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Abstract

Context: Static analysis of source code is a scalable method for discovery of software faults and security vulnera-
bilities. Techniques for static code analysis have matured in the last decade and many tools have been developed to
support automatic detection.

Objective: This research work is focused on empirical evaluation of the ability of static code analysis tools to detect
security vulnerabilities with an objective to better understand their strengths and shortcomings.

Method: We conducted an experiment which consisted of using the benchmarking test suite Juliet to evaluate three
widely used commercial tools for static code analysis. Using design of experiments approach to conduct the analysis
and evaluation and including statistical testing of the results are unique characteristics of this work. In addition to the
controlled experiment, the empirical evaluation included case studies based on three open source programs.

Results: Our experiment showed that 27% of C/C++ vulnerabilities and 11% of Java vulnerabilities were missed by
all three tools. Some vulnerabilities were detected by only one or combination of two tools; 41% of C/C++ and 21%
of Java vulnerabilities were detected by all three tools. More importantly, static code analysis tools did not show sta-
tistically significant difference in their ability to detect security vulnerabilities for both C/C++ and Java. Interestingly,
all tools had median and mean of the per CWE recall values and overall recall across all CWEs close to or below 50%,
which indicates comparable or worse performance than random guessing. While for C/C++ vulnerabilities one of the
tools had better performance in terms of probability of false alarm than the other two tools, there was no statistically
significant difference among tools’ probability of false alarm for Java test cases.

Conclusions: Despite recent advances in methods for static code analysis, the state-of-the-art tools are not very effec-
tive in detecting security vulnerabilities.

Keywords: Security vulnerabilities, Common Weakness Enumeration (CWE), Static code analysis evaluation,
Experiment, Case studies.

1. Introduction

Today’s economy is heavily reliant on computer systems and networks and many sectors, including finance, e-
commerce, supply chain, transportation, energy, and health care cannot function without them. The growth of the
online commercial environment and associated transactions, and the increasing volume of sensitive information ac-
cessible online have fueled the growth of cyber attacks by organized criminal elements and other adversaries [1].
According to the 2014 report by the Ponemon Institute, the mean annualized cost of the cyber crime for 257 bench-
marked organizations was $7.6 million per year, with average of 31 days to contain a cyber attack [2].

Deficiencies in software quality are among leading reasons behind security vulnerabilities. Vulnerability is de-
fined as a property of system security requirements, design, implementation, or operation that could be accidentally
triggered or intentionally exploited and result in a security failure [3]. Basically, if a security failure has been experi-
enced, there must have been a vulnerability. Based on the estimates made by the National Institute of Standards and
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Technology (NIST), the US economy loses $60 billion annually in costs associated with developing and distributing
patches that fix software faults and vulnerabilities, as well as cost from lost productivity due to computer malware and
other problems caused by software faults [4].

Therefore, it is becoming an imperative to account for security when software systems are designed and de-
veloped, and to extend the verification and validation capabilities to cover information assurance and cybersecurity
concerns. Anecdotal evidence [5] and prior empirical studies [6, 7] indicated the need of using a variety of vulnerabil-
ity prevention and discovery techniques throughout software development cycle. One of these vulnerability discovery
techniques is a static analysis of source code, which provides a scalable way for security code review that can be used
early in the life cycle, does not require the system to be executable, and can be used on parts of the overall code base.
Tools for static analysis have rapidly matured in the last decade; they have evolved from simple lexical analysis to
employ much more complex techniques. However, in general, static analysis problems are undecidable [8] (i.e., it is
impossible to construct an algorithm which always leads to a correct answer in every case). Therefore, static code
analysis tools do not detect all vulnerabilities in source code (i.e., false negatives) and are prone to report findings
which upon closer examination turn out not to be security vulnerabilities (i.e., false positives). To be of practical use,
a static code analysis tool should find as many vulnerabilities as possible, ideally all, with a minimum amount of false
positives, ideally none.

This paper is focused on empirical evaluation of static code analysis tools’ ability to detect security vulnerabilities,
with a goal to better understand their strengths and shortcomings. For this purpose we chose three state-of-the-art,
commercial static code analysis tools, denoted throughout the paper as tools A, B, and C. The criteria used to select the
tools included: (1) have to be widely used, (2) specifically identify security vulnerabilities (e.g., using the Common
Weakness Enumeration (CWE) [9]) and support detection of significant number of different types of vulnerabilities,
(3) support C, C++ and Java languages, and (4) are capable of analyzing large software applications, i.e., scale well.
An additional consideration in the selection process was to choose one tool from each of the three main classes of
static code analysis tools [10] (given here in no particular order): ‘program verification and property checking’, ‘bug
finding’, and ‘security review’.

With respect to the vulnerabilities included in the evaluation, as in works focused on software fault detection [11],
synthetic vulnerabilities can be provided in large numbers, which allows more data to be gathered than otherwise
possible, but likely with less external validity. On the other side, naturally occurring vulnerabilities typically cannot
be found in large numbers, but they represent actual events. Obviously either approach has its own advantages and
disadvantages; therefore, we decided to use both approaches.

The first evaluation approach is based on a controlled experiment using the benchmark test suite Juliet which was
originally developed by the Center for Assured Software at the National Security Agency (NSA) [12] and is publicly
available. Juliet test suite consists of many sets of synthetically generated test cases; each set covers only one kind
of flaw documented by the Common Weakness Enumeration (CWE) [9]. Specifically, we used the largest subset of
the Juliet test suite claimed to be detectable by all three tools, which consisted of 22 CWEs for C/C++ and 19 CWEs
for Java, with 21,265 and 7,516 test cases, respectively. Testing static code analysis tools with this benchmark test
suite allowed us: to cover a reasonably large number of vulnerabilities of many types; to automate the evaluation and
computation of the tools’ performance metrics, such as accuracy, recall (i.e., probability of detection), and probability
of false alarm; and to run statistical tests.

In addition to the experimental approach, our empirical evaluation includes three case studies based on open
source programs, two of which were implemented in C and one implemented in Java. Each program has a known
set of vulnerabilities that allow for quantitative analysis of the tools’ ability to detect security vulnerabilities. For this
part of the study, because of the relatively small number of known vulnerabilities the results were obtained by manual
inspection of the static code analysis tools’ outputs. The evaluation based on case studies allowed us to gauge the
ability of static code analysis to detect security vulnerabilities in more complex settings.

The main contributions of this paper are as follows:

e The experimental evaluation was based on the Juliet test suite, a benchmark for assessing the effectiveness of
static code analyzers and other software assurance tools. Previous evaluations based on Juliet either did not
report quantitative results [13, 14] or used very small sample of test cases related to vulnerabilities in C code
only [15].

e Our study reports several performance metrics — accuracy, recall, probability of false alarm, and G-score — for
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individual CWEs, as well as across all considered CWEs. We used formal statistical testing to compare the
tools in terms of performance metrics and determine if any significant differences exist. None of the related
works included statistical testing of the results.

e In addition to the experimental approach, three widely-used open source programs were used as case studies.
By combining experimentation with case studies, we were able to get sound experimental results supported by
statistical tests and verify them in realistic settings.

Main empirical observations include:

e None of the selected tools was able to detect all vulnerabilities. Specifically, out of the 22 C/C++ CWEs, none
of the three tools was able to detect six CWEs (i.e., 27%), seven CWEs (i.e., 32%) were detected by a single
tool or a combination of two tools, and only nine CWEs (around 41%) were detected by all three tools. The
results obtained when running the Java test cases were similar. Out of the 19 CWEs, two CWEs (i.e., around
11%) were not detected by any tool, thirteen CWEs (i.e., 68%) were detected by a single tool or a combination
of two tools, and only four were detected by all three tools. Note that ‘detect’ in this context does not means
detecting 100% of ‘bad’ functions for that specific CWE. Rather, it means correctly classifying at least one bad
function.

The selected static code analysis tools did not show statistically significant difference in their ability to detect
security vulnerabilities for both C/C++ and Java. In addition, the mean, median, and overall recall values for all
tools were close to or below 50%, which indicates comparable or worse performance than random guessing.

For C/C++ vulnerabilities, one of the tools had better performance in terms of probability of false alarm and
accuracy than the other two tools. No significant difference existed for Java vulnerabilities.

e No statistically significant difference existed in the values of G-score (i.e., harmonic mean of the recall and 1-
probability of false alarm) neither for C/C++ nor for Java vulnerabilities. (G-score combines in a single measure
tools’ effectiveness in detecting security vulnerabilities with their ability to discriminate vulnerabilities from
non-flawed code constructs.)

The experimental results related to tools’ ability to detect security vulnerabilities were confirmed on three open
source applications used as case studies.

The rest of the paper is organized as follows. Related work is presented in section 2, followed by the background
description of the structure and organization of the Common Weakness Enumeration (CWE) and the Juliet test suite
in section 3. The design of the experimental study, its execution, and the analysis per individual CWEs and across
all CWEs, including the results of statistical tests are given in section 4. Section 5 presents the findings based on the
three open source case studies. The threats to validity are presented in section 6, followed by the discussion of the
results in section 7 and concluding remarks in section 8.

2. Related Work

Despite the widespread use of static code analysis, only a few public evaluation efforts of static code analysis tools
have been undertaken, and even fewer with a focus on detection of security vulnerabilities.

We start with description of related works that used the Juliet benchmark as an input in evaluation of static code
analysis tools [13, 14, 15, 16, 17]. These works are the closest to our work. The Software Assurance Metrics and
Tool Evaluation (SAMATE) project, sponsored by the U.S. Department of Homeland Security (DHS) National Cyber
Security Division and the National Institute of Standards and Technology (NIST), led to development of the Juliet test
suite — a collection of thousands of test programs with known security flaws. Since 2008 SAMATE has hosted several
Static Analysis Tool Expositions (SATE) [18], which reviewed a wide variety of different static code analysis tools.
NSA’s Center for Assured Software presented a methodology for studying static code analysis tools based on set of
artificially created test cases with known answers, such as Juliet [13]. The methodology included reporting on the
recall, precision, and F-score, including bar graphs and precision-recall plots, per weakness. This work did not report
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specific results of tools’ evaluations. Another study by the NSA [16], presented at the SATE IV workshop, tested eight
commercial and one open source static analysis tool for C/C++ and seven commercial and one open source tool for
Java using the Juliet test suite. In that study, the evaluated tools were not identified and the quantitative results for each
tool were not made public. However, it was reported that 21% of the vulnerabilities in the C/C++ test cases and 27%
of vulnerabilities in Java test cases were not detected by any tool. Furthermore, although open source tools detected
some vulnerabilities, they were not among the best in any class of test cases. NIST’s report presented at SATE IV
[14] provided details on evaluating five tools on Juliet 1.0 test suite. The reported results included the number of true
positives and false positives for thirteen weakness categories (i.e., groups of CWEs) and it was concluded that the
analysis can be improved by changing the categories and fine-tuning the procedure for matching the warnings to test
cases. This report also described an evaluation based on four open source applications (two implemented in C/C++
and two in Java) with known vulnerabilities and reported the numbers of directly and indirectly related warnings
produced by the tools.

One of the goals for developing the Juliet test suite was to enable empirical research based on large test sets.
Recently, researchers have started to use Juliet test suite for evaluation of static code analysis [15, 17]. A small subset
of Juliet test suite was used in [15] to compare the performance of nine tools in detecting security vulnerabilities in C
code. Specifically, this study used the SAMATE test-suite 45 with 78 test cases for a total of 21 CWEs to determine
the percentage of detected vulnerabilities (i.e., recall) and the SAMATE test-suite 46 with 74 test cases for a total of
20 CWEs to determine the false positive percentage (i.e., false positive rate). The examined tools had recall values
in the range from 52.8% to 76.9% and false positive rate from 6.5% to 63%. (These values were called ‘absolute’ in
[15] and were obtained by taking into account only the vulnerabilities that specific tools were designed to detect, that
is, ‘vulnerabilities not covered’ were excluded.) A 2014 study [17] evaluated two commercial static analysis tools
(which were not identified) using the Juliet test suite. This work did not provide detailed results; it only provided a
bar graph of recall values per CWE and the true positive, false positive, and false negative numbers for two selected
CWE:s (i.e., CWE 134 and CWE 401).

Several studies evaluated static code analysis tools using other test suites or case studies [19, 20, 21, 22]. University
of Hamburg in collaboration with the Siemens CERT [19] created a test suite consisting of injected vulnerabilities in
otherwise clean code. This test suite was then used to compare the performance of six tools in detection of security
vulnerabilities. The findings showed that tools for analyzing C code scored within a range of 50-72 points out of the
possible 168, and that tools for analyzing Java code scored within a range of 53-89 points out of the possible 147.
Similar to the work done by NSA [16], this study neither identified the evaluated tools nor presented results for each
tool.

The performance of three commercials tools, Polyspace Verifier, Coverity Prevent and Klocwork Insight, were
compared in [20]. Even through the evaluation was based on real industrial applications from Ericsson, the presented
results were mainly qualitative, in a form of lessons learned. This work concluded that Coverity and Klocwork found
largely disjoint sets of vulnerabilities. These two tools also seemed to sacrifice finding vulnerabilities in favor of
reducing the number of false positives, while PolySpace produced a high rate of false positives.

The effect of the false positive warnings produced by a static code analysis tool was studied in [21]. The research
team found that while the developers were good at identifying true positives, false positive identification rates were
not better than chance and the developers’ experience had no effect on the false positive classification accuracy. In
a more recent study [22], the same research team used a single static code analysis tool to analyze four commercial
products from Ericsson. The results indicated that most of the tool’s output was not security related and that false
positives were an issue. Interestingly, the study showed that only 37.5% of false positives were correctly identified
by the developers as false positives. Furthermore, it appeared that high numbers of false positives were detrimental to
the development process not only through the amount of time spent classifying them, but also through the added risk
of “fixing” improperly classified false positives [22].

The last work in the group of papers that evaluated only static code analysis tools was focused on qualitative
comparison of eleven open source and one commercial static code analysis tools [23]. Tools were compared with
respect to the installation process, configuration, support, vulnerabilities coverage degree and support for handling
projects. Although interesting, the study lacked quantitative comparison of tools’ performance.

Other related works considered multiple quality assurance techniques, such as static code analysis and penetration
testing, and conducted comparative analysis using case studies [6, 7, 24]. Comparative evaluation of static code
analysis, manual inspection, and execution-based testing using three large network service products from Nortel as
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case studies was presented in [6]. Fault removal rates of the three static code analysis tools (i.e., Flexelint, Klocwork,
and Illuma) were not different than the fault removal rate of manual inspection. On the other side, fault removal rate
of execution-based testing was found to be two to three times higher than those of the static analysis tools. Note that
this study was not exclusively focused on security vulnerabilities, which only comprised a small subset of the faults
explored.

A recent study [7] compared four vulnerability detection techniques: automated static code analysis, exploratory
manual penetration testing, systematic manual penetration testing, and automated penetration testing. This study used
three electronic health record systems as case studies to evaluate the four vulnerability detection approaches. Because
real, large systems were used for evaluation, only true positives and false positives were reported (i.e., it was not
feasible to determine the false negatives). The results showed that the systematic manual penetration testing found the
most design vulnerabilities, while automated static analysis found the most implementation related vulnerabilities.
Furthermore, automated penetration testing was the most efficient discovery technique in terms of vulnerabilities
discovered per hour. Static analysis resulted in many more false positives than the other three techniques and did quite
poorly on certain types of vulnerabilities.

The study presented in [24] was focused on security of Web services vulnerabilities and compared static code
analysis and penetration testing with regard to SQL injection vulnerabilities. Three static code analysis tools and four
automated penetration testing tools were used to detect vulnerabilities in a set of eight Web services. The performance
of the tools was evaluated in terms of vulnerability coverage and false positive rate. The study was concluded with
three key observations: static analysis provided more coverage than penetration testing, false positives were a problem
for both approaches but static analysis was affected more, and different tools often reported different vulnerabilities
for the same piece of source code.

The work presented in this paper combines experimental approach based on the Juliet test suite with case study
approach based on three open source programs with known vulnerabilities. For our experiment, we used over 21,000
test cases for 22 C/C++ CWEs and over 7,500 test cases for 19 Java CWEs. Previous evaluations based on Juliet
either did not report detailed quantitative results [13, 14] or used a very small sample of only 152 test cases related to
vulnerabilities in C code only [15]. Our study reports several performance metrics (i.e., accuracy, recall, probability of
false alarm, and G-score) for individual CWEs, as well as across all considered CWEs. Even more, we use the design
of experiments approach and include formal statistical testing to compare the selected tools in terms of performance
metrics and determine if any significant differences exist. None of the related works included statistical testing of
the results. Since experiments and case studies have their own advantages and disadvantages [25], by using both
approaches, we were able to get sound experimental results supported by statistical tests and then verify them in a
realistic setting based on using open source programs as case studies.

3. Background on the Common Weakness Enumeration and Juliet test suite

In this section we provide background information on the Common Weakness Enumeration [9] taxonomy regard-
ing its design and hierarchical structure. We then describe the Juliet test suite [26] and briefly cover the structure of
its test cases. (More details on the Juliet test suite are given in Appendix A.)

The Common Weakness Enumeration (CWE) taxonomy aims at creating a catalog of software weaknesses and
vulnerabilities. It is maintained by the MITRE Corporation with support from the Department of Homeland Security
[9]. Each individual CWE represents a single vulnerability type or category. For example, CWE 121 is “Stack-based
Buffer Overflow”, CWE 78 is “OS Command Injection” and so on. The CWEs are organized in a hierarchical structure
with broad category CWEs at the top level. These top level CWEs may have multiple children, which in turn may or
may not have further children. Each CWE may have one or more parents and zero or more children. The further down
this hierarchy one goes the more specific the vulnerabilities become. Many static code analysis tools, either explicitly
or implicitly, map the warnings they produce to CWEs.

The Juliet test suite was developed by the National Security Agency (NSA) Center for Assured Software [12, 27]
and has been made publicly available at the NIST web site [26]. It is a collection of test cases with known outcomes for
assessing the effectiveness of static analyzers and other software-assurance tools in detecting security vulnerabilities.
The test cases included in Juliet are synthetic, that is, they were created to represent well-characterized vulnerabilities
mapped to large number of CWEs.



Out of more than 500 existing weaknesses in the CWE [9], some are hard to define and/or check for. Therefore,
creators of the Juliet test suite selected a “minimum” set of weaknesses to be covered by Juliet, which includes CWEs
that are most common, CWEs that are most easily exploited, and CWEs that are caught by existing tools [27]. In
general, static code analysis tools are focused on detecting code related weaknesses, and have very limited ability
to detect requirements and design related weaknesses. Nevertheless, they hold potential to significantly improve the
security of software applications because roughly half of all security weaknesses are introduced during coding [5].

Juliet test cases are organized in directories — one for each selected CWE. Each CWE directory has one or more (in
some cases thousands) test cases. Multiple test cases for a single CWE exist because often one kind of vulnerability
can be coded in different ways, some more complex than others.

Juliet test cases were designed to allow automatic evaluation of static analysis results, which was accomplished
by having a strict naming convention for functions and methods®. Each Juliet test case consists of one or two pages of
code, and targets only one CWE. The incorrect code constructs (i.e., code with a vulnerability) are found in functions
which have the string “bad” in their names. Each test case contains exactly one bad function and similar, but non-
flawed code constructs to test the tool’s discrimination. These correct code constructs are found in functions which
have the string “good” in their names. One or more good functions exist in each Juliet test case considered in this
paper*. This naming convention allows for automatic computation of the number of true positives, false positives, true
negatives, and false negatives.

4. Experimental evaluation using the Juliet benchmark test suite

The main motivations for using experimental approach with a benchmark test suite as input include (1) conducting
the analysis and evaluation in a sound context, (2) being able to automatically evaluate large number of well-designed
test cases that cover wide range of vulnerabilities, (3) being able, in addition to true positives and false positives, to
determine the true negatives (i.e., vulnerabilities not detected by the tools), which allowed us to evaluate the probability
of vulnerability detection (i.e., recall), (4) using statistical tests to compare tools’ performance, and last but not least
(5) allowing for repeatable empirical studies.

In this section, following the report structure for experimental studies recommended in [25], we first describe the
experimental design and execution, and then present the analyses per individual CWEs and across all CWE:s.

4.1. Experimental design

The evaluation based on the Juliet test suite can be seen as a two factorial experimental design aimed to explore
the ability of the three selected static code analysis tools to detect security vulnerabilities across sets of C/C++ and
Java CWEs, each consisting of multiple test cases. Thus, we have two factors (i.e., independent variables): (1) static
code analysis tool and (2) type of CWE. Next, we discuss how we selected the levels of each factor.

The levels (i.e., treatments) of the first factor “static code analysis tool” are the specific tools used for evaluation.
We started the tool selection process by compiling a survey which consisted of fifteen commercial tools and seven
tools licensed under some kind of open source license. The main characteristics of each tool were extracted from
tools’ Web sites and related works. The criteria used to select the tools included: (1) have to be widely used, (2)
specifically identify security vulnerabilities (e.g., using the Common Weakness Enumeration (CWE) [9]) and support
detection of significant number of different types of vulnerabilities, (3) support C, C++ and Java languages, and (4)
are capable of analyzing large software applications, i.e., scale well. An additional criterion in the selection process
was to choose one tool from each of the three main classes of static code analysis tools defined in [10]: ‘program
verification and property checking’, ‘bug finding’, and ‘security review’ static analysis tools. This way we were able
to cover a broad set of different methods used for detection of security vulnerabilities by the state-of-the-art static
code analysis tools.

Therefore, from the list of 22 static code analysis tools we first excluded the tools that did not support C, C++,
or Java, tools that did not include specific identification of security vulnerabilities, and tools that may be hard or im-
possible to use for analysis of large scale software applications. We also excluded from the potential candidates those

3Throughout the paper we use the term “function” when referring to either C/C++ functions or Java methods.
41t should be noted that, in addition to good and bad functions, Juliet test cases also contain source, sink, and helper functions. A more detailed
description of the Juliet test suite and these constructs are given in Appendix A.
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tools that operate as ‘software as a service’ because that model of operation was likely to limit the experimentation
and lead to acquiring cost.

For each of the remaining tools we considered the class it belongs to and the number of different vulnerability types
it was designed to support. This led to selection of three commercial tools, one from each class ‘program verification
and property checking’, ‘bug finding’, and ‘security review’. These tools are denoted throughout the paper as tools A,
B and C (in no particular order).

Even though our initial list of candidates had seven open source tools, none of these tools was selected due to
one or more of the following reasons: the tool was simplistic, was not widely used, and/or did not support detection
of security vulnerabilities. It should be noted that most of the related works presented in Section 2 also used only
commercial tools [6, 7, 20, 21, 22]. Even more, in [21] authors claimed that “free-ware tools were too simplistic in
an industrial setting.” This claim was supported by the results of the NSA study [16], which experimented with eight
commercial and one open source tools for C/C++ and seven commercial and two open source tools for Java. These
results showed that none of the open source tools performed the strongest in any of the weakness classes, and for
some weakness classes the open source tools were the weakest tools. The only open source tool on our short list of
candidates was FindBugs (http://findbugs.sourceforge.net), which is considered to be a good tool for identifying bugs
in Java code [10]. However, the preliminary exploration showed that FindBugs covers only five of the Java CWEs
considered in this paper, and therefore was not included in the set of selected tools.

Next, we briefly describe the basic principles and methods used by static code analysis tools in each of the three
classes. Note that for most commercial tools, it is hard to find detailed public documentation on the underlying
methods and algorithms.

The tools from the ‘program verification and property checking’ class typically create an abstract model of the
entire code and then use sophisticated symbolic execution to explore the program paths through the control-flow graph,
and to reason about program variables and how they are related. Theorem-proving is used to prune the infeasible
program paths from the exploration. These tools also use checkers that traverse or query the model, looking for
particular properties or patterns that indicate software bugs. They also have capabilities to detect concurrency related
faults, such as race conditions, deadlocks, and livelocks.

The tools from the ‘bug finding’ class contain a predefined set of rules that describe patterns in code that may
indicate bugs, including a range of rules dedicated to finding security vulnerabilities. While some vulnerabilities are
generic (e.g., buffer overflow), other are very specific (e.g., check the use of specific system calls that are known to
be used in security attacks). These tools also appear to extend their built-in patterns by inferring requirements from
the code itself, doing some sort of inter-procedural analysis to prune some of the impossible paths, and establishing
simple relationships between variables.

The tools from the ‘security review’ class seem to combine techniques used by ‘property checkers’ and ‘bug
finding’ tools, with a narrower goal to identify security vulnerabilities. One approach is to convert the source code
to an intermediate format which is then used to locate security vulnerabilities. The analysis engine uses multiple
algorithms and secure coding rules to find vulnerabilities that can be exploited by attackers. In addition, the tools
analyze the execution flow and data flow.

Next, we discuss the process used to select the levels of the second factor “type of CWE”. For this purpose, we
first identified the set of CWESs covered by all three tools (i.e., CWEs that all tools were designed to support). Then,
we selected the largest possible subset of Juliet test cases associated with these CWEs. This process resulted in 22
different CWEs as levels of the second factor for C/C++ and 19 different CWE:s as levels of the second factor for Java.
These CWEs consist of over 21,000 test cases for C/C++ and over 7,500 test cases for Java, respectively. The lists
of the 22 C/C++ CWEs and 19 Java CWEs used in our experiment and the numbers of corresponding good and bad
functions are given in subsection 4.2, Tables 1 and 2, respectively.

As response variables we used four metrics — accuracy, recall, probability of false alarm, and G-score — that rep-
resent different aspects of static code analysis tools performance in detection of security vulnerabilities. To compute
these response variables, for each of the three static code analysis tools and for each CWE ¢ listed in Tables 1 and
2, we first needed to compute the confusion matrix (i.e., the number of true positives TP;, false negatives FN;, false
positives FP;, and true negatives TN;). These confusion matrices were then used to compute the response variables in
our experiment (i.e., the metrics of tools’ performance):
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The accuracy, given with equation (1), provides the percentage of correctly classified instances, both bad and good
functions. The accuracy is in the range [0, 1] and higher values indicate better performance. It should be noted that
using accuracy in cases when the data is imbalanced (i.e., one of the classes is significantly smaller than the other)
may provide misleading results due to the fact that the smaller class will not contribute significantly to the accuracy
values. We decided to use accuracy as one of the metrics in this paper because the Juliet test suite is fairly balanced
(i.e., the number of bad and good functions do not differ significantly).

Probability of detection (often called recall), given with (2), accounts for the probability of correctly detecting
vulnerabilities, i.e., it is defined as the ratio of true positives to the sum of true positives and false negatives. Recall is
thus focused only on bad functions and represents the fraction of bad functions correctly classified by a tool.

Probability of false alarm, defined by (3), provides the probability of incorrectly classifying non-flawed constructs
as flawed, or the ratio of false positives to the sum of true negatives and false positives. Probability of false alarm is
focused only on good functions and represents the fractions of good functions that were misclassified as vulnerabili-
ties.

Recall R; and probability of false alarm F; quantify two different aspects of the static code analyzers performance.
Recall is an important metric because it quantifies how successful static code analysis tools are in accomplishing their
functionality, i.e., detecting security vulnerabilities. However, these tools are not perfect and sometimes incorrectly
report that a piece of code contains a vulnerability when no vulnerability exists, which is quantified by the probability
of false alarm. This is an important metric because developers must manually examine each warning to establish if
it is true positive or false positive. In cases when the probability of false alarm is high (i.e., significant percentage of
good functions are reported as bad), significant effort will be wasted. Both R; and F; are in the interval [0, 1], and
high recall and low probability of false alarm values indicate better performance. Ideally, we want recall to be 1 and
probability of false alarm to be 0.

Using the G;-score, which is a harmonic mean of R; and 1 — F; (4), allows us to integrate these two important
metrics in a single number. Harmonic mean is particularly useful when dealing with rates or ratios, as in case of
recall and probability of false alarm. It has several desirable properties, such as it is not very sensitive to outliers
and min(R;; 1 — F;) < G; < max(R;; 1 — F;). Also, the harmonic mean is smaller than both the geometric and
arithmetic mean. The G;-score values are in the interval [0, 1] and larger G;-score values correspond to better perfor-
mance. Ideally, we want R; = 1 and F; = 0 (i.e., 1 — F; = 1), which leads to G; = 1. If either R; or (1 — F}) is 0,
G;-score is 0 by definition.

The analyses of our experimental results consist of analysis per individual CWEs, which was based on perfor-
mance metrics given with equations (1), (2), (3), and (4), and analysis of tools’ performance across all C/C++ CWEs
and then across all Java CWEs. The goal of comparing the three selected tools across all CWEs was to find out
whether one or more tools have better overall ability to detect security vulnerabilities (i.e., better recall), preferably
with smaller number of false positives. For this purpose, we computed the standard measures of central tendency:
median and mean (i.e., simple arithmetic average). In addition, we computed the overall metrics across all CWEs (for
C/C++ CWEs and for Java CWEs separately) by lumping the confusion matrices for all CWEs ¢ and computing the
overall accuracy Acc, overall recall R, overall probability of false alarm F', and overall G-score. These overall met-
rics, computed across all CWEs, allowed us to compare our results with the results from related work [15]. (Overall
recall R is equivalent with ‘Absolute detection % of vulnerabilities covered’ used in [15] and overall probability of
false alarm F' is equivalent with ‘% Absolute false positives’ used in [15].)

However, mean, median, and overall metrics each have their own limitations. Thus, mean values are susceptible
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to outliers. Therefore, they allow tool’s excellent performance on one CWE to compensate for the overall bad per-
formance. Or the opposite, a bad performance on several CWESs can prevail over the fair results on most of the other
CWE:s. In general, such behavior may misrepresent tool’s performance. On the other side, outliers have little or no
effect on the median value of a performance metric (which is the middle number of a set of ordered values). However,
if the gap between some numbers is large, while it is small between other numbers in the data, this can cause the
median to be an inaccurate representation of the middle of a set of values. Finally, overall metrics are predominately
affected by the CWEs with larger number of test cases. To overcome these pitfalls, we used statistical tests which
provide more powerful, specialized procedures for testing the differences in the tools’ performance measured in terms
of accuracy, recall, probability of false alarm, and G-score.

As mentioned above, the analysis based on the Juliet test suite can be seen as a two factorial experimental design
aimed to detect the differences in three static code analysis tools (i.e., treatments) across sets of CWEs, each with
multiple test cases. In our experiment, we measured the performance of the tools on the same test cases, which
means that the samples are related (i.e., matched groups). Since the assumptions of the parametric repeated-measures
ANOVA test (used for related samples) were not met, we used its non-parametric equivalent — the Friedman test —
which is often called the two-way analysis of variance by ranks. Basically, the Friedman test ranks the tools for each
CWE (i.e., each row in Tables 1 and 2) separately; the best performing tool gets rank 1, the second best rank 2, and
the worst tool gets rank 3. Friedman test then compares the average ranks of tools across all CWEs.

For each performance metric (i.e., Acc, R, F', and G-score), the null-hypothesis being tested was that all three
tools perform the same and the observed differences are merely random. If the null-hypothesis is rejected, Friedman
test indicates that at least one of the tools tends to yield larger values than at least one other tool (i.e., at least two tools
have different performance). Friedman test, however, does not identify where is the difference. For that purpose, a
post-hoc test is used.

The instruments used in the experiment include guidelines and measurement instruments. The guidelines were
related to Juliet test suite and how to treat the warnings produced by the static code analysis tools, and were mainly
based on the suggestions given in [28]. The measurement instruments consisted of several Python scripts developed
by our team, which allowed automatic data collection and computation of the response variables. Details on the
guidelines and measurement instruments are provided in the next subsection, in the context of the execution of the
experiment.

4.2. Execution of the experiment

Figure 1 presents the execution flowchart of our experiment. Next, we describe briefly each of the six steps shown
in Figure 1.

Step 1: Identify the set of CWEs covered by all three tools & Select a subset of the Juliet test suite.
Based on the tools’ documentation we identified the set of CWEs covered by all three tools (i.e., CWEs that all tools
were designed to detect). Then, we selected the largest possible subset of Juliet test cases associated with these CWEs.

Step 2: Run each tool on the subset of Juliet & Transform tools’ output in a common format.
We used Juliet test cases identified in Step 1 as input to each of the three tools A, B, and C. Since tools produce reports
in different formats we wrote Python script to convert these reports into a common format. Our common format is an
ASCII text file containing in each line one warning massage produced by a static code analysis tool. Each line is a
comma-separated value list containing information such as file name, function name, line number where the potential
vulnerability is located, and one or more CWEs that identify the type of vulnerability.

Step 3: Parse each CWE directory & Assemble a list of test cases and associated bad and good functions.
This step is specific to the Juliet test suite and is common for the evaluation of all three tools. Its goal was to assemble
a complete list of test cases used as an input in the evaluation and it was done by parsing each CWE directory in Juliet
to identify all test cases associated with that specific CWE. Then, for each test case included in our test suite, the
script parses the test case source files to obtain the lists of bad functions and good functions. This resulted in a list of
test cases for each CWE, with associated bad and good functions for each test case. The lists of CWEs for C/C++ and
Java covered in our experiment and the numbers of corresponding good and bad functions are presented in Tables 1
and 2, respectively. (As described in section 3, each test case contains exactly one bad function and one or more good
functions. Consequently, there are more good than bad functions in both Table 1 and 2 and the number of test cases
used in our experiment is equal to the number of bad functions.)
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Identify the set of CWEs covered by all three
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For each tool, compute the overall performance
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Figure 1: Flow chart representing the execution of our experiment

Table 1: List of C/C++ CWEs and the number of associated good and bad functions used in our experiments. Each test case has exactly one bad
function and one or more good functions. (The number of C/C++ test cases is 21,265.)

CWE (ID) Description # of good functions | # of bad functions
(78) OS Command Injection 5,770 4,410
(122) Heap Based Buffer Overflow 8,407 5,665
(134) Uncontrolled Format String 7,440 2,820
(197) Numeric Truncation Error 1,116 846
(242) Use of Inherently Dangerous Function 32 19
(367) TOC TOU 64 38
(391) Unchecked Error Condition 96 57
(401) Memory Leak 4,434 1,684
(415) Double Free 2,154 799
(416) Use After Free 1,256 410
(457) Use of Uninitialized Variable 2,940 924
(467) Use of sizeof on Pointer Type 186 141
(468) Incorrect Pointer Scaling 65 39
(476) NULL Pointer Dereference 733 270
(478) Missing Default Case in Switch 32 19
(480) Use of Incorrect Operator 32 19
(482) Comparing Instead of Assigning 32 19
(561) Dead Code 2 2
(562) Return of Stack Variable Address 3 3
(563) Unused Variable 878 396
(590) Free Memory Not on Heap 3,534 2,679
(835) Infinite Loop 7 6
Total 39,213 21,265

Step 4: For each tool, parse tool’s output & Compute the confusion matrix for each CWE.
For each tool, this step computed automatically the confusion matrix for each CWE given in Tables 1 and 2. This was
done by iterating through the tool’s output file in a common format produced in Step 2 and matching the warnings
produced by the tool to the list of bad and good functions assembled in Step 3. To allow for reproducibility, we
provide details on the test cases and warnings that were excluded from the evaluation, which was done following the
suggestions in [28].
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Table 2: List of Java CWEs and the number of associated good and bad functions used in our experiments. Each test case has exactly one bad
function and one or more good functions. (The number of Java test cases is 7,516.)

CWE (ID) Description # of good functions | # of bad functions
(80) XSS 636 456
(113) HTTP Response Splitting 5,088 1,824
(129) Improper Validation of Array Index 6,148 2,204
(190) Integer Overflow 7,314 2,622
(259) Hard Coded Password 159 114
(330) Insufficiently Random Values 31 18
(382) Use of System Exit 31 18
(396) Catch Generic Exception 62 36
(404) Improper Resource Shutdown 3 3
(476) NULL Pointer Dereference 422 151
(486) Compare Classes by Name 31 18
(489) Leftover Debug Code 31 18
(497) Exposure of System Data 31 18
(500) Public Static Field Not Final 1 1
(568) Finalize Without Super 1 1
(570) Expression Always FALSE 6 6
(571) Expression Always TRUE 6 6
(580) Clone Without Super 1 1
(581) Object Model Violation 1 1
Total 20,003 7,516

e Warnings that were not related to security vulnerabilities were excluded because this study is focused on the
ability of static code analysis tools to detect security vulnerabilities. Incidental flaws, which exist in almost all
Juliet test cases, were also ignored because typically they are considered to be unrelated to security vulnera-
bilities. The only exception were test cases specifically designed to address unreachable code (CWE 561) and
unused variables (CWE 563).

e Windows-only test cases were also excluded from the experiment because the installation of one of the tools
was Linux-only. Around 2,100 test cases were Windows-only.

o (Class-based flaw test cases were ignored because their naming convention clashes with the naming convention
of the much more numerous virtual function/abstract method test cases. It should be noted that class-based flaw
test cases are a very small subset of the total number of Juliet test cases.

e Bad-only test cases, i.e., test cases that do not have a good function (with non-flawed construct) counterparts
were excluded from our analysis because they cannot be properly evaluated (i.e., false positives and true nega-
tives cannot be counted). Note that only six C/C++ and eight Java test cases were bad-only.

e Warnings flagged within helper functions were ignored. This was done because in the event that a test case
contains more than one secondary good function as well as one or more helper function, the helper function
cannot be mapped to the secondary good function from which it was called. Note that this is an artifact of the
automatically generated nature of the Juliet test suite. (See Appendix A for definitions of helper, primary, and
secondary functions.)

The confusion matrices for each CWE were computed as follows. For each test case, the script parsed through
the warnings associated with it and evaluated whether each warning message should be ignored as described above
or it constitutes a true positive (TP), false negative (FN), false positive (FP), or true negative (TN). Basically, for each
CWE ¢

o If the CWE reported by the tool matched the CWE associated with the bad function we counted one true positive
(TP;). For each bad function, only one true positive was counted regardless of how many warnings matched the
criteria for true positives.
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e If the tool did not report a warning or reported different (i.e., incorrect) CWE that did not match the one
associated with the specific bad function we counted one false negative (FN;).

o If the tool reported any CWE within a good function we counted one false positive (FP;).
o If the tool reported no warnings related to a good function we counted one true negative (TN;).

We believe that determining if the CWE reported by a static code analysis tool ‘matches’ the CWE associated
with the specific bad function in the Juliet test suite goes beyond the exact match. This is due to the fact that, as
discussed in Section 3, CWE:s are related. Specifically, they form a hierarchical structure in which a given CWE may
have one or more parents and zero or more children, with CWEs at lower levels of the hierarchy being more specific.
For example, CWE 129 Improper Validation of Array Index listed in Table 2 is a more specific instance of its parents,
which include CWE 20 Improper Input Validation and CWE 633 Weaknesses that Affect Memory. Consequently,
warnings labeled CWE 129, CWE 20, and CWE 633 may refer to the same weakness, that is, if a static code analysis
tool reports CWE 20 or CWE 633 for a bad test case related to CWE 129, it is justifiable to treat that as a ‘match’ and
count the outcome as TP. Note that in the NIST’s report on the Static Analysis Tool Exposition (SATE) IV [14] CWEs
were grouped into categories that were then used for evaluation, but concluded that improvements of the groupings
have to be made to improve the evaluation accuracy. Instead of coming up with groups of CWEs, we decided to rely
on the existing relationships in the CWE taxonomy. Specifically, in computing the confusion matrices, we considered
the CWE reported by a static code analysis tool to be a match to the CWE associated with the bad function if it was an
exact match or one of its immediate parents or children in the CWE hierarchy. This approach enabled an evaluation
that is not too restrictive to penalize the static code analysis tools for reporting closely related CWEs (either more
general or more specific) to the one specified in the Juliet test cases.

To validate our automatic process for computing the confusion matrix for each CWE, we used as a sanity check
the total number of bad functions and the total number of good functions counted in Step 3. That is, for each CWE ¢,
a correct automatic computation of the corresponding confusion matrix results in

Number of bad functions for CWE: = TP; +FN;

Number of good functions for CWE ¢ FP; + TN;

Step 5: For each tool, compute the per CWE performance metrics.
For each of the three static code analysis tools, in Step 4 we compute the confusion matrices (i.e., the number of TP;,
FN;, FP;, and TN;) for each CWE ¢ listed in Tables 1 and 2. These confusion matrices were then used to compute the
response variables: accuracy Acc;, recall R;, probability of false alarm F;, and G; score given with equations (1), (2),
(3), and (4), respectively.

Step 6: For each tool, compute the performance metrics across all CWEs & Run statistical tests.
For each of the per CWE performance metrics computed in Step 5 (i.e., accuracy, recall, probability of false alarm,
and G-score), we computed the standard measures of central tendency (i.e., mean and median) and the overall metrics
across all CWEs (for C/C++ CWEs and for Java CWEs separately). In addition, as discussed in subsection 4.1, for
each performance metric (i.e., Acc, R, F', and G-score), we tested the null-hypothesis that all three tools performed the
same (i.e., the observed differences were merely random) using the Friedman test. For the cases when the Friedman
test rejected the null hypothesis we used a post-hoc test to identify where was the difference.

4.3. Analysis per individual CWEs

In this section we report the analysis of tools’ performance per individual CWEs, for 22 C/C++ CWEs and 19
Java CWEs of the Juliet test suite that all three tools were designed to identify.

The tools’ performance in terms of per CWE accuracy, recall, probability of false alarm and G-scores on the
C/C++ test cases associated with the CWEs listed in Table 1, are presented in the bar graphs shown in Figure 2.

Figure 2a presents the per CWE accuracy Acc; of the three tools for each of the C/C++ CWEs ¢. The accuracy
measures how good is the classification for both the bad and good functions. Higher accuracy values indicate better
performance. From Figure 2a it can be observed that the three tools have similar performance with respect to accuracy,
with Tool C performing slightly better. It should be noted that the accuracy values for all three tools for many CWEs
are close or slightly above 50%, which is comparable or slightly better than random guessing.
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The recall values R; for the C/C++ CWEs are shown in Figure 2b. Higher recall values represent better perfor-
mance, that is, a tool that can successfully detect specific type of vulnerability. The results showed that each tool had
0% recall for some CWEzs, i.e., performed rather poorly when it comes to detecting certain flawed constructs. Some
of the CWEs were detected by one (i.e., CWE 467, CWE 468, CWE 562) or two tools (i.e., CWE 78, CWE 242, CWE
367, CWE 590), and furthermore there were CWEs that were not detected by any of the three tools (i.e., CWE 197,
CWE 391, CWE 478, CWE 480, CWE 482, CWE 835).

Figure 2c displays the values for the probability of false alarm F; in analyzing the C/C++ CWEs. Here smaller
values indicate better performance as they represent less non-flawed constructs being misclassified as flawed. As can
be observed from Figure 2c, tool C had lower false positive rate than both tool A and tool B for all CWEs except CWE
134 and CWE 242.

In general, recall and probability of false alarm when considered together provide much better picture of tools’
performance. For example, if a high recall rate for a given CWE is associated with a high probability of false alarm
(e.g., as tool A performed on CWE 78) it means that the tool does not discriminate well that particular CWE; rather
it tends to report related warnings regardless of the presence or absence of the flawed construct in the code. As
described in section 4.1, the G;-score allows us to evaluate both recall and probability of false alarm at once, with a
single metric. G;-score values close to 1 indicate that the tool can detect a specific CWE well, with no or very little
false positives. As it can be seen from Figure 2d static code analysis tools did not perform particularly well; each of
the tools had low or 0 G;-score for many CWEs. Tool C had better G;-scores than tools A and B on several CWEs,
but worse on other CWEs (e.g., G; = 0 on CWE 467 and CWE 468).

Another way to visualize static code analysis tools performance in term of both recall and probability of false
alarm is to use a ROC square. Figures 3a through 3c present the ROC squares for each of the three tools. In these
figures the probability of false alarm is shown on the x-axis, while recall (i.e., probability of detection) is shown on
the y-axis. The closer a point is to the ideal point (0, 1), the better the tools performance is on that particular CWE.
Based on these figures we made the following observations:

e For each of the three tools not many points are close to the ideal (0, 1) point.
e Tool C has a noticeably lower false alarm rate than both tool A and tool B.

e For each tool there are multiple CWEs at the (0, 0) point (represented by a large bubble) as a consequence of
the tools failing to detect any of the test cases associated with those CWEs.

Next, we compare the per CWE performance of the three tools for the Java vulnerabilities listed in Table 2. As it
can be seen from Figure 4a accuracy values for Java vary more than those for C/C++ shown in Figure 2a. Furthermore
we observe that a combination of two or all three tools have 100% accuracy for several CWEs (i.e., CWE 500, CWE
568, CWE 580, CWE 581), which means that for these CWEs the respective tool(s) classified correctly all constructs,
both flawed and non-flawed.

Figure 4b presents the recall values for the Java CWEs. Similarly as in case of C/C++ CWEs, each tool has 0%
recall for some CWEs. Specifically, some of the CWEs were detected by one (i.e., CWE 129, CWE 190, CWE 396)
or two tools (i.e., CWE 330, CWE 382, CWE 404, CWE 476, CWE 497, CWE 500, CWE 568, CWE 570, CWE 571,
CWE 580), and none of these three tools detected two CWEs (i.e., CWE 486, CWE 489).

Figure 4c displays the probability of false alarm values for the Java CWEs. Based on bar graphs, it appears that
tool C performed better, with smaller probability of false alarm for some Java CWE:s.

G-score values for the Java CWEs are shown in Figure 4d. Similarly as in case of C/C++ CWEs, each of the
tools had low or 0% G;-scores for many CWEs. Compared to C/C+ CWEs, on the negative side, all three tools had
G-scores below 50% for more CWEs, while on the positive side two of the tools or all three tools had ideal 100%
G;-scores for several Java CWEs.

The ROC squares for the Java CWEs for tool A, tool B, and tool C are shown in Figures 5a, 5b, and 5c, respectively.
The closer the points are to the ideal point (0, 1), the better the tools performance. Based on these figures we made
the following main observations:

e For each of the three tools not many points are close to the ideal (0, 1) point.

e For many CWEs, tool C had smaller false alarm rate than tools A and B.
13
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Figure 3: ROC squares for the C/C++ CWEs. The size of each bubble is proportional to the number of instances (i.e., CWEs) that specific bubble
represents.

e For each tool there are multiple CWE:s at the (0, 0) point (represented by a large bubble) as a consequence of
failing to detect any of the bad functions associated with those CWEs.

4.4. Analysis across all CWEs

The per CWE evaluation presented in Section 4.3 provided insights into the performance of the static code analysis
tools for different CWEs. However, because there is a high variation of tools’ performance for different CWEs it is
hard to draw conclusions about overall tools’ performance. Therefore, in this section we compare the performance of
tools across all CWEs, with a goal to find out if any tool has better overall performance than others.
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represents.

For each of the performance metrics (i.e., accuracy, recall, probability of false alarm, and G-score) Table 3 presents
the median and the mean of the per individual CWE values, and the overall values computed across all CWEs, for all
three tools. (Note that all metrics have values between 0-100%, i.e., are in the interval [0, 1]. Higher values indicate
better results for accuracy, recall, and G-score, while lower values are better for the probability of false alarm.)

As it can be seen from Table 3, tool C performed slightly better than the other tools for most metrics, except for
the recall for the Java CWEs for which tool A had the highest median and mean, while tool B had the highest overall
recall. Tool B also had higher overall G-score for Java CWEs. However, as discussed in Section 4.1, comparisons
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Table 3: Comparison of performance metrics (i.e., accuracy, recall, probability of false alarm, and G-score) across all C/C++ CWESs and across
all Java CWEs. For each performance metric, the median and mean of the per individual CWE values, and the overall values computed across all
CWESs are given.

Tool A | Tool B | Tool C
Median | 63% 64% 64%
C/C++ | Mean 59% 67% 72%
Accuracy Overall 51% 69% 82%
Median | 63% 63% 67%
Java Mean 67% 60% 73%
Overall 69% 66% T3%
Median 14% 10% 42%
C/C++ | Mean 21% 26% 39%
Recall Overall 25% 32% 59%
Median | 50% 18% 17%
Java Mean 49% 35% 36%
Overall 14% 26% 3%

Median 2% 1% 0%

C/C++ | Mean 18% 9% 7%

Probability Overall | 35% 12% 7%
of false alarm Median 0% 3% 0%

Java Mean 24% 25% 5%
Overall 10% 19% 1%
Median 15% 18% 37%
C/C++ | Mean 20% 31% 40%
G-score Overall 36% 47% T3%
Median 12% 0% 29%
Java Mean 36% 23% 38%
Overall 24% 39% 6%

based on means, medians, and overall values of the metrics have limitations. In addition, some of the metric values
for different tools shown in Table 3 are rather close, which makes the comparison and drawing sound conclusions
even harder. Therefore, we used statistics to formally test the differences among tools’ performance and if one tool
outperformed the other tools. It appears that this is the first work that uses statistical test to establish if there is a
significant difference in tools’ ability to detect security vulnerabilities.

The results of the statistical tests are given in Table 4. ‘No difference’ indicates that the Friedman test cannot
reject the null hypothesis that there is no difference between tools’ performance. When the Friedman test rejected
the null hypothesis, we ran post-hoc tests to determine where is the difference. The identified differences in tools’
performance are listed in Table 4. (Note that the CWEs with less than 10 test cases were excluded from the statistical
analysis.)

Perhaps the most important observation based on the statistical results shown in Table 4 is that static code analysis
tools did not show statistically significant difference in their ability to detect security vulnerabilities for both C/C++
and Java (i.e., the Friedman test could not reject the null hypotheses for the recall values in either case). In addition,
as can be seen in Table 3, except tool’s C overall recall for C/C++ vulnerabilities and tool A median recall for Java
vulnerabilities, all other recall values were below 50% which would be the expected outcome of random guessing. The
values of the overall recall for C/C++ CWEs given in Table 3, which are in the range of 25% - 59% are much smaller
than the equivalent ‘Absolute detection % of vulnerabilities covered’ reported in [15], which for the nine examined
tools were in the range from 52.8% to 76.9%. Note that the SEMATE test suite 45 used in [15] was much smaller,
with only 75 test cases, which we believe led to inconsistent results. Note that statistical tests were not used [15], that
is, the tools were compared based only on the values of the absolute and mean recall (i.e., ‘Absolute detection % of
vulnerabilities covered’ and ‘Mean detection percentage’).

The Friedman test rejected the null-hypothesis for the probability of false alarm for C/C++ CWEs, but not for
Java CWEs. Subsequently, the post-hoc test showed that, for C/C++ CWEs, tools A and C have significantly different
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Table 4: Results of the statistical tests for tools’ performance. The term ‘No difference’ is used for the cases in which the null hypothesis that there
is no difference among the performance of the three tools cannot be rejected.

C/C++ CWEs Java CWEs
Accuracy Difference between tools A and C | No difference
Recall No difference No difference
Probability of false alarm | Difference between tools A and C | No difference
G-score No difference No difference

performance with respect to the probability of false alarm. This confirms the observation made in subsection 4.3 that
tool C has the lowest misclassification rate of good functions as bad functions. Our results for the overall probability
of false alarm of the C/C++ vulnerabilities, which were in the range 7% to 35% are comparable with the values of the
equivalent metric ‘% of absolute false positives’ reported in [15] for the 74 test cases of the SAMATE test-suite 46,
which for seven out of nine tools were in the range of 6.5% to 36.4%. Obviously, static code analyzers did better than
random guessing when classifying the non-flawed code (i.e., good test cases).

The results for the accuracy are similar as for probability of false alarm — there is statistically significant difference
between tools A and C for C/C++ vulnerabilities only. This is mainly due to the fact that tool C does a better job
classifying the good functions. This basically means that tool C would not detect more C/C++ vulnerabilities, but
would produce less false positives, and thus would require less effort than the other two tools for examining the false
alarm warnings.

When it comes to G-score, which integrates in a singe metric the recall and probability of false alarm, the three
tools did not show statistically significant difference in the performance, neither for C/C++ CWEs nor for Java CWEs.
It appears that even though tool C had better performance with respect to the probability of false alarm for C/C++ test
cases, that was not sufficient to lead to significantly better G-score.

Using the Juliet test suite for evaluation has several advantages, including automatic evaluation of tools’ per-
formance on large number of test cases for many different vulnerabilities, which allowed us to run statistical tests.
However, it also has limitations. First, individual Juliet test cases are rather small, containing only a single vulnera-
bility of a specific type. Second, as with any synthetic benchmark, the realism of the created test cases is a threat to
validity. To mitigate these threats, we also evaluated tools’ performance using three real open source programs as case
studies, which is described in the next section.

5. Analysis based on real open source programs

Unlike the formal experiment presented in Section 4 for which the types of CWEs were controlled by using
carefully produced bad and good test cases and there was a replication (i.e., multiple test cases exist for each CWE),
the case studies look at what is happening on a real software application (i.e., can be considered as ‘research-in-
the-typical’ [29]). In this context, we deal with actual vulnerabilities found in three real software applications and
therefore there is no control and replication (i.e., each vulnerability is one of a kind).

In order to be able to explore the performance of the static code analysis on real programs, it was necessary to
know at least some vulnerabilities and their exact locations in the source code. To evaluate tools’ ability to discriminate
between presence of a given vulnerability and its absence in a similar programming construct, we also needed versions
of the same programs with the known vulnerabilities being fixed. With these requirements in mind, we constructed
three case studies based on real open source programs: Gzip, Dovecot, and Tomcat. The basic facts about these case
studies are given in Table 5. For each of these three open source programs, for the older versions (listed in the next to
last column in Table 5), we identified the known vulnerabilities and their locations in the code using the information
available at the CVE details web site (http://www.cvedetails.com/). Then, for each identified vulnerability, we found
the location of the corresponding fixed code in the newer versions of the programs (given in the last column in Table
5).

Across the three case studies there were a total of 44 known vulnerabilities, with the breakdown shown in Table
6. It should be noted that all known vulnerabilities in Gzip and Dovecot were located within a single source file.
Tomcat’s vulnerabilities were more complex; some spanned several locations within the same file or across multiple
files. Specifically, out of 32 known vulnerabilities in Tomcat version 5.5.13, four occurred in one location within one
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Table 5: Basic facts about open source programs used as case studies for evaluation of the static code analysis tools

Number Ve.:rs1on Version
. . of known with with fixed
Name (URL) Functionality LOC Language known
vulnera- vulnera-
o vulnera- s
bilities s bilities
bilities
Gzip Open source 8,500 C 4 1.3.5 1.3.6
(Www.gzip.org) archiving tool
Dovecot Open source ~280,000 C 8 1.2.0 1.2.17
(www.dovecot.org) | IMAP/POP3 server
Tomcat Open source Java
(tomcat.apache.org) | Servlet & JavaServer | 4,800,000 Java 32 5.5.13 5.5.33
Pages implementation
Table 6: Types of vulnerabilities in the three open source case studies
Open Number of
source Vulnerability type vulnerabilities
program
Gzip Could not be mapped to any existing CWE 4
CWE 264 Permissions, privileges, and access controls 5
Dovecot | CWE 20 Improper input validation 1
CWE 399 Resource management errors 1
Could not be mapped to any existing CWE 1
CWE 22 Path traversal 7
CWE 200 Information exposure 7
CWE 79 Cross-site scripting 5
Tomcat | CWE 20 Improper input validation 3
CWE 264 Permissions, privileges, and access controls 3
CWE 119 Improper restriction of operations within the bounds of a memory buffer 1
CWE 16 Configuration 1
Could not be mapped to any existing CWE 5
Total 44

file, nine occurred at multiple locations within one file, and 19 occurred across multiple files. (Note that CWE 399
given in Table 6 is a parent of CWEs 401, 415, and 416 given in Table 1.)

Since the number of known vulnerabilities was small (i.e., 44 across all three case studies), matching tools’
warning messages to the existing vulnerabilities and their fixed counterparts was done manually. We considered a true
positive (i.e., vulnerability being detected) if at least one of the file(s)/location(s) were matched by a tool’s warning
with the appropriate type of vulnerability.

Using case studies allowed us to evaluate tools’ performance on real vulnerabilities that existed in widely used
programs. This type of evaluation, however, have different kind of limitations than evaluation with a benchmark such
as Juliet. Thus, since unknown vulnerabilities may still be present in the source code, the assessment of all false
negatives is impossible, and therefore metrics such as recall cannot be estimated. Therefore, for the three case studies
we only analyzed the warnings related to the locations of the known vulnerabilities and used the versions with fixed
vulnerabilities to evaluate the ability of the tools to discriminate between vulnerabilities (i.e., bad code that exists in
the older version) and similar code with fixed vulnerabilities (i.e., good code in the newer version).

Another limitation of using real, large case studies for evaluation is due to the fact that static code analysis tools
produce significant number of warnings (see Table 7) that have to be inspected manually in order to determine the
number of false positives. Since false positives are less important than true positives, we decided to restrict our
analysis only to the known vulnerabilities and whether they were detected (i.e., true positive) or missed (i.e., false
negative) by each of the three tools.
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Table 7: Number of detected known vulnerabilities in the vulnerable versions of the three open source case studies

Tool A Tool B Tool C
Program | Version | number of detected/ number of detected/ number of detected/
warnings total known warnings total known warnings total known
vulnerabilities vulnerabilities vulnerabilities
Gzip 1.3.5 112 1/4 36 0/4 119 1/4
Dovecot 1.2.0 8,263 0/8 538 0/8 1,356 0/8
Tomcat | 5.5.13 12,399 7/32 12,904 3/32 20,608 5/32

The results of tools’ evaluation based on the three open source programs are shown in Table 7. These results
confirm the findings based on the Juliet test suite - static code analysis tools were not very successful in detecting
the known vulnerabilities. Specifically, in case of the smallest program, Gzip, tools A and C detected one of the four
known vulnerabilities in the version 1.3.5, but also reported the same vulnerability in the fixed version 1.3.6, which is
actually a false positive. This result indicates that, for this specific vulnerability, tools A and C did not discriminate
the vulnerable code that existed in the older version and the similar code with fixed vulnerability in the newer version
of Gzip. Tool B did not identify any of the four know vulnerabilities in Gzip version 1.3.5. The results based on
Dovecot as a case study were even worse; none of the selected tools detected any of the eight known vulnerabilities
in Dovecot version 1.2.0. For Tomcat, the largest of the three programs with the most complex vulnerabilities, tool
A was the most successful; it detected seven out of the 32 known vulnerabilities in version 5.5.13, compared to three
vulnerabilities detected by tool B and five vulnerabilities detected by tool C. However, when using the newer Tomcat
version 5.5.33 in which the known vulnerabilities from version 5.5.13 were fixed, tools A and C reported two and one
vulnerabilities at the same locations as in version 5.5.13, respectively.

6. Threats to Validity

Empirical studies are subject to threats to validity, which we discuss in this section in terms of construct, internal,
conclusion, and external threats.

Construct validity is concerned with ensuring that we are actually testing in practice what we meant to test. The
first threat to construct validity is related to the choice of static code analysis tools. The number of static code analysis
tools is steadily increasing. The tools we selected may not be representative of all other available tools that perform
static code analysis. Nevertheless, we believe that the results presented in the paper are representative for the current
state-of-the-art in static code analysis because the three selected tools are widely-used commercial tools that belong
to three different classes of static code analysis.

The tools’ output and consequently performance certainly depend on the code used as an input and the type of
vulnerabilities in the code. Using the Juliet test suite, which is publicly available benchmark that covers large number
of different vulnerabilities allowed for fair and repeatable evaluation. To allow for repeatability, we listed all CWE
considered in the study, as well details on different types of test cases that have been ignored. It should be noted that
the 22 C/C++ CWEs and 19 Java CWEs used in this paper were the largest possible set of Juliet CWEs ‘covered’ by
all three selected tools. Two of the tools were designed to cover significantly larger number of CWEs. We used this
larger set of CWEs and repeated the analysis in order to mitigate the construct treat to validity due to limited number
of levels (i.e., types of CWEs). The results were consistent with those presented in subsection 4.3. Specifically, for
each of the two tools not many CWEs were detected with high recall (close to 1) and low probability of false alarm
(close to 0). Furthermore, both tools failed to detect any of the test cases associated with multiple CWEs (i.e., had
zero recall). Last but not least, with respect to the code used for evaluation, in order to mitigate the threat that is due
to the fact that the Juliet test cases were synthetically generated and thus may not be realistic, we also used three open
source application to evaluate the selected tools on actual vulnerabilities.

Another threat to construct validity is related to how the CWEs reported by the tools are matched to the CWEs
specified in the Juliet test cases. Note that the exact matching is likely to underestimate the tools performance because
CWEs are related and form a hierarchical structure in which lower level CWEs are more specific instances of their
parent(s) CWEs. Earlier works used groupings of CWEs in the evaluation [14], but concluded that these groupings
have to be improved. In general, due to the complex relationships among CWEs, there is no easy and consistent way to
group CWEs in groups of related types of weaknesses [14]. To avoid the two extremes — too restrictive exact matching
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that may underestimate tools’ ability to detect vulnerabilities and using broad groups that may include not very closely
related vulnerabilities and overestimate tools’ ability to detect vulnerabilities — for determining if the CWE reported
by the static code analysis tool matched the CWE specified in the code we decided to use the established relationships
in the CWE hierarchy, as described in subsection 4.2 (see Step 4).

The final threat to construct validity is related to the mono-method bias, i.e., to the use of a single metric to make
observations. We addressed this threat by using several performance metrics (i.e., accuracy, recall, and probability of
false alarm) that measure different aspects of the static code analysis tools’ ability to detect security vulnerabilities
and distinguish them from non-flawed code.

Internal validity threats arise when there are sources of influence that can affect the independent variables and/or
measurements without researchers’ knowledge. In case of static code analysis, tools report large number of warning
messages that have to be manually inspected by developers and independent verification and validation analysts in
order to be classified as true positives or false positives. As with any classification, there is a potential for misclassifica-
tion. An empirical study done in industrial setting [21] has shown that on average developers did not correctly classify
the warnings produced by a static code analysis tool and that only developers with specific experiences performed bet-
ter than chance. Obviously, the human classification error is a threat to internal validity that could significantly affect
the reliability of the results. Using a benchmark test suite, such as Juliet, which clearly identifies the part of the code
with vulnerabilities (i.e., bad functions) and the counterparts with the same code without a flaw (i.e., good function)
and allows for automatic classification of the warnings produced by the static code analysis tool eliminated the threat
to validity due to human errors in the classification of the warnings produced by the tools. For the three case studies
based on real, open source applications we determined manually if the tools reported true positives (in the versions
with known vulnerabilities) and false positives (in the versions with fixed vulnerabilities). No classification errors
were made in these cases because we knew the correct outcome (i.e., the existence or lack of a specific vulnerability
in the exact location of the code) and the number of vulnerabilities was small.

Conclusion threats to validity are related to the ability to draw correct conclusions. We addressed this threat by
utilizing a formal statistical experimental design using a benchmark to evaluate the tools. We carefully checked our
data and applied appropriate non-parametric statistical tests. A small sample size is another threat to the conclusion
validity of the results. Using the Juliet test suite, with many different well-defined CWEs and running the statistical
tests on CWEs that have large number of test cases, eliminated this threat to validity.

External validity considerations determine to what extent results can generalize. Since Juliet test cases are syn-
thetically generated, we addressed this threat to validity by using case studies based on three widely-used, successful
open source applications. The tools’ performance based on real software applications was consistent with the results
based on using the Juliet test suite. To further explore the external validity of the results, in the Section 7 we compare
our results (both experimental based on Juliet and case studies based on open source applications) with related works.
These works used one or more static analysis tools (some of which are likely different than the ones used in this paper)
on Juliet and another synthetically generated benchmark, and on open source and industrial applications. It should
be noted that conducting these comparisons is not straightforward due to lack of details and/or different performance
metrics used in related works.

7. Discussion

The techniques for static code analysis have experienced rapid development in the last decade and many tools
that automate the process have been developed. The implications of the empirical investigations described in this
paper for software developers lie primarily in supporting better understanding of the strengths and limitations of the
static code analysis and the level of assurance that it can provide. The goal of this section is to summarize the main
findings, to compare and contrast them with findings from related works, and most importantly to discuss the practical
implications.

o (In)ability to detect vulnerabilities. In cases when a static analysis tool is used by a security assurance team,
the capability of the tool to identify as many existing vulnerabilities as possible (preferably all) is of utmost
importance. Our main finding with respect to the tools’ per CWE performance include:

— None of the three tools performed well across all vulnerabilities.
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— While in some cases tools detected different vulnerabilities, significant number of vulnerabilities were not
detected by any of the selected three tools. Specifically, none of the tools detected any of the bad test cases
(i.e., vulnerability variants) associated with around 27% of C/C++ CWE:s and close to 11% of Java CWEs
from Juliet test suite used in our evaluation.

The first finding is consistent with results reported by all related works discussed in Section 2, some of which
used only one tool while others used multiple tools. Similar results to our second finding were reported by
three studies that used experimental approach based on multiple static code analysis tools [14, 16, 19]. (Note
that neither of these studies identified the tools used in their experiments.) Thus, the 2012 NSA study [16],
which evaluated eight commercial and one open source static analysis tool for C/C++ and seven commercial
and one open source tool for Java using the Juliet 1.1 test suite, reported that 21% of the vulnerabilities in the
C/C++ test cases and 27% of vulnerabilities in Java test cases were not detected by any tool. The NIST’s report
published in 2013 [14] presented in a tabular form the number of true positives and false positives reported by
five static code analysis tools for the Juliet 1.0 C/C++ CWEs which were grouped into ten categories. Each of
the five tools had zero true positives in multiple categories. Even though the comparison is not straightforward,
it appears that similar results were also reported in the 2008 study [19], which explored the performance of six
tools using a test suite created for that purpose. Based on the scoring system that assigned three points for each
true positive, one point for each false positive, and zero points for each false negative result, the six tools scored
30-43% of the total points for C vulnerabilities and 36-61% for Java vulnerabilities. These results are strong
indication of a high number of false negatives.

Perhaps the most important findings, which were made for the first time in this paper, are related to the tools’
performance across all types of vulnerabilities:

— There were no statistically significant differences among selected tools’ ability to detect vulnerabilities.

— The capability of the selected static code analyzers to detect vulnerabilities was close to or worse than
random guessing (i.e., recall values were close to or below 50%).

Note that none of the related works used formal statistical tests to compare tools’ performance and few reported
quantitative values for the probability of detection (i.e., recall). The closest to our work is the 2013 study [15],
which only considered vulnerabilities in C code and for the nine examined tools reported ‘absolute detection %
of vulnerabilities covered’ in the range from 52.8% to 76.9%. These results were obtained using much smaller
test suite of only 75 test cases, which most likely is the reason for somewhat inconsistent results.

The three open source case studies used in this paper, which had a total of 44 known vulnerabilities, confirmed
the limited capability of the selected static code analysis tools to detect security vulnerabilities. The tools were
able to detect from 0-25% of the known C vulnerabilities and from 9-21% of the known Java vulnerabilities.

It should be noted that most of the related works that used case studies did not report the number of false
negatives. This is due to several reasons: lack of quantitative evaluation of security vulnerabilities [6], the
existence and location of the security vulnerabilities were not known [7, 20], and the goal of the study was
different (such as for example to study the ability of human experts to classify the tool generated warnings to
either true positives or false positives [22]). Only a few studies reported the false negatives. Thus, a study of
static code analysis tools used in industry reported the false negatives for two of the evaluations that were based
on industrial case studies from Ericsson (see Evaluations 3 and 5) [20]. Specifically, in an old version of an
application none of the two static code analysis tools reported any of the known memory leaks, although they
were able to find memory leaks in different locations and other bugs. For another Ericsson product, which was
implemented in Java and had a number of known software bugs (i.e., faults), none of the known bugs were
detected by the three commercial tools used in [20]. (The specific number of known bugs and discussion on
the types of security vulnerabilities were not given in [20].) Another related work that was focused only on
SQL injection vulnerabilities and used eight Web services as case studies [24] reported that the three static
code analysis tools were able to detect (i.e., cover) 39%, 82%, and 100% of the known vulnerabilities identified
by experts. These more favorable results, which were based on one specific type of applications (i.e., Web
services) and one specific type of vulnerability (i.e., SQL injection), were not supported by the broader range
of applications and types of vulnerabilities present in our three case studies.
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Our results and similar findings by related works indicate that the state-or-the-art static code analysis cannot
provide assurance that software systems are free of vulnerabilities and therefore have to be used in combination
with other vulnerability detection techniques.

The price of false positives. Static code analysis tools produced significant number of false positives (with
overall probability of false alarm from 7% to 35% for C/C++ and from 1% to 19% for Java). Having in
mind that false alarm is the ratio of the non-flawed functions reported as vulnerabilities over the all non-flawed
functions, it appears that static code analyzers performed better than random guessing when classifying the non-
flawed code constructs (i.e., good functions) in Juliet. Furthermore, unlike in the case of recall (i.e., probability
of detection), one of the tools had significantly better performance with respect to reporting false alarms for
C/C++ vulnerabilities, but not for Java.

The high number of false positives, in addition to high probability of false alarm, may result in low precision,
which is defined as the ratio of detected vulnerabilities (i.e., true positives) over the total number of warnings
(i.e., both true positives and false positives). In case of Juliet, our results showed overall precision from 28-
82% for C/C++ CWEs and 34-56% for Java CWEs. These values were not reported in Table 3 for brevity,
but are given here to allow for comparison with related works. Specifically, a recent study [7], which among
several other vulnerability detection techniques evaluated the static code analysis using only one commercial
tool, reported precision from 2-26% for three open source electronic health record systems that were used as
case studies. These precision values are comparable to the lower-end precision values obtained for the Juliet
benchmark in our study. The lower values obtained for the real software applications used in [7] may be due to
the fact that, unlike Juliet, real software applications have significantly more good code than bad code, which
may increase the chances of reporting false positives and result in lower precision. In addition, the lower
precision may be a characteristic of the specific tool used in [7], that is, other static code analysis tools may
have resulted in higher precision.

In general, static code analysis tools report high number of false positives which leads to several practical
implications:

— If the product is large, it will likely result in a large number of false positives to be inspected manually and
consequently in significant waste of resources. For some sensitive products, however, it may be acceptable
to spend more analysis time in order to detect more vulnerabilities.

— High probability of false alarm may be more acceptable when the static code analysis tool is used as an
early vulnerability detector on a daily basis during development than if it is used late in the life cycle (e.g.,
for verification and validation).

— Even if the cost of inspecting many false positives is acceptable, industrial experience has shown that there
are several other challenges [21]: developers were not better than random guessing in identifying the false
positive warnings produced by a tool; a combination of practical experience from projects, security, and
use of the specific static code analysis tools were needed to improve the identification of false positives;
and there is a risk of introducing new vulnerabilities while attempting to “fix” false positives incorrectly
classified as true positives by the developers.

Having this in mind, selecting a tool with smaller probability of false alarm (assuming there is no difference in
the probability of vulnerability detection) is advantageous.

Further improvements to techniques and tools for static code analysis are needed. Static code analysis can
be used during software development to support accounting for security and other software quality concerns
early in the life cycle. It can be used on incomplete systems and in most cases scales well with a large code
base. Therefore, automated static code analysis holds potential to improve products security. However, the
evaluation results presented in this paper showed that even though using state-of-the-art static code analysis
tools may improve software products security, they do not provide any assurance and require significant manual
effort for classification of reported warnings. In order to achieve more cost efficient identification of security
vulnerabilities and higher assurance in software quality, static code analysis techniques and tools need to be
further improved.
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8. Conclusion

This paper is focused on evaluation of the ability of static code analyzers to detect security vulnerabilities. For
this purpose we used an experimental approach based on using the Juliet benchmark test suite which allowed us (1)
to automatically evaluate tools’ performance on large number of test cases that cover wide variety of C/C++ and Java
vulnerabilities, (2) to assess quantitatively tools’ performance, both per CWE and overall, across all CWEs, and (3)
to conduct the analysis and evaluation in a statistically sound context, including testing the statistical significance of
the results, which has not been done in the related work.

Our experimental results showed that, despite the recent advances in this area and the claims made by the tools’
vendors, static code analyzers do not perform well in detecting security vulnerabilities in the source code. Specifically,

e Some CWEs were detected by all three tools, by a combination of two tools, or by a single tool. In this context
‘detect’” means correctly classifying at least one of (in some cases) many bad functions created for specific
CWE, that is, having per CWE recall greater than zero (rather than detecting all bad functions and having per
CWE recall value of 100%).

e Other CWEs were completely missed by all three selected tools. In particular, all three tools had zero recall,
that is, missed reporting all bad functions associated with six (i.e., 27%) of the C/C++ CWEs and two (i.e.,
11%) of the Java CWEs.

e While tools’ ability to identify security vulnerabilities (i.e., correctly classify CWEs) significantly differed by
weakness category, overall across all weakness categories none of the tools we explored significantly outper-
formed the other tools (i.e., there was no statistically significant difference among the recall values). Even more,
many per CWE recall values and across all CWE recall measures (i.e., median, mean, and overall recall) were
close to or below 50%, thus exhibiting worse performance than random guessing.

These results suggest that one cannot rely solely on static code analysis because doing so would leave a large number
of vulnerabilities undiscovered.

Our empirical investigation combined the controlled experiment with case studies approach based on three open
source programs that had a total of 44 known vulnerabilities. The results of the case study based evaluation were
consistent with the experimental evaluation based on the Juliet test suite, that is, validated the conclusion that static
code analysis tools have high false negative rates (i.e., have a limited ability to identify security vulnerabilities).

Appendix A: Description of the Juliet test case format
This appendix provides more detailed description of the format of the Juliet test cases.

o All C test cases and the vast majority of C++ and Java test cases implement flaws contained in arbitrary func-
tions. These test cases are called non-class-based flaw test cases. The simplest of these test cases consist of a
single source file, while the more complex test cases are often implemented within multiple files.

e Each non-class-based flaw test case contains exactly one primary bad function. For test cases which span
multiple files this primary bad function is located in the primary file.

e Each non-class-based flaw test case contains exactly one primary good function. This primary good function
does not contain non-flawed constructs, its only purpose is to call the secondary good functions.

e Each non-class-based flaw test case contains one or more secondary good functions. Simpler test cases will have
the non-flawed construct in the secondary good function(s), however in more complex test cases the secondary
good function(s) can also be used to call some source and/or sink functions.

e Non-class-based flaw test cases which test for different data flow variants use source and sink functions. These
source and sink functions can be either good or bad. Each such function can be mapped to either the primary
bad function or exactly one secondary good function.
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e When the implementation of a flaw cannot be represented within a single function, helper functions are used.
Helper functions are mapped to either the bad function or one of the good functions. The source and sink
functions mentioned above are not considered helper functions.

e Very few C++ and Java test cases implement vulnerabilities which are based on entire classes as opposed to
individual statements or blocks of code. These are called class-based flaw test cases and are implemented across
multiple files with each file containing a separate class.

e Each class-based flaw test case has one bad file. This file contains the required bad function.

e Each class-based flaw test case has one good file. This file contains a primary good function as well as one or
more secondary good functions.

e There are some test cases for certain flaw variants for C++ and Java which use virtual functions, in the case of
C++, or abstract methods, in the case of Java. These test cases can be comprised of four or five files.

e Very few of the test cases contain only flawed constructs. As Juliet was being designed it was found that non-
flawed constructs which correctly rectify the flaw being tested could not be generated for a small number of
non-class-based vulnerabilities, which resulted in these bad-only test cases.

Acknowledgments

This work was funded in part by the NASA Independent Verification and Validation Facility in Fairmont, WV
through grant managed by TASC Inc. Authors thank Keenan Bowens, Travis Dawson, Roger Harris, Joelle Loretta,
Jerry Sims, and Christopher Williams for their input and feedback. We also thank the anonymous reviewers for their
comments and suggestions.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of NASA and TASC Inc.

References

[1] Cyberspace policy review: Assuring a trusted and resilient information and communications infrastructure (2009).
[2] 2014 Global report on the cost of cyber crime. Ponemon Institute research report (2014).
[3] Source code security analysis tool functional specification version 1.0, National Institute of Standards and Technology, Special Publication
500-268 (2007).
[4] M. Zhivich, R. K. Cunningham, The real cost of software errors, IEEE Security & Privacy 7 (2) (2009) 87-90.
[5] G. McGraw, Software Security: Building Security In, Addison-Wesley Professional, Boston, 2006.
[6] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, M. A. Vouk, On the value of static analysis for fault detection in software,
IEEE Transactions on Software Engineering 32 (4) (2006) 240-253.
[7]1 A. Austin, C. Holmgreen, L. Williams, A comparison of the efficiency and effectiveness of vulnerability discovery techniques, Information
and Software Technology 55 (7) (2013) 1279-1288.
[8] B. Chess, G. McGraw, Static analysis for security, IEEE Security & Privacy 2 (6) (2004) 76-79.
[9] Common Weakness Enumeration, https://cwe.mitre.org/ (accessed December 21, 2014) (September 2013).
[10] B. Chess, J. West, Secure Programming with Static Analysis, Addison-Wesley Software Security Series, Boston, 2007.
[11] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation with testing techniques: An infrastructure and its potential impact,
Empirical Softw. Engineering 10 (4) (2005) 405-435.
[12] T. Boland, P. E. Black, The Juliet 1.1 C/C++ and Java test suite, IEEE Computer 45 (10) (2012) 88-90.
[13] CAS Static Analysis Tool Study - Methodology, Center for Assured Software, National Security Agency,
http://samate.nist.gov/docs/CAS(accessed December 21, 2014) (December 2012).
[14] V. Okun, A. Delaitre, P. E. Black, Report on the static analysis tool exposition (SATE) IV, Tech. rep., NIST (January 2013).
[15] G. Diaz, J. R. Bermejo, Static analysis of source code security: Assessment of tools against SAMATE tests, Information and Software
Technology 55 (2013) 1462-1476.
[16] K. Erno, Sticking to the facts II: Scientific study of static analysis tools, in: Presentation at the SATE IV Workshop, Center for Assured
Software, National Security Agency, 2012.
[17] L. M. R. Velicheti, D. C. Feiock, M. Peiris, R. Raje, J. H. Hill, Towards modeling the behavior of static code analysis tools, in: Proceedings
of the 9th Annual Cyber and Information Security Research Conference, ACM, 2014, pp. 17-20.
[18] Static Analysis Tool Exposition, http://samate.nist.gov/SATE.html, (accessed December 21, 2014) (2013).
[19] M. Johns, M. Jodeit, W. Koeppl, M. Wimmer, ScanStud: Evaluating static analysis tools, in: OWASP Europe, 2008.

24



(20]
(21]
[22]
[23]
[24]
[25]
[26]
[27]

(28]

(29]

P. Emanuelsson, U. Nilsson, A comparative study of industrial static analysis tools, Electronic Notes in Theoretical Computer Science 217
(2008) 5-21.

D. Baca, K. Petersen, B. Carlsson, L. Lundberg, Static code analysis to detect software security vulnerabilities-does experience matter?, in:
International Conference on Availability, Reliability and Security (ARES’09), IEEE, 2009, pp. 804-810.

D. Baca, B. Carlsson, K. Petersen, L. Lundberg, Improving software security with static automated code analysis in an industry setting,
Software — Practice and Experience 43 (2013) 259-279.

T. Hofer, Evaluating static source code analysis tools, Master’s thesis, Ecole Polytechnique Fédérale de Lausanne (April 2010).

N. Antunes, M. Vieira, Comparing the effectiveness of penetration testing and static code analysis on the detection of SQL injection vul-
nerabilities in Web services, in: 15th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’09), IEEE, 2009, pp.
301-306.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in Software Engineering, Springer-Verlag, New
York, Dordrecht, London, 2012.

Juliet test suite, http://samate.nist.gov/SRD/testsuite.php (accessed December 21, 2014) (2013).

P. E. Black, SAMATE and evaluating static analysis tools, Ada User Journal 28 (3) (2007) 184—188.

V. Okun, A. Delaitre, P. E. Black, Report on the third static analysis tool exposition (sate 2010), Tech. rep., SP-500-283, US Nat. Inst. Stand.
Techn (2011).

B. Kitchenham, L. Pickard, S. L. Pfleeger, Case studies for method and tool evaluation, IEEE Software 12 (4) (1995) 52-62.

25



