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Abstract

In this paper we present an empirical study of architecture–
based software reliability based on a large open source applica-
tion which consists of 350,000 lines of C code. The goals of our
study are to analyze empirically the adequacy, applicability, and
accuracy of architecture–based software reliability models. For
this purpose we developed innovative approaches to efficiently
extract and more accurately analyze a large amount of empiri-
cal data. Applying the theoretical results on a large scale field
study allows us to test how and when they work, to understand
their limitations, and outline the issues that need attention in the
future research studies. Thus, our results show that for a subset
of failures which can clearly be attributed to single components,
both the composite and hierarchical models are very accurate
when compared to the actual reliability. However, the assump-
tions made by the existing architecture–based software reliability
models do not allow to account for the remaining failures which
led to fixing faults in multiple components. These results show
that in order to progress further, software reliability engineering
should go through cycles of building models, testing them empir-
ically, learning from the experiments, and refining the models to
capture the newly discovered phenomena.

1 Introduction

Architecture–based assessment of software reliability com-
bines the dynamic information about software architecture with
the failure behavior of components. The motivation for the use
of architecture–based software reliability approach includes the
following:
• understanding how the system reliability depends on its

components reliabilities and their interactions

• guiding the process of identifying critical components for a
given architecture

• studying the sensitivity of the application reliability to relia-
bilities of components and interfaces

• selecting an architecture that is most appropriate for the sys-
tem under study.

A number of models for estimating software reliability have
been proposed in the past. However, there are many open ques-
tions with respect to the realism of the underlying assumptions,
adequacy, accuracy, and applicability of these models. This paper
is focused on empirical evaluation of these questions based on a

real, large scale software application. We chose to use an open
source software application as a case study since for a wide vari-
ety of open source projects many software artifacts necessary for
architecture–based software reliability assessment are available.
These include the source code, test suites (sometimes including
test drivers and oracles), some type of change logs which keep
track of changes made to the code and possibly other artifacts,
and multiple releases of the software maintained using Concur-
rent Version System (CVS) [30].

Overall, open source software provides a unique opportunity
for experimenting with large, realistic applications; it allows re-
searchers to test the existing theoretical results and explore new
domains, which over time will enable evolution of the knowl-
edge and problem solving ability in software reliability engineer-
ing. We believe that, similarly to more mature fields such as
physics and medicine, software reliability engineering will fur-
ther advance because of the interaction between theoretical and
experimental results. In these fields theorists build models that
predict results of events that can be measured. These models may
be based on theory or data from prior experiments. Then, exper-
iments are carried out to test or disprove a theory, or explore a
new domain. Regardless of the point the cycle is entered, there is
a modeling, experimenting, learning, and remodeling pattern [1].

The rest of this paper is organized as follows. The related
work and our contributions are discussed in section 2. The de-
scription of the case study and the experimental setup are pre-
sented in section 3. Detailed empirical results are given in sec-
tion 4. In section 5 these results are used to estimate software reli-
ability using composite and hierarchical architecture–based mod-
els. Finally, lessons learned and concluding remarks are given in
section 6.

2 Related work and our contributions

Although numerous papers were devoted to architecture-
based software reliability modelling (see for example [9] and ref-
erences therein), most of them either do not include numerical
illustrations [17], [20], [28] or illustrate the proposed models on
simple made-up examples [2], [5], [15], [18], [29], [31].

Only a few papers so far applied the theoretical results on real
case studies [8], [10], [11], [12], [14]. The analysis of a sub-
system of a telephone switching system based on data collected
from more than one thousand identical systems in several sites
over three years was presented in [14]. The main sources of data
were Failure Reports (FR) which described accurately the fail-
ure occurrence conditions and the consequences on the delivered
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service, and Correction Reports (CR) which stated the technical
reasons for failures, components concerned, and the corrections
performed. The system was decomposed into four components
accordingly to the four main functions. For each of these compo-
nents the failure rate was estimated based on data extracted from
58 FR and 136 CR. However, the software execution behavior
was not considered and the model of software architecture was
not built.

In [8] the reliability of the SHARPE application was deter-
mined experimentally using the regression test suite which con-
sisted of 735 test cases. SHARPE has over 35,000 lines of C code,
30 files, and a total of 373 functions. In this study each file was
regarded as a single component. The software architecture rep-
resented by a discrete time Markov chain was determined using
the coverage testing tool ATAC [32]. The execution counts and
transition probabilities at the file level were obtained using the ex-
ecution counts at the block level extracted from ATAC trace files.
In this study, none of the test cases failed, so there was no need to
detect any faults.

The case study from the European Space Agency which con-
sists of almost 10,000 lines of C code was used in several of our
earlier papers [10], [11], [12]. The application was divided into
three components and the architecture was built using the compo-
nent traces obtained during testing. The real faults detected dur-
ing testing and operational usage were injected into the software,
and the failures that happened as result of these faults were used
to estimate components’ reliabilities. Since the injected faults
were known in advance, there was no need to identify faults in
this study. The empirical data was used in [10] to estimate the
point estimates of the reliability using several architecture–based
models, and in [11] and [12] to study the uncertainty of reliability
estimates.

A number of papers that presented empirical studies based on
large software applications are related to our work, although their
focus and goals were different. One group of papers presented
empirical studies of large industrial software applications focused
on identification of faults and prediction of fault–prone files [23],
[24]. The empirical study of an inventory control system which
had approximately 500,000 lines of code was presented in [23].
The authors proposed a statistical model to predict files that are
most likely to contain a large number of faults during the sys-
tem’s next release. In [24] this model was used to predict fault–
proneness on a file level for 17 releases of the inventory control
system and 9 releases of the service provisioning system. These
two studies were focused on prediction of fault–prone files based
on the information about faults extracted from modification re-
quests (i.e., change requests). One of the major problems was the
identification of the modifications aimed at fixing faults, since
modifications were also made to add new functionality or en-
hancements. Overall, in [23] and [24], the faults were identified
on the file level, without collecting any information on software
executions and considering the software architecture.

The difficulties encountered in conducting empirical studies
on large industrial software systems were recently discussed in
[25]. Accordingly to this paper the following issues led to diffi-
culties while conducting the empirical studies presented in [23],
[24]: extracting and analyzing large amounts of data, extracting
from the repository which was not intended for the purpose of

identifying faults, and difficulties in determining which modifi-
cation requests represent faults.

Another set of empirical studies was focused on analysis of
software execution profiles and using the results to draw conclu-
sions about software failures and reliability. In [26], the authors
applied clustering algorithms to partition execution profiles ob-
tained during operational testing. Then, they used stratified ran-
dom sampling to select executions for estimating the proportion
of failures in the entire population of captured executions. The
case studies considered in this paper ranged from 1,624 to 17,000
lines of code. Although the execution profiles were collected, the
authors used a black–box reliability estimation method, which
does not account for software architecture and components’ reli-
abilities.

The work presented in [3] used clustering of software execu-
tion profiles aimed at predicting failures. Case studies consid-
ered in this paper were based on several Java programs (word
count program wc, directory listing program ls, regular expres-
sion parser rex, regular expression finder egrap, and Java pretty
printer JSFormat) and the C compiler of the GNU Compiler Col-
lection (GCC) version 2.95.2. The results showed that a signifi-
cant number of failures were isolated in small clusters of execu-
tions. Similar approach was taken in [4]; execution profiles which
consisted of function–call counts were partitioned using cluster-
ing and it was shown that failures often have unusual profiles that
were reviled by cluster analysis. Two empirical case studies were
used in this paper: a music typesetting program LilyPond writ-
ten in C++ with over 48,000 lines of code and GCC C language
compiler with an overall size of 330,000 lines of code.

In [27] the authors proposed an automated support for clas-
sifying software failures in order to prioritize them and diagnose
their causes. The classification strategies based on supervised and
unsupervised pattern classification and multivariate visualization
were applied on execution profiles. Three compilers, GCC com-
piler for C, and Jikes and javac Java compilers were used as sub-
ject programs in this paper. The execution profiles used in this
study consisted of function-call counts which indicate the num-
ber of executions of each function during a test case execution.
Unlike other papers [3], [4], this study included identification of
faults based on execution of the same test suite on later software
versions.

The same three open source applications, GCC, Jikes, and
javac, were used in [19] for empirical comparison of coverage–
based and distribution–based techniques for filtering large test
suites. For this purpose the authors experimented with profiles
with different granularity (functions, basic blocks, and control
flow edges between basic blocks) using a modified version of the
basic block profiler gcov [37] which is distributed with GCC.

In this paper we present an empirical study of architecture–
based software reliability which is based on a significantly larger
application then earlier studies [8], [10], [11], [12]. Furthermore,
we conduct more comprehensive analysis than any of the pre-
vious empirical studies [8], [10], [11], [12], [14]. Some of the
previously published empirical studies which used comparably
large software applications were limited in scope and had differ-
ent goals. Thus, one group of papers was focused on clustering
of software execution profiles and using the results for predic-
tion of failures [3], [4], [19], [26], [27], while the other was fo-
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cused on identification of faults based on modification records
and proposed a method for prediction of fault–prone files [23],
[24]. Next, we briefly compare our work to these studies.

We determine the dynamic aspects of the software architec-
ture based on execution profiles obtained during testing with a re-
gression test suite. This task requires resolving several challeng-
ing problems such as decomposition of the system into compo-
nents in absence of complete and updated documentation, aggre-
gating a large number of execution profiles which contain a sig-
nificant number of function calls, and identifying the end points
of software executions which are not given in the execution pro-
files under consideration. Unlike the previous work that was fo-
cused on clustering individual execution profiles in their original
form [3], [4], [19], [26], [27], we aggregates a large amount of
data extracted from the individual execution profiles in order to
build a control flow graph which reflects the dynamic aspects of
the software architecture.

As in the previous task, determining failure behavior on com-
ponent level requires extracting large amounts of data. Additional
difficulties arise from the fact that the available repositories are
not intended for identifying faults and it is not trivial to distin-
guish changes made to fix faults from other changes such as en-
hancements and adding new requirements. Earlier work aimed at
fault analysis for large case studies [23], [24] was focused only
on identification of faults from modification (i.e., change) logs
based on simplified heuristics. In our case, this information is
not sufficient; we need to correlate failures of the software sys-
tem with the corresponding faults that caused these failures and
find faults’ locations. Therefore, our approach includes software
executions to detect failures, and then identification of faults that
caused these failures based on more accurate methods which use
other sources of information in addition to change logs.

Finally, we use both composite and hierarchical architecture–
based models to combine the dynamic software architecture with
components failure behavior. Our results show that both types
of models give very accurate results when compared to the ac-
tual reliability. These results, however, are based on a subset of
failures for which we are able to clearly identify components that
caused these failures. Lessons learned from this work contribute
towards enriching the empirical knowledge in software reliability
and help in identifying important topics, such as the relationship
between faults and failures, which require further research.

Accordingly to [1], the main signs of maturing in software
engineering experimentation are: the level of sophistication of
the goals of an experiment and its relevance to understanding in-
teresting (e.g., practical) things about the field, and observing a
pattern of knowledge building from a series of experiments. We
believe that the research work presented in this paper contributes
towards maturity of software reliability engineering experimenta-
tion.

3 Description of the case study and experimental
setup

The GNU Compiler Collection (GCC) is an open source soft-
ware which integrates compilers for several major programming
languages including C, C++, Objective-C, Java, Fortran, Pascal,
Mercury, Cobol, and Ada. For the experiments in this paper we

use the GCC C compiler which has over 350,000 lines of code.
GCC is a suitable case study for our experiments due to several
reasons. It is a large scale application which allows us to study the
applicability, accuracy, and scalability of architecture–based soft-
ware reliability models. Like many open source projects, GCC
uses a Concurrent Version System (CVS) as a version control
tool. CVS stores the latest version of the code base, as well as
the history of the code that was changed. Furthermore, a regres-
sion test suite is available with each version of GCC. This test
suite is maintained by the GCC development team and it is open
to the public for submission of additional test cases. When an
unexpected output is found after a release of a GCC version, de-
velopers and users attempt to locate the fault and fix it. Changes
made to the source code (e.g., fixing faults, enhancements, addi-
tions of new code) are recorded in source code change log files.
Developers and users are encouraged to design and include new
test cases in the regression test suite whenever changes are made
to the source code. New test cases are recorded in the test change
log files and become available with the next released version as a
part of the regression test suite.

The test suite for GCC C compiler comes with test programs,
drivers for these programs, and checkers that compare the execu-
tion behavior of compiled code to expected results. The drivers
and the checkers play the role of a test oracle in this study. In our
experimental setup we use the regression test cases of a newer
version (i.e., GCC 3.3.3 released February 2004) to test an older
version (i.e., GCC 3.2.3 released April 2003) since the test suites
of the newer versions include tests for some faults present in the
older versions. This is due to the fact that developers are en-
couraged to add test cases to the regression test suite whenever
changes are made (including fixing faults). Thus, some test cases
that do not fail when executed on the newer version will fail when
executed on the older version. This process enables more failures
to happen and allows us to detect higher number of faults. Simi-
lar approach was used in other empirical case studies, such as for
example [3], [27], although their goal was different from ours.

It should be noted that the regression test suite represents one
possible operational profile, which is not necessarily representa-
tive of the real usage of the GCC C compiler. This fact does not
limit the validity of our results since our goal is to test empirically
the theory of architecture–based software reliability rather than to
estimate the reliability of GCC C compiler as seen by its users.

3.1 Our approach for empirical analysis of GCC

The common framework within which the existing
architecture–based software reliability models are developed
consists of the following steps [9], [10]: decomposition of the
system to components, determination of software architecture,
description of components’ failure behavior, and combining the
software architecture and failure behavior using analytical or
simulation models.

Our approach for empirical analysis of GCC, presented in Fig-
ure 1, is a refinement of the informed approach introduced in [11]
which is used during late phases of software development when
testing or field data is available. Since the architecture–based ap-
proach requires insights into the software executions the first step
is to instrument the software with a profiler [36], [37], or test
coverage tool [32]. The left branch in Figure 1 represents the
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Figure 1. Our approach for empirical analysis of GCC

details of determining the software architecture, while the right
branch represents the steps taken to determine components’ fail-
ure behavior and estimate components’ reliabilities. Finally, the
dynamic information about the software architecture which in-
cludes the frequency of control transfer between components and
the failure behavior of components described by components’ re-
liabilities are combined using an architecture–based software re-
liability model.

In this paper we use state–based models to estimate soft-
ware reliability [9], [10]. These models use the control flow
graph to represent software architecture and assume that the
transfer of control between components has a Markov property.
In particular, we use models that represent software architec-
ture with an absorbing Discrete Time Markov Chain (DTMC)
with a transition probability matrix P = [pij ], where pij =
Pr{program transits from component i to component j}. Fur-
ther, it is assumed that components fail independently and that
a component failure will ultimately lead to a system failure. The
reliability of the component i is defined as the probability Ri that
the component performs its function correctly. The relevant mea-
sure for these models is the reliability R of a single execution of
software application, that is, the so called probability of failure
per demand 1−R. Next we present the detailed empirical results
of our case study.

4 Empirical results

4.1 Determining the dynamic aspects of the software
architecture

Software architecture reflects the way software components
interact during execution. This means that we consider the dy-
namic information on interactions between components as a part
of software architecture. As discussed in our earlier work [11]
the dynamic software architecture can be determined in the early
phases of the software life cycle using intended approach which
may be based on specification, design, and documentation arti-
facts. In this paper we use informed approach which is based on
information collected during software executions (e.g., integra-
tion testing or operational usage after deployment).

In our experimental study, we instrument the software with
gprof [36] profiler to collect the information on software exe-
cutions. When instrumented software is executed, a profile that
characterizes the software execution for a given test case is gen-
erated. Gprof provides two types of execution profiles at a func-
tion level: flat profile and call graph. The flat profile is a sim-
ple function-call profile which has an entry for each function and
gives the number of times the function was executed. The call
graph is a function caller/callee profile which gives for a pair of
functions f and g the number of times f called g during a corre-
sponding execution. Since our model requires the knowledge of
frequencies of control transfer, we use the call graph profile.

Out of 21,000 test cases in the regression test suite of GCC
3.3.3, 2,126 test cases are designed to test the C proper part
of GCC. We ran these 2,126 test cases using the instrumented
version of GCC 3.2.3. The corresponding 2,126 execution pro-
files contained 1,759 unique functions. Building an architecture–
based software reliability model at the function level is not suit-
able because it leads to a large state space which poses difficulties
in measurements, parameterization, and of the model. Further-
more, if we consider functions as components, the estimation of
components’ reliability may be statistically inaccurate due to a
small size of functions and small number of functions’ failures.
To avoid these difficulties, we first mapped functions to files, and
then grouped files into components that have clearly defined func-
tionality and interfaces. The process of mapping functions to files
was straightforward. For this purpose, we used the open source
tool ctags [35] developed by GNU, which is used to extract dif-
ferent tags in C programs.1 Using ctags, we found that the 1,759
functions belong to 108 source files in GCC. Our next step was to
define components that have a clearly defined functionality and
assign files to components. Based on the information provided in
[38] we decomposed the system into 13 components. However,
assigning files to components appeared to be difficult and time
consuming process due to the fact that the documentation avail-
able on the GCC official Web site and other resources is outdated.
Thus, out of 108 files which contained functions listed in the ex-

1A tag can be anything from a simple variable to something more complex,
like a structure.
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ecution profiles, only 65 were mentioned in the documentation.
The remaining 43 files were assigned to components based on our
analysis of the source code and some help from GCC developers.

The next problem that needed to be resolved was to determine
all functions (and correspondingly components) where the execu-
tion could end. This information is missing from the execution
profiles produced by gprof which contain only the summary data
on software executions (i.e., number of times a function called
its children and was called by its parents) rather than a complete
trace with a clear indication of the functions where the execution
has terminated. Therefore, we were again forced to go through a
tedious process of analyzing the code and determining the func-
tions where the execution may end.

4.1.1 Estimation of transition probabilities

The point estimate of transition probabilities is obtained as pij =
nij/ni, where nij is the number of times the control has trans-
ferred from component i to component j, while ni =

∑
j nij .

The transition probabilities that define the transfer of control be-
tween software components are estimated from the whole set of
execution profiles for all 2,126 test cases. In our case we have
2,126 execution profiles, each with over 700 unique functions.
For the software of this size, it is not efficient to extract the in-
formation about the number of times the control passed from one
component to another directly from the execution profiles (i.e.,
call graphs) produced by gprof which are in a plain ASCII for-
mat. We first parsed the execution profiles and created a database
table with the profile ID, name of the caller function, name of
the called function and the number of times it was called. This
table has 4,643,491 rows which is a clear indication of the large
amounts of data that needed to be analyzed. We also created a
database table which contains the mapping of C functions to files
and components. Querying these tables we created a new table
which contains the number of times component i called compo-
nent j. The transition probability matrix P = [pij ] of the DTMC
which describes GCC architecture is given in Figure 2. It should
be noted that executions always start in component 13. The ma-
trix P has one additional row and column for the End state which
represents the end of the executions.

4.2 Software failure behavior

One of the advantages of using the GCC regression test suite
is that the information about whether each test case has failed
or passed is automatically provided. This means that the time
consuming manual inspection of the outputs to detect failures is
not needed. When we ran the test cases using the make–check
command various *.log and *.sum files were created in the subdi-
rectories of the test suite. The results in the *.log and *.sum files
are associated with the status codes shown in Table 1.

We considered both FAIL and XFAIL status codes as fail-
ures and disregarded status codes UNSUPPORTED, ERROR,
and WARNING since they do not represent failures of test cases.
Thus, UNSUPPORTED status code is used to indicate test cases
that are not supported on a given platform, while ERROR and
WARNING are generated due to errors and possible problems in
running the test cases such as for example failure of the test driver.
The C proper part of GCC was executed on a total of 2,126 test

Status code Meaning
PASS Test passed as expected
XPASS Test unexpectedly passed
FAIL Test unexpectedly failed
XFAIL Test failed as expected
UNSUPPORTED Test is not supported on this platform
ERRORS Test suite detected an error
WARNING Test suite detected a possible problem

Table 1. Status codes used in *.log and *.sum files

cases out of which 111 failures (5.22% of all executions) were
revealed by *.log, i.e., *.sum files.

The built–in test suite oracle was used by other researchers
in the past for detection of test case failures [3], [4], [19], [27].
Although helpful, in our case this information is not enough. We
also need to detect the location of faults that have caused the fail-
ures in order to be able to estimate components’ reliabilities. De-
tection of faults that led to failures, especially for an application
of this size, is not a trivial task. The three main sources of infor-
mation that we used to detect faults are CVS, test case change log
files, and source code change log files. Before we proceed with
the methods that we used to identify faults that led to failures, we
present a description of the GCC test case change log files and
source code change log files.

To track the changes made to the test suite, developers main-
tain test case change logs. The first line in each entry consists
of the date on which the test case has been written, the name of
the author, and his or her e–mail address. The following lines
list the test cases that were added by this author on this date. In
some cases the Problem Report (PR) number is associated with
the test case. This is important information that can be used to
track faults. Surprisingly, out of 3,558 entries in the test case
change logs only 697 had PR numbers. Out of these 697 PR
numbers only 169 were tied to test cases used to test the C proper
part of GCC.

Source code change log files are used to keep track of changes
made to GCC source files; they are released with every version of
GCC. The first line in each entry has the same format as in test
case change logs – it contains the date when the change was made,
and the name and e-mail address of the person that made the
change. This line is followed by a list of files that were changed
and a very brief description of the changes made. There were
approximately 19,300 entries in source code change logs, out of
which only 3,550 had PR numbers. As in the case of industrial
case studies presented in [23], [24], there was generally no iden-
tification in the source code change logs whether a change was
initiated because of fixing a fault, an enhancement, or some other
reason such as change in the specification. In [23], [24] the au-
thors used a heuristic to identify faults from modification request
files which are similar to source code change log files in GCC. A
rule of thumb used in these studies was that if only one or two
files were changed by the modification request, then it was likely
a fault, while if more than two files were affected, it was likely
not a fault. Instead of using this kind of simplifying heuristics,
we decided to develop more accurate methods for identification
of faults. Even more, in our case it does not suffice to identify
changes made to fix faults; we need to establish a cause–effect re-
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Figure 2. Transition probability matrix P

lationship between faults and failures. The methods that we used
to identify faults that caused 111 test cases to fail are described
next.

4.2.1 Methods for fault identification

For our study, it would be ideal to have a PR number and the
name of the test case that led to the failure associated with each
entry in the source code change logs. This would allow us to
distinguish all changes made to fix faults from other changes,
as well as to associate them uniquely with the corresponding
failures. Unfortunately, the names of test cases are rarely given
in source code change log files and furthermore PR numbers are
not always included in the entries for the changes made to fix
faults. Therefore, we needed to develop methods that will allow
efficient and accurate identification of faults that correspond to
failed test cases. These methods, two automatic and two manual,
are described next.

Method I: Searching test case change logs and source code
change logs. From *.log and *.sum files we found out the names
of all test cases that had failed. For each test case that failed, we
searched the test case change logs to find the date and the author
that has added this test case to the regression test suite. Using
this information we searched the source code change logs. If the
corresponding entry was found, it revealed the files that were
changed to fix the fault(s) that caused the failure. In summary,
this method ties the names of the failed test cases (indication of a
failure) with the changes to files given in the source code change
logs (indication of fixing faults) indirectly through information
extracted from test case change log files. This method has several
benefits. First, it is easy to automate, which is far more efficient
and less fault–prone than a tedious manual search of the log files.
(We used the Unix scripting language awk to write scripts that
parse and search test case change logs and source code change
logs.) More importantly, it associates failures with corresponding
faults that caused these failures, i.e., reveals the cause–effect
relationship between faults and failures. This is important since
for our study it is not sufficient to identify faults. Last, but not
least, this method allows us to distinguish between changes made
due to fixing faults and changes made due to other reasons (e.g.,
enhancements or new requirements) without using heuristics
based on rules of thumb such as for example in [23], [24]. This
method was reasonably successful in identifying faults. Thus, we
were able to locate faults that led to 43 out of 111 failures.

Method II: Searching the bug tracking database Bugzilla.
Bugzilla is a free bug–tracking system which allows individuals
or groups of developers to keep track of bugs in their product
[33]. Our second method is based on searching Bugzilla for the
Problem Report (PR) numbers given in GCC log files. First, we
wrote awk script to search the test case change logs for PR num-
bers of failed test cases. Out of 111 failed test cases, only 24 had
PR numbers. Then, we searched Bugzilla manually for these 24
PR numbers. Surprisingly, this method was not very successful in
identifying faults; we identified the corresponding faults for only
6 failed test cases. The main reason for this poor result is that
Bugzilla in most cases does not include the PR numbers.

Method III: Executing test cases on later versions and search-
ing logs. Since we were not able to detect all faults leading to
failures in the version under consideration (i.e., GCC 3.2.3), we
executed the same test suite on later versions of GCC (i.e., GCC
3.3, 3.3.1, 3.3.2, and 3.3.3) in order to determine when the cor-
responding test case stopped failing. Similar method was used
in the empirical studies presented in [19], [27]. After finding the
version in which the fault was fixed, we repeated the first method
to trace the location of the faults in files. For example, if test case
A failed on version 3.2.3 and kept failing until version 3.3.2, it
means that the corresponding fault(s) was (were) fixed in version
3.3.2. Therefore, we searched the source code change logs of the
version 3.3.2 to localize the fault(s). Unlike Method I which re-
quires only searching of test case change logs and source code
change logs, Method III is more time consuming since it requires
checking out, building, testing, and searching logs of multiple
versions of GCC. However, it is still less time consuming and re-
quires less domain and application knowledge than debugging the
large application such as GCC. Using Method III, we were able
to identify the faults that led to 24 failures.

Method IV: Searching CVS logs. For all the remaining failed
test cases we searched the CVS logs available on the GCC Web
site [34]. This method allowed us to find fixes that occurred days
or even months after the test case was created. In many cases
the comments in the CVS logs are more explanatory then those
in the test case change logs and source code change logs. How-
ever, searching CVS manually and reading through logs to en-
sure which changes are responsible for fixing the failed test cases
is time consuming due to the huge amount of data. Using this
method we were able identify the changes made to fix the faults
that led to failures of 12 additional test cases.
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Total number Method I Method II Method III Method IV Features not Unresolved
of failures in GCC 3.2.3 failures

111 43 6 24 12 7 19

Table 2. Distribution of the number of failures

Overall, we have identified the faults that led to 85 failures of
GCC C compiler version 3.2.3. Since our experiments are based
on testing the older version (i.e., 3.2.3) with the regression test
suite of a newer version (i.e., 3.3.3), out of 111 failed test cases we
have excluded 7 test cases which were designed to test features
added to GCC C compiler after the version 3.2.3. This means
that we were able to resolve 92 out of 111 failed test cases. The
results of the process of identification of faults that led to failures
are summarized in Table 2.

It is important to note that the four proposed methods allow us
to identify only faults that have been already detected and fixed.
Some of the 19 unresolved failures are due to faults that are either
not known or not fixed yet and cannot be identified using any of
the methods discussed here. Another reason for not being able to
identify faults that led to some of the failures is the lack of con-
sistency (or discipline) in the process of recording the fixes. This
observation is consistent with the results from the survey of sev-
eral open source projects presented in [13]. Out of 119 individ-
ual responses to the survey only 11.77% claimed that the defect
tracking system was very consistent, that is, no defect gets fixed
without reporting. 45.22% of the respondents answered that the
defect tracking system is almost consistent, while the remaining
37.81% that it is not very consistent or not consistent.

4.2.2 Analysis of failure behavior

Once the faults that led to failures were identified, we associated
these faults to the components identified in section 4.1 in order
to be able to estimate components’ reliabilities. A summary of
files and components affected by fixing faults for 85 failures is
given in Table 32. Thus, 67.06% of failures were due to faults in
one component, 21.18% to faults in two components, and 11.76%
to faults in three to eight components. Similar results were ob-
tained in [22] for a large industrial software application which
consisted of 750,000 lines of code. In that study 15% - 23% of
failures were associated with changing more than one component.
Similarly, analysis of nearly two hundred anomalies from seven
NASA spacecraft systems led to conclusion that some anomalies
have multiple targets, that is, multiple corrections are made to fix
the problem [21].

These observations clearly demonstrate that the relationship
between faults and failures is complex and raise interesting ques-
tions, mainly unexplored in the literature. Since establishing links
between faults and failures is not a trivial task, several simplistic
assumptions were made in the past:

• In [21], for practical reasons, the first fix was selected to
be recorded whenever multiple corrections were made to fix
the problem. Although this solution is practical, it masks the
remaining fixes.

• In [22] a different approach was taken; if a cause of a failure

2Components consist of 1–32 files.

Number Fail- % of Number of Fail- % of
of files ures fail- components ures fail-
affected ures affected ures

1 36 42.35 1 57 67.06
2 23 27.06 2 18 21.18
3 6 7.06 3 5 5.88
4 12 14.12 4 3 3.53
5 2 2.35 5 1 1.18
6 2 2.35 8 1 1.18
8 3 3.53

14 1 1.18

Table 3. Summary of faults distribution across files
and components

was corrected by modifying n files (i.e., multiple targets) n
distinct faults were counted which assures that every fault
is associated with a unique file. However, this study was
focused only on faults, that is, it did not attempt to analyze
the links between faults and failures.

• In [24] and [25], in order to simplify the identification of
faults from modification records, it was assumed that only
changes made to one or two files are related to fixing faults.
Our results show that 30.59% of failures required fixing
more than 2 files (see Table 3). Obviously, using heuristics
as this one is not justified and may lead to significant errors
in the analysis.

• In [7] it was assumed that all failures are traced back to a
unique fault in a module. A similar assumption is made in
most software reliability growth models [6]. Although this
assumption simplifies the analysis, obviously, it is not real-
istic. In our case, 32.94% of failures were tracked to faults
in more than one component.

• In [27], for simplicity it was assumed that each failure is
caused just by one fault. Based on this assumption the set
of failures is partitioned in into k subsets such that all of the
failures in a given subset is are caused by the same fault. Our
results show that this assumption is not valid. Thus, in some
cases even when a failure can be associated with a single
component it is due to multiple faults.

The existing architecture–based software reliability models
assume that components fail independently and a component fail-
ure leads to a system failure. As the results in Table 3 show, we
can be confident that this assumption is valid for 67.06% of the
failures. For the remaining 28 failures (i.e., 32.94%) the current
state of practice for tracking problem reports and code changes
does not allow the process to be fully automated. Instead, we ex-
amined manually the records in the CVS and source code change
logs which corresponded to fixing multiple components related to
the same failed test case. For 12 of them we were able to assign
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the cause of the failure to a single component. Due to the lack of
information in source code change log files and CVS, the large
scale of the application, and lack of domain knowledge, we were
not able to draw any conclusions about 16 failed test cases which
led to changes in multiple components. For example, the person
who made changes to several components tied to the same failed
test case wrote a comment ”Initialize variable” for the first file
changed, and then added ”Likewise” for several other files. From
this record in source code change log file it cannot be concluded
whether the failure resulted as a combined effect of these faults
or the developer has made similar changes to multiple files, not
all of them necessarily related to this particular failure.

These results show that the relationship between faults and
failures is not trivial. In addition to the intrinsic complexity of the
problem, the current defect tracking systems are not intended to
be used for this type of analysis and very often contain incomplete
and inconsistent data. It is obvious that a series of case studies and
controlled experiments are needed to build a pattern of knowledge
in this area.

4.2.3 Estimation of components’ reliabilities

Further study of the fault–failure relationship is out of the scope
of this paper. Instead of making simplifying assumptions, we de-
cided to consider only the 57 failures that were caused by faults
in a single component for estimation of components’ reliabilities.
Thus, we consider a subset of the regression test suite as an op-
erational profile for the system. Our future work will address the
problem of how to account for failures that require changes in
multiple components.

The point estimate of the reliability of component i is obtained
as Ri = 1 − fi/ni, where fi is the number of failures in ni ex-
ecutions of component i. Note that the number of component
executions ni is a random variable whose value was estimated
querying the database of execution profiles. The values of com-
ponents’ reliabilities are given in Table 4.

Component Ri Component Ri

1 0.99999929 8 1
2 0.99999946 9 1
3 0.99999974 10 1
4 1 11 0.99999972
5 0.99999342 12 0.99999989
6 0.99999539 13 0.99999872
7 1

Table 4. Point estimates of components’ reliabili-
ties

5 Empirical assessment of architecture–based re-
liability

Accordingly to the solution method, state–based software reli-
ability models can be classified as either composite or hierarchi-
cal [9], [10]. The composite method combines the architecture
of the software with the failure behavior into a composite model
which is then solved to predict the reliability of the application.
The other possibility is to take a hierarchical approach, that is,

to solve first the architectural model and then to superimpose the
failure behavior on the solution of the architectural model in order
to predict reliability. Next, we briefly describe the composite and
hierarchical models used for reliability assessment in this study.

The model presented in [2] uses a composite solution method;
two absorbing states C and F , representing the correct output and
failure respectively, are added to the DTMC. The transition prob-
ability matrix P is modified to P̂ as follows. The original tran-
sition probability pij between the components i and j is modi-
fied into Ri pij , which represents the probability that the compo-
nent i produces the correct result and the control is transferred to
component j. From the exit state n, a directed edge to state C
is created with transition probability Rn to represent the correct
execution. The failure of a component i is considered by creat-
ing a directed edge to failure state F with transition probability
(1 − Ri). The reliability of the program is the probability of
reaching the absorbing state C of the DTMC. Let Q be the matrix
obtained from P̂ by deleting rows and columns corresponding to
the absorbing states C and F . The (1, n) element of matrix Qk

represents the probability of reaching state n from 1 through k
transitions. From initial state 1 to final state n, the number of
transitions k may vary from 0 to infinity. It can be shown that
S =

∑∞
k=0 Qk = (I − Q)−1, so it follows that the overall sys-

tem reliability can be computed as

R = s1,n Rn, (1)

where s1,n is the (1, n) element of matrix S. Basically, the relia-
bility is equivalent to the sum of reliabilities of all paths that start
at the entry node and end at the exit node C, including the pos-
sibility of an infinite number of paths due to the loops that might
exist between two or more components.

For the hierarchical solution approach we use the model pre-
sented in [10], which is a variant of the models proposed in [8],
[16]. This model establishes a link between hierarchical models,
while using the same input data as the composite model [2] which
allows us to compare the results. The solution of the hierarchical
models is based on the following reasoning. During a single exe-
cution of the software application each component i is executed a
random number of times, denoted by Ni. Thus RNi

i can be con-
sidered as the equivalent reliability of component i that takes into
account its utilization. Assuming that components fail indepen-
dently, the system reliability becomes

∏n
i=1 RNi

i . The first order
approximation of Taylor’s series expansion of E[

∏n
i=1 RNi

i ] is
then used as an approximate estimate of the system reliability

R ≈
n∏

i=1

RVi
i (2)

where Vi = E[Ni] is the expected number of times component i
is executed during a single execution of a software. This approx-
imation is based on the assumption that components are highly
reliable and variances of the number of times each component is
executed are very small. Vi are obtained by solving the following
system of linear equations

Vi = qi +
n∑

j=1

Vj pji (3)
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where qi denotes the initial probability of state i, that is, the prob-
ability that the software execution starts from component i.

We estimate the actual reliability of the software as

R = 1 − F

N
(4)

where F = 57 is the number of system failures in N = 2, 072
test cases3. As it can be seen from Table 5, the composite model
(1) and hierarchical model (2) give extremely close results with
high accuracy when compared to the actual reliability (4).

Reliability Error
Actual 0.9724903475
Composite 0.9997856425 2.8067%
Hierarchical 0.9997928951 2.8075%

Table 5. Comparison of the results

It should be noted that the approximate solution of the hierar-
chical method might not be always so close to the exact solution
of the composite method, as we have shown in our earlier work
[10]. Furthermore, due to independence assumption the system
reliability may be underestimated by either of these methods, es-
pecially if the components that are executed many times during a
single application execution are less reliable.

6 Lessons learned and concluding remarks

In this paper we have presented an empirical study of
architecture–based software reliability based on a real, large scale
software application. Our results are based on innovative ap-
proaches to efficiently extract and more accurately analyze large
amounts of empirical data needed for architecture–based software
reliability assessment. To the best of our knowledge, this is the
largest and the most comprehensive empirical study ever used in
architecture–based software reliability.

Lessons learned from conducting the empirical study pre-
sented in this paper include:

• Large quantity of data has to be extracted and analyzed. In
our empirical study we dealt with over 4.5 million entries
in execution profiles used to build the software architecture
and almost 23,000 entries in source code change logs and
test case change logs used to identify faults that led to fail-
ures. Therefore, for large systems manual examination of
the execution profiles and change logs is almost impossible.
Rather, automatic methods for efficient data extraction and
analysis are needed.

• Decomposition of the system into components may not be an
easy task. Even when the decision about the components can
be easily made based on well known functionalities of the
system, conducting the decomposition may be difficult due
to the large scale of the system and outdated documentation.

• Identification of faults that led to failures is not trivial. Al-
though most systems keep track of changes in some form of
change logs, the reasons why changes were made usually are

3The 7 test cases testing features not in GCC 3.2.3, 19 unresolved failures, and
28 failures that led to fixing faults in multiple components are excluded both from
the failed and the total number of test cases.

not identified explicitly. Therefore, it is not trivial to distin-
guish changes made to fix faults from other changes made
for example to add new functionality or planned enhance-
ments. Better format for keeping track of problem reports
and changes made to the source code needs to be developed
and adopted in practice.

• Relationships between faults and failures are complex and
almost unexplored in the literature. Our results show that
many simplifying assumptions made in the past are not valid
and may lead to errors in the analysis. More empirical and
theoretical research in this area should be conducted by both
software testing and reliability engineering research commu-
nities.

• Both the composite and hierarchical models are very accu-
rate when compared to the actual reliability. These esti-
mates, however, are based on a subset of failures which can
clearly be attributed to single components. Once more sound
relationships between faults and failures are established, the
current state of the art in architecture–based reliability has
to be enhanced to account for them.

The results from this research undoubtedly show that open
source software holds enormous potential for enriching the em-
pirical knowledge in software reliability. They also show that
theoretical research results have to be applied on real, large scale
field studies to examine how and when they really work, to un-
derstand their limits, and to understand how to improve them.
In particular, the empirical results presented in this paper pin-
point some challenging problems which were not addressed in
the previous work on software reliability. Additional empirical
studies are needed to enhance the understanding of the complex
and mainly unexplored relationships between faults and failures.
Subsequently, theoretical research should follow to account for
the newly discovered phenomena.
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