) 246–256.
ISSN 0098-5589.

[55] C. Rahmani, A. Azadmanesh, L. Najjar, A comparative analysis of open source
software reliability, J. Softw. 5 (2010) 1384–1394.

[56] N.E. Fenton, N. Ohlsson, Quantitative analysis of faults and failures in a
complex software system, IEEE Trans. Softw. Eng. 26 (2000) 797–814.

[57] R.R. Lutz, I.C. Mikulski, Empirical analysis of safety-critical anomalies during
operations, IEEE Trans. Softw. Eng. 30 (2004) 172–180.

[58] M. Hamill, K. Goševa-Popstojanova, Common trends in software fault and
failure data, IEEE Trans. Softw. Eng. 35 (2009) 484–496. ISSN 0098-5589.

[59] J.A. Borretzen, R. Conradi, Results and experiences from an empirical study of
fault reports in industrial projects, in: PROFES 2006, LNCS, Springer, 2006, pp.
389–394.

http://www.cs.iastate.edul˜ss/EclipsePLPredictionData.tar.gz
http://www.cs.iastate.edul˜ss/EclipsePLPredictionData.tar.gz
http://www.sei.cmu.edu/productlines/
http://www.sei.cmu.edu/productlines/
http://www.cobite.com/cvsps/
http://mdp.ivv.nasa.gov
http://promisedata.org/
http://dl.acm.org/citation.cfm?id=1248547.1248548
http://dl.acm.org/citation.cfm?id=1248547.1248548

	Predicting failure-proneness in an evolving software product line
	1 Introduction
	2 Eclipse product line
	2.1 Products
	2.2 Components

	3 Approach
	3.1 Data collection and integration
	3.2 Types of datasets
	3.3 Data analysis

	4 Research questions
	5 Classifier selection
	6 Single product evolution
	6.1 How do our results related to learner’s performance compare with previously published results?
	6.2 Does learner performance improve as a single product evolves?
	6.3 Is the set of prominent predictors consistent across releases of a single product?

	7 Product line evolution
	7.1 Does learner performance improve as the product line evolves?
	7.2 Is the set of prominent predictors consistent across products as the product line evolves?

	8 Evolution of components at different levels of reuse
	8.1 Does the learner performance improve for components in each category of reuse? Does performance differ across categories of reuse?
	8.2 Is there a common set of best predictors across all categories of reuse?

	9 Prediction with incrementally increasing data collection periods
	10 Threats to validity
	10.1 Construct validity
	10.2 Internal validity
	10.3 Conclusion validity
	10.4 External validity

	11 Related work
	12 Conclusion
	Acknowledgments
	References

