Stochastic Modeling Formalisms for
Dependability, Performance and Performability

Katerina GoSeva — Popstojanova and Kishor Trivedi

Center for Advanced Computing and Communication
Department of Electrical and Computer Engineering
Duke University, Durham, NC 27708 — 0291, USA
{katerina, kst}Qee.duke.edu

Abstract. In this chapter, we discuss practical issues regarding analyti-
cal modeling of complex computer systems. We compare different model
types in terms of their strengths and weaknesses for model construction,
efficiency and accuracy of solution algorithms and the desired perfor-
mance measures. The basic concepts of performance, dependability and
performability modeling are introduced using the example of a multipro-
cessor system. With respect to combined modeling of performance and
dependability two major problems are identified, largeness and stiffness,
and a variety of approaches to deal with them are presented. Finally,
techniques for high level model specification are briefly reviewed.

1 Introduction

Rapid advances in technology resulted in the proliferation of complex computer
and communication systems that are used in different applications ranging from
spacecraft flight-control to information and financial services. Dependability, per-
formance, and performability evaluation techniques provide a useful method for
examining the behavior of a computer or communication system right from the
design stage to implementation and final deployment. The relative importance
of performance and dependability requirements will differ depending on the sys-
tem requirements and typical usage. Sometimes performance and dependability
issues can be addresses separately, but sometimes their interactions and corre-
sponding tradeoffs demand a measure that combines aspects of both.

Suppose that a multiprocessor system has to be designed. Some of the ques-
tions that need to be answered are the following. How much better will per-
formance get by adding a processor? How would adding a processor affect the
reliability of the system? Would this make system go down more often? If so,
would an increase in performance outweigh the decrease in reliability?

The system designer has several options for predicting values: make an edu-
cated guess based on experience with previous similar systems; build prototypes
and take measurements; use discrete event simulation to model the system; and
construct analytic models of the system.

The actual measurement is the most direct method for assessing an existing
system or a prototype, but it is not a feasible option during system design and

implementation phases. It is also sometimes impossible to assure by measure-
ment that a system meets the design criteria. For example, in the case of highly
reliable systems waiting for the system to fail enough times to obtain statistically
significant sample would take years.

Discrete-event simulation (DES) is commonly used modeling technique in
practice. It can capture system characteristics to the desired degree, and many
software packages are available that facilitate the construction and execution of
DES models. However, DES tends to be relatively expensive since it takes quite
long time to run such models, particularly when results with high accuracy
are required. Also, it is a non-trivial problem to simulate with high confidence
scenarios entailing relatively rare events while others are occurring much more
often.

Analytical modeling has proven to be an attractive cost-effective alternative
in these cases. A model is an abstraction of a system that includes sufficient
detail to facilitate an understanding of system behavior. To be useful, the model
of current day complex computer and communication systems should reflect im-
portant system characteristics such as fault-tolerance, automatic reconfiguration
and repair, contention for resources, concurrency and synchronization, dead-
lines imposed on tasks, and graceful degradation. Due the recent development in
model generation and solution techniques, and the availability of software tools,
large and realistic models can be developed and studied. A system designer has
a wide range of different types of analytical models to choose from. Each type
has its strengths and weaknesses in terms of accessibility, easy of construction,
efficiency and accuracy of solution algorithms, and availability of software tools.
The most appropriate type of model depends upon the complexity of the system,
the questions to be studied, the accuracy required, and the resources available
for the study.

Analytical models can be broadly classified into non-state space models and
state space models. Reliability block diagrams, fault trees and reliability graphs
are non-state space models commonly used to study dependability of systems.
They are concise, easy to understand, and have efficient solution methods. How-
ever, realistic features such as non-independent behavior of components, im-
perfect coverage, non-zero reconfiguration delays, and combination with perfor-
mance can not be captured by these models.

In the performance modeling, the examples of non-state space models are
directed acyclic task precedence graphs and product form queueing networks.
Directed acyclic task precedence graphs can be used to model concurrency for
the case of unlimited resources. On the other hand, contention for resources can
be represented by a class of queueing networks known as product form queueing
networks (PFQN) for which efficient solution methods to derive steady state
performance measures exist. However, they cannot model concurrency, synchro-
nization, or server failures, since these violate the product form assumptions.

State space models enable us to overcome the limitations of the non-state

space models in modeling complicated interactions between components and
tradeoffs between different measures of interest. Although in this chapter we

concentrate on state space models, whenever it is possible we consider an alter-
native non-state space model.

Most commonly used state space models are Markov chains. They provide
great flexibility for modeling dependability, performance, and combined depend-
ability and performance measures. But the size of their state space grows much
faster then the number of system components, making model specification and
analysis difficult and error-prone process. One way to deal with large models
is largeness-tolerance. A number of concise descriptions have evolved, and soft-
ware tools that automatically generate the underlying Markov chain and provide
effective methods for solution are now available. Many such high level specifi-
cation techniques, queueing networks and stochastic Petri nets being the most
prominent representatives, have been suggested in literature. Another way to
deal with large models is to use techniques that avoid largeness, such as state
truncation, state lamping, and model composition.

This chapter is organized as follows. First, we define Markov chains, and
then introduce Markov reward models. Next, we demonstrate how a number of
different pure dependability and pure performability measures can be derived
by choosing the appropriate reward structure. We illustrate the combined per-
formance and dependability analysis, and then examine two major difficulties
that are encountered in the use of monolithic Markov models, namely, largeness
and stiffness. Both problems of largeness and stiffness can be avoided by com-
posing the overall model from a set of smaller non-stiff submodels. The overall
solution is obtained by composing submodels solutions. Reward based performa-
bility analysis is an example of model composition approach; the performance
submodel is solved and its results are passed as reward rates to the dependability
submodel. Although in the chapter we use Markov reward models, the general
concept of reward based modeling is not limited to a specific model type. Thus,
we show how the Markovian constraints can be relaxed, and other paradigms
such as semi Markov reward models or Markov regenerative reward models can
be used as well. Finally, techniques for high level specification of the underlying
computational model type are briefly reviewed.

Through the chapter we demonstrate the use of different model types and
the derivation of a number of measures that may be of interest on the example
of a multiprocessor system with n processors with a limited number of buffers
m, in the presence of failure, reconfiguration, and repair.

2 Markov Reward Models: Definition and Measures

In this section we present a brief introduction to the concepts and notation of
Markov chains and Markov reward models. Let {X (¢),t > 0} be a homogeneous
finite state continuous time Markov chain (CTMC) with state space S and in-
finitesimal generator matrix @ = [g;;]. Let P;(t) = P{X(t) = i} denote the
unconditional probability of the CTMC being in state ¢ at time ¢, and the row
vector P(t) = [Pi(t), Pa(t),. .., Pn(t)] represent the transient state probability
vector of the CTMC. The transient behavior of the CTMC can be described by

the Kolmogorov differential equation:

dP(t

PO _pPwe aven PO M
where P(0) represents the initial probability vector (at time ¢ = 0). The steady-
state probability vector 7 = lim;_,o P(t) satisfies:

Tl'Q:O, Ez’esﬂ'i:]“ (2)

In addition to transient state probabilities, sometimes cumulative probabilities
are of interest. Define L(t) = fot P(u) du; then L;(t) denotes the expected total
time the CTMC spends in state i during the interval [0,t). L(t) satisfies the
differential equation:

dL(t)

2 =L@+ P0), L(0) =0. (3)

With these definitions, most of the interesting measures can be defined.
CTMC with absorbing states deserves additional attention. Here, the measures
of interest are based on the time a CTMC spends in non-absorbing states be-
fore an absorbing state is ultimately reached. For that purpose the state space
S = AUT is partitioned into the set A of absorbing states and the set T of
non-absorbing (transient) states. Let Q7 be the submatrix of Q corresponding
to the transitions between transient states. Then the time spent in transient
states before absorption can be calculated by Lr(00) = limy_, o, L7 (t) restricted
to the states of the set T'. The mean time to absorption (MTTA) can be written
as MTTA =}, Li(c0).

Assigning rewards to states or to transitions between states of CTMC defines
Markov reward model (MRM). In the former case rewards are referred to as
reward rates and in the letter as impulse rewards. In this chapter we consider
state-based rewards only. Let the reward rate r; be assigned to state i¢. Then,
the random variable Z(t) = rx 4 refers to the instantaneous reward rate of the
MRM at time ¢. The accumulated reward over the interval [0,%) is given by

¢ ¢
Y (t) :/0 Z(u) duz/o T X (u) AU 4)

Based on the definitions of X (t), Z(t), and Y (¢), which are non-independent
random variables, various measures can be defined. The most general is the
distribution of the accumulated reward over time [0,t), that is, P{Y (¢) < y}
which is difficult to compute for unrestricted models and reward structures [5].
The problem is considerably simplified if we restrict to the expectations and
other moments of random variables. Thus, the expected instantaneous reward
rate can be computed from

E[Z®)] =) ri Pi(®) (5)

i€S

and the expected reward rate in steady-state (when the underlying CTMC is
ergodic)
E[Z]=) rim. (6)
=

To compute the expected accumulated reward we use

E[Y ()] =) i Li(t). (7)

i€S

For models with absorbing states, the limit as ¢ — oo of the expected accumu-
lated reward is called the expected accumulated reward until absorption

E[Y (c0)] =) 7i Li(c0). (8)

i€T

Given the MRM framework, the next question that arises is “What are the
appropriate reward rate assignments?”. The reward structure clearly depends on
whether we are interested in dependability, performance or composite depend-
ability and performance measures. In the next section we will illustrate the use
of this general framework for deriving a number of different measures.

3 Separate Analysis of Dependability and Performance

We begin by introducing a dependability model of multiprocessor system that
considers failure/repair behavior and derive a number of dependability related
measures by choosing appropriate reward structures. Next, the performance
model of the multiprocessor system that describes the arrival and service com-
pletion of the jobs is presented and we demonstrate that the concept can also
be used to derive performance measures of interest.

3.1 Dependability Model

Reliability, availability, safety and related measures are collectively known as de-
pendability. Thus, dependability modeling encompasses failure, reconfiguration,
and repair related aspects of system behavior. We present dependability model
of a multiprocessor system with two processors, adapted from [5]. Each proces-
sor is subject to failures so that its MTTF is 1/. A processor failure is covered
with probability ¢, that is, not covered with probability 1 — ¢. A covered failure
is followed by a brief reconfiguration period, the average reconfiguration time
being 1/§. An uncovered failure is followed by a reboot, which requires a longer
time to take place; the average reboot time being 1/48, (1/8 > 1/§). In either
case the failed processor needs to be repaired, with mean time to repair being
1/7. The other processor continues to run and provides service normally, that is,
the system comes up in a degraded mode. Should the other processor fail before
the first one is repaired, the system becomes out of service until the repair of
the one of the processors is completed. Only one processor can be repaired at

a time. Neither reboot nor reconfiguration is performed when the last processor
fails. It is assumed that no other event can take place during a reconfiguration
or reboot. The justification for this assumption lies in the fact that in practice
the reconfiguration and reboot times are extremely small compared to the time
between failures and repair times. If all the times are assumed to be independent
exponentially distributed random variables, then the multiprocessor system can
be modeled by the CTMC shown in Fig.1.

Fig. 1. Dependability model of multiprocessor system

System Availability Measures. System availability measures show the like-
lihood that the system is delivering adequate service, or equivalently, the pro-
portion of potential service actually delivered. These measures fit best with the
system where brief interruptions in system operation can be tolerated, but no
significant annual outage. For example, commercial telephone switching systems
and database systems are designed to provide high system availability over a
long periods of time.

The most simplest availability measures are based on a binary reward struc-
ture. Assuming for the model in Fig.1 that one processor is sufficient for the
system to be up, the state space S can be partitioned into a set of up states
U = {2,1} and set of down states D = {z,y,0}, that is, S = U U D. A re-
ward rate 1 is attached to the up states and a reward rate 0 to down states. It
follows that the probability that the system is up at a specific time ¢, that is,
instantaneous availability is given by

A(t) = E[Z(t)] = Y riPi(t) = Y _ Pi(t) = Pi(t) + Pa(t). 9)

€S ieU

Steady-state availability, on the other hand, is given by

A:E[Z]ZZTZ'TF,'ZZTM:W1+7T2. (10)

i€S €U

The interval availability provides a time average value

- 1 1 1 1

At) = ;E[Y(t)] =3 Z riLi(t) = n ZLz’(t) = ?[Ll(t) +La(t)], (11)

i€S €U
that is, the expected fraction of time from the system start until time ¢ that the
system is up. Note that unavailability can be calculated with a reverse reward
assignment to that for availability.
Instantaneous, interval, and steady-state availabilities are the fundamental

measures to be applied in this context, but there are other availability related
measures that do not rely on the binary reward structure [5].

System Reliability Measures. System reliability measures emphasize the
occurrence of undesirable events in the system. These measures are useful for
systems where no down time can be tolerated, such as flight control systems.
System reliability represents the probability of uninterrupted service exceeding
a certain length of time, that is, R(t) = P{T > t}. What kind of event is to
be considered as an interruption depends on the application requirements. In
computing reliability for our example, we consider three different variants. In
the most restrictive application context (variant 1) any processor failure is con-
sidered a system failure, that is, both reconfiguration and reboot are considered
as interruption. In variant 2 uncovered processor failure and a failure of the
last remaining functional processor is considered to be a system failure, that is,
reconfiguration may be tolerated. As a variant 3 we assume that both reconfigu-
ration and reboot can be tolerated, that is, only the failure of the last remaining
functional processor is considered as a system failure. The three possible vari-
ants are captured in Fig.2. Note that for the purpose of reliability modeling the
CTMC in Fig. 1 has been adopted by making all system down states absorb-
ing that reflect the fact that they are considered as representing interruptions.
Again, a binary reward structure is defined that assigns reward rates 1 to up
states and reward rates 0 to (absorbing) down states. It follows that reliability
can be computed by

R(t) = E[Z(t) =) rPi(t) =) Pi(t) (12)
i€s i€U;
where U; represents the set of corresponding up states of the variant j. The
three different reliability functions give the probabilities that in time interval
[0,%) there is:

— no outage Ry (t) = Py(t),

— no outage due to uncovered failure or lack of processors Ry(t) = Pa(t) +
P (t) + Pr(t),

— no outage due to lack of processors R3(t) = Pa(t) + P, (t) + Py(t) + P (t).

In the case of binary reward structure the system mean time to failure
(MTTF) is just an MTTA for the CTMC with absorbing states, that is,

MTTF = MTTA = E[Y(c0)] =) Li(c). (13)
icU;

2cy

2(1-0)y

Variant 1

Variant 3

Fig. 2. Model variants with absorbing states capturing reliability requirements

3.2 Performance Model

The MRM framework can also be used in pure (failure-free) performance models
to conveniently describe performance measures of interest. In many computer
performance studies, expected throughput, mean response time, or utilization
are the most important measures. These measures can easily be specified by
means of appropriate reward functions. To illustrate the reward assignment for
these measures we consider M /M /1/m queue as a performance model of a single
processor system. Imagine jobs (tasks, customers) are arriving at the system with
exponentially distributed interarrival times with mean 1/A. In the system they
compete for the service from a single server station. Since service is exclusively
received by each job, if more then one job is in the system at the same time, the
others have to wait in queue until their turn comes. Service times are independent
exponentially distributed with mean 1/u. To keep the example simple, we limit
the maximum number of customers in system to three. The system is described
by the CTMC shown in Fig. 3. Every state in S = {0,1,2,3} represents the
number of customers in the system. A state transition occurs if a new job arrives
or if a job being served completes the service.

The throughput characterization can be achieved by assigning the state tran-
sition rate corresponding to departure from a queue (service completion) as a
reward rate to the state where the transition originates. It follows that the re-
ward assignment for our example is r; = p for ¢ = 1,2,3 and r¢g = 0. With this

A A A
H K H
Fig. 3. Performance model (CTMC of M/M/1/3 queue)

reward structure we can compute the steady-state throughput

A=E[Z] = Z ri T = plm + w2 + ms). (14)
i€S
The mean number of jobs in the system can be computed by assigning to each

state the reward rate equal to the number of jobs in the system in that state,
that is, r; = 4. It follows that the mean number of jobs in steady-state is

RZE[Z]ZZTiWi:W1+27T2+37T3. (15)
ics
Mean response time measures of queueing system can be calculated from the
mean number of jobs with the help of Little’s theorem [12] as

1
py

Finally, the utilization measures can be computed based on a binary reward
assignment. Thus, if the particular resource is occupied in a given state, reward
rate 1 is assigned, otherwise reward rate 0 indicates the idleness of the resources.
With reward structure r; = 1 for ¢ = 1,2,3 and r¢ = 0 the utilization becomes

T-1R. (16)

p=E[Z]=) rim=m+m+ms. (17)
i€S

4 Composite Performance and Dependability Analysis

In the previous section, we saw that the goal of an availability model is to
determine the fraction of time spend in up states and that the reliability measures
answer the question “Assuming that the system is working initially, how long will
it continue to work without interruptions?”. We also saw that the performance
model is developed when we are interested in the level of productivity of a system,
or in answering the question “How well is the system working, given that it does
not fail?”.

Modeling any system with either a pure performance model or a pure de-
pendability model can lead to incomplete or even misleading results. Analysis
from pure performance viewpoint tends to be optimistic since it ignores the
failure/repair behavior of the system. On the other hand, pure dependability

analysis is carried out in the presence of component failures, disregarding the
different performance levels in different configurations, that is, tend to be too
conservative. Complex systems are designed to continue working even in the
presence of failures, guaranteeing a minimum level of performance. These sys-
tems are gracefully degradable and have redundant components that are all used
at the same time to increase the system processing power. If a component in a
degradable system fails, the system itself detects the failure and reconfigures,
reaching a degraded state of operation in which it continues to provide service,
but at a reduced capacity. A degradable system can have several degraded op-
erational states between being fully operational and having completely failed.
Each state provides different performance level. In such cases, pure performance
or pure dependability models do not capture the entire system behavior. The
measures of interest for a degradable system aim to answer the following ques-
tion “What is the expected performance of the system at time ¢ including the
effects of failure, repair, contention for resources and so on ?7”.

Several different types of interactions and corresponding tradeoffs have
prompted the researchers to develop methods for combined evaluation of per-
formance and dependability. The first approach is to combine the performance
and dependability behavior into an exact monolithic model. Let us consider
our example of a single processor system. So far we have presented separate
dependability and performance models for this example. Now we will gener-
alize the M/M/1/m queueing model presented in Fig.3 by allowing for the
possibility that a server could fail, and that a failed server could be repaired.
Again, let the job arrival rate be A and the job service rate be u. Let the pro-
cessor failure rate be -« and the processor repair rate be 7. This system can
be modeled using an irreducible CTMC shown in Fig.4 with the state space
S = {(i,7),0 < i < m,j = 0,1}, where i denotes the number of jobs in the
system and j the number of functioning servers.

Two distinct problems arise from this monolithic approach: largeness and
stiffness. The largeness problem can be tolerated to some extent by using high
level specification techniques, such as generalized stochastic Petri nets (GSPN),
and automated methods for generating the Markov chain. GSPN model that is
equivalent to the Markov model in Fig.4, adopted from [14], is shown in Fig.5.
The cycle in the upper part of the figure is a representation of an M/M/1/m
queue. The lower cycle models a server that can fail and be repaired. The in-
hibitor arc from place server-down to the transition service reflects the fact that
jobs cannot be served while the server is not functioning. The number in each
place is the initial number of tokens in the place. All of the transitions are timed,
and each transition’s rate is shown below the transition.

The GSPN description of the model is concise and allows us to vary the values
of m without changing the models structure. However, since no model reduction
is employed the underlying CTMC is very large. Therefore, large model tolerance
must also apply to storage and solution of the model, that is, the appropriate data
structures for sparse matrix storage and sparsity preserving solution methods
must be used.

A A A A
u
Y T Y T
A A A A

Fig. 4. CTMC model of a M/M/1/m queueing system subject to server failure and
repair (Monolithic model)

A

(job-source job-arrival queue service
M

server-up failure sever-down repair

Ok
(y T

Fig. 5. GSPN model for queue with server failure and repair

Stiffness is another undesirable characteristic of monolithic models. It is due
to the different orders of magnitude (sometimes 108 times) between the rates of
occurrence of performance-related events and the rates of the rare, failure-related
events. Stiffness leads to difficulty in the solution of the model and numerical
instability. Current research in the transient solution of stiff Markov models
follows two main lines: stiffness-tolerance and stiffness-avoidance. The first one
is aimed at employing solution methods that remain stable for stiff models (see
for extensive survey [5] and references therein). In the second approach, stiffness
is eliminated from a model by solving a set of non-stiff submodels. One such
technique based on aggregation proceeds by decomposing the original model
into smaller submodels [3]. An approximate solution can be obtained by first
solving the submodels in isolation (the aggregation step) and then combining the
submodel solutions into the solution of the original model (the disaggregation
step). A notable property of the decomposition technique is that besides reducing
the size of the submodels on which transient analysis is carried out, it also
eliminates the stiffness, making the application of standard numerical methods
more efficient.

The aggregation technique applies when stiffness arises from the presence of
rates belonging to two well separated sets of values in the transition rate matrix
of the Markov chain. These rates are accordingly classified into fast and slow
rates. In our example it is reasonably to assume that the rates of occurrence
of performance-related events A and p differ by orders of magnitude relative to
the rates of failure/repair-related events v and 7. Usually, repair of a failed unit
takes much longer than traffic-related events in computer systems. This condi-
tion is even more relevant for failure events that are relatively rare. Thus the
transition rates A and p can be classified as being fast, and v and 7 as slow.
States of the Markov chain are also classified into fast and slow states; a state
is fast if at least one outgoing transaction has a fast rate, otherwise the state
is slow. The state space is partitioned according to the classification scheme
applied to the rates, into a set of slow states So = {(m,0)}, a set of fast re-
current states S = {(0,1),(1,1),...,(m,1)}, and a set of fast transient states
S2 ={(0,0), (1,0),...,(m—1,0)}. An appropriate aggregation algorithm is sepa-
rately applied to each subset of fast states. The model of Fig.4 after aggregation
of fast recurrent subset into macro-state 1 is shown in Fig.6a, while the final
aggregated macro-state chain after elimination of the fast transient states is pre-
sented in Fig.6b. Thus, transient approximate solution is obtained by integrating
a smaller, non-stiff set of linear differential equations. Next, the disaggregation
must be performed to provide an approximation to the transient probability
vector P(t). Then, all measures of interest can be calculated from the transient
state probabilities. For the detailed algorithm the reader is referred to [5]. The
empirical results presented there support the assumption of the approximation
being better for stiffer models.

Both the problems of largeness and stiffness can be avoided by using hierar-
chical model composition. Occurrence rates of failure/repair events are several
orders of magnitude smaller than the job arrival/service rates. Consequently, we

(€Y (b)

Fig. 6. (a) The model of Fig.4 after the aggregation of the fast recurrent subset into
macro-state 1. (b) Final aggregated macro-state chain after elimination of the fast
transient subset

can assume that the system attains a (quasi-) steady state with respect to per-
formance related events between successive occurrences of failure/repair events,
that is, the performance measures would reach a stationary condition between
changes in the system structure. This leads to a natural hierarchy of models.
The structure state model is the higher level dependability model representing
the failure/repair processes. For each state in the dependability model, there
is a reward model, which is a performance model for the system with a given,
stationary structural state. Several authors have used the letter concept in de-
veloping techniques for combined performance and dependability analysis. Early
and defining work in this field was done by Beaudry [2] who computed the com-
putational availability until failure. Meyer [11] proposed a conceptual framework
of performability, that enable us to characterize degradable systems in terms of
their ability to provide a given amount of useful work in a given period of time.
Most of the proposed approaches for performability modeling can be brought un-
der the broad framework of Markov reward processes [8] summarized in Sect.2.

In the next section we present the case study (adapted from [13]) which
illustrates the use of hierarchical model composition on the example of a multi-
processor system.

5 Case Study of a Multiprocessor System

For the case study we consider a multiprocessor system with n processors (sub-
ject to failure and repair) with a limiting number of buffers m. First, we deter-
mine the optimal number of processors based on either pure performance or pure
dependability measures. Then, we consider the total loss probability which com-
bines performance and availability measures as the most appropriate measure of

system effectiveness. The optimal configuration in terms of number of processors
is shown to be a function of the chosen measure of system effectiveness.

5.1 Sizing Based on Performance

The performance model is an M /M /n/m queue which can be modeled using a
birth and death type Markov chain, as shown in Fig.7 for the case where n = 5
and m = 100.

A A A A A A A A A
u 2u 3u 4 5u 54 5u 5u 5u

Fig. 7. Birth and death type Markov chain for the M /M /n/m queueing system

The state space of the associated Markov chain grows fast as the size of a
queueing network increases. As discussed in Sect.4, high level specification tech-
niques, such as queuing networks or stochastic Petri nets can be used to describe
the CTMC in Fig.7. Thus, it is possible to convert this open queueing model into
a closed product-form queueing network, which is shown in Fig.8. This model
contains two stations. Station mp is the processor station with n processors,
each having service rate p. The other station is source, which represents the job
source with rate A. Because there is a limited number of buffers available for
queueing the jobs, the closed product-form network with a fixed number m of
jobs is chosen.

source mp o

Fig. 8. Closed PFQN model of the M /M /n/m queueing system

K=m

PFQN is a useful class of queueing networks that can be analyzed without
generating the underlying state space for the whole network. In other words,
they belong to the class of non-state space models. PFQN can be used as effi-
cient method for the large model tolerance since many algorithms for exact and
approximate solutions for steady-state performance measures exist. However,

PFQN cannot be used to model concurrency, synchronization, or server failures,
since these violate the product form assumptions.

It is also possible to model the M /M /n/m queue using the GSPN in Fig.9.
The initial number nproc of tokens in place proc means that there are mproc
processors available. When a new job arrives in place buffer, a token is removed
from place proc. Jobs arrive at the system when transition arr fires. There is
a limitation for new jobs entering the system caused by the inhibitor arc from
place buffer to transition arr. Thus arr can only fire when the system is not
already full. There can be only m jobs in the system altogether, nproc being
served (in place serving) and m — mproc in place buffer. The firing rates are A
for transition arr and ky for transition service. Here k is the number of tokens
in place serving and the notation for this marking dependent firing rate in Fig.9

is pt.

arr buffer request serving service proc
A m-nproc (M # !

Fig. 9. GSPN model of the M/M/n/m queueing system

The GSPN model of the M/M/n/m queue is much more concise than the
Markov model. The Markov chain model has as many states as there are potential
jobs in the system m. If we use the Markov model to get results for different
values of n and m, we have to build a new Markov model for each pair of values.
The GSPN in Fig.9 will let us vary the value of n and m without changing the
model structure. We just need to change the initial marking in place proc and
the multiplicity of the inhibitor arc. It is important to note that the smaller size
of the GSPN model does not mean that the model analysis is correspondingly
easier. While increasing n and m does not change the size of GSPN model, it
does make the underlying CTMC bigger as already discussed in Sect.4.

Returning to our example of sizing of multiprocessor system based on perfor-
mance, as an appropriate performance measure we use the job loss probability
due to a system being full or too slow. The closed form solutions are available
to calculate the probability of a job being rejected because the buffers are full
gm(n) [7]. For an accepted job, define the response time random variable to be
R, (m). The closed form formula for the response time distribution can be de-
rived based on the formula for waiting time given in [7]. If there is a deadline d
imposed on the job response times then we can find the probability of system
being too slow, that is, a late completion of a job due to deadline violations as
P{R,(m) > d}.

The job loss probability reflects the effect of job rejection due to buffer full
as well a deadline violation of accepted job (system slow)

Ip(n) = gm(n) + [1 — gm(n)] P{Rn(m) > d}. (18)

The equations for ¢, (n) and P{R,(m) > d}, and the numerical results for the
loss probability could be found in [13]. Since the loss probability of a task is
monotonically decreasing in the number of processors, the conclusion from the
model in this subsection is that the performance of fault free system improves
as we increase the number of processors in the multiprocessor system.

5.2 Sizing Based on Availability

For dependability analysis we consider a multiprocessor system with n proces-
sors subject to failure and repair. Reliability block diagram and fault tree model
of this system are shown in Fig.10a and Fig.10b respectively. These models be-
long to the class of non-state space models specialized for dependability analysis.
They are concise, easy to understand, and have efficient solution methods un-
der the assumption that components failure and repair times are independently
distributed, and there are enough repair resources to repair all components at
the same time, if necessary. However, non-state space models do not allow us to
model realistic features such as shared repair facilities, imperfect coverage, and
non-zero reconfiguration delays.

proc

Failure

|
proc

[proc | P1 le . .Pn
@ (b)

Fig. 10. Non-state space dependability models of a multiprocessor system (a) Relia-
bility block diagram model (b) Fault tree model

By contrast, state space models enable us to account for such details easily,
as we have shown in Sect.3. Thus, for the availability model we consider the
CTMC presented in Fig.1 for the general case with n processors. The Markov
chain for this system is shown in Fig.11. In state ¢, 1 < i < n, the system is up
with 4 processors functioning, and n—1 processors waiting for on-line repair. The
processors share the repairing facility and only one processor can be repaired at
a time. Following a covered failure the system is undergoing a reconfiguration in

states ,—4, ¢ = 0,...,n — 2, while an uncovered failure is followed by a reboot
in states yp—;, ¢ = 0,...,n —2. In state 0, the system is down waiting for off-line
repair. If we assume that the system is down while a reconfiguration, reboot or
an off-line repair is in progress, the steady-state availability A(n) defined as a
function of n is given by

A(n) = i Trei. (19)
=0

The equations for steady-state probabilities m,_;, 7, _; and m, _; could be found
in [13]. Under the assumptions that the coverage is not perfect and there is non-
zero reconfiguration delay, the unavailability 1 — A(n) is minimized at a small
number (two) of processors [13].

Fig.11. CTMC for computing availability of a multiprocessor system

5.3 Sizing Based on Performability

The goal of an availability model is to determine the fraction of time spent in
up states. If we use only the result of previous subsection, we could come to
the conclusion that the best system configuration is one with two processors.
However, increasing the number of processors improves system performance.
It is clear that measures such as availability and reliability do not reflect the
increased performance due to the increasing number of processors. The most
appropriate measure of system effectiveness that reflects both fault-free behavior
and behavior in the presence of failures is the total loss probability due to a
system being full or too slow or system being down.

For the purpose of deriving the combined performance and availability mea-
sure we use hierarchical model composition, that is, a Markov reward model,
which avoids both problems of largeness and stiffness. The higher level model
(the structure state model), is the Markov chain in Fig.11 which represents the
state of the system with regard to failures and repairs. The total loss probability
is obtained by assigning a reward rate to each state, equal to the probability
that a task is rejected in that state. In other words, the rewards are assigned to
the structural states as follows:

— For all up states with ¢ (1 < ¢ < n) processors functioning the lower level
model which captures the performance of the system is an M /M /i/m queue.
Thus, for up states we set the reward rate r; = Ip(¢) which is the probability
of job rejection due to the buffer full or to deadline violation of accepted job
(system slow).

— For all down states Zn—;i, yn—;i (0 < i < n —2) and state 0 the reward rate
assigned is 1, since an arriving job is always rejected when the system is
unavailable.

It follows that the total loss probability is the expected steady-state reward
rate given by

n—1 n—2
TLP(n)=E[Z] =Y Ip(n—i)mn_i+ »_(Ta,_, +my,_,) + 0. (20)
=0 =0

Note that the first term in (20) is the loss probability due to the system full or
too slow. The last two terms give the loss probability due to the system being
down which is equal to unavailability 1 — A(n).

Using the reward structure just discussed and (20), [13] compute the optimal
number of processors. For example, it is shown that if m = 10 and A = 80 per
second the optimal number of processors is 3 for one second deadline on task
response time, 4 for 0.1 second deadline on task response time, and greater then
8 for 0.01 second deadline on task response time. There is an obvious tradeoff
with availability criteria which imposes optimal number of two processors.

The analysis of variation in the total loss probability as a function of number
of processors n for different values of the task arrival rate A (d = 0.1 second and
m = 10) show that for very small values of A = 1/sec, the TLP is essentially
equal to system unavailability, hence the optimal number of processors is two.
For larger values of A, the rejection probability due to system being full and
too slow starts to play a dominant role in increasing the optimal number of
Processors.

6 Relaxing the Markovian Constraints

A major objection to the use of Markov models in the evaluation of performance
and dependability behavior of systems is the assumption that sojourn (hold-
ing) time in any state is exponentially distributed. Exponential distribution has
many useful properties which lead to analytic tractability, but does not always
realistically represent the observed distribution functions. One way to deal with
non-exponential distributions is the phase approximation, that is, modeling a
distribution by a set of states and transitions between those states such that the
holding time in each state is exponentially distributed. The simplest examples
of phase approximation are the hyperexponential distribution with a coefficient
of variation larger than one, and hypoexponential distribution with a coefficient
of variation less than one. Although the method of phase approximation enable

us to use the CTMC model, its major drawback is that it usually results in a
large state space.

If transition rates in CTMC are allowed to be time dependent, where time
is measured from the beginning of system operation, the model becomes non-
homogeneous CTMC. Such models are used in software reliability modeling and
in hardware reliability models of non-repairable systems.

Due to the assumptions that holding times in the state are exponentially
distributed and that past behavior of the process is completely summarized by
the current state of the process, every state transition in a homogeneous CTMC
acts as a regeneration point for the process. The first assumption can be general-
ized by allowing the holding time to have any distribution, thus resulting in the
semi Markov process (SMP). The seconds assumption can also be generalized
by allowing not all state transitions to be regeneration points, thereby resulting
in the Markov regenerative process (MRGP). For the mathematical definitions
of these stochastic processes the reader is referred to [9].

7 Generation Techniques for State Space Models

We have already pointed out the importance of high level specification and auto-
mated generation of large Markov chains. The approach of separation of higher
level model description and lower level computational model has many advan-
tages. Besides reducing the size of the description, such models provide visual
and conceptual clarity, and are closer to a designer’s intuition. They allow the
designer to focus more on the system being modeled rather than on error-prone
and tedious creation of lower level models manually.

In this section we will briefly review the stochastic Petri net models and
their extensions, whose popularity is partially due to the number of software
tools available for their specification and analysis; these include SHARPE [14]
and SPNP [6].

As originally introduced by C.A.Petri in 1962, Petri nets did not have a time
element. A stochastic Petri nets (SPN) is a Petri net with timed transitions
where the firing time distributions are assumed to be exponential. A generalized
stochastic Petri nets (GSPN), first proposed in [1], is a Petri net where both
immediate and timed transitions are allowed. The underlying stochastic process
of the SPNs and GSPNs is a Markov chain.

In the last decade many extensions to the basic Petri net model have been
proposed. Some of these extensions have enhanced the flexibility of use and al-
lowed even more concise description of performance and dependability models.
Some other extensions have enhanced the modeling power by allowing for a re-
ward rate functions or non-exponential distributions. Specifically, besides several
structural extensions, Stochastic Reward Nets (SRN) allow a reward rate to be
associated with each reachable marking. SRNs have been shown to be isomor-
phic to Markov reward processes. The Extended Stochastic Petri net (ESPN),
in which general firing time distributions are allowed, under suitable conditions
has as the underlying stochastic process a semi Markov process. Deterministic

Stochastic Petri nets (DSPN) allow the definition of immediate, exponential and
deterministic transitions. The stochastic process underlying a DSPN is a Markov
regenerative process. The Markov regenerative Stochastic Petri nets (MRSPN)
generalize DSPNs and still have MRGP as an underlying stochastic process.
The Concurrent Generalized Petri nets (CGPN) allow simultaneous enabling of
any number of immediate, exponentially distributed and generally distributed
timed transitions, provided that the latter are all enabled at the same instant.
Stochastic process underlying a CGPN is also MRGP.

To summarize, the use of SPNs and their extensions for a high level specifi-
cation of stochastic models has received a lot attention in current research. An
excellent survey could be found in [10], [4].

8 Conclusion

Analytical modeling is a cost effective method for examining the behavior of cur-
rent day complex computer systems. To be useful, the model should be realistic
and reflect important system characteristics such as failure behavior, reconfigu-
ration and repair, fault tolerance, graceful degradation, contention for resources,
concurrency and synchronization, and deadlines imposed on tasks. The recent
advances in the development of different model types, exact and approximate so-
lution techniques, and tools that help in automatic model generation and solution
from a high level description enable large and realistic models to be developed
and studied effectively.

In this chapter we have discussed the use of analytical models for perfor-
mance, dependability and performability analysis of computer systems. The
choice of an appropriate model type and measures of interest clearly depends on
the system requirements. For some systems performance and dependability can
be addressed separately, while for others such an analysis can lead to incomplete
or even misleading results thus making it essential to combine them in a single
framework. A modeler who is familiar with many different types of models, can
easily choose the models and measures that best suit a particular system.

At the end we would like to emphasize that analytical modeling is not an
exclusive technique for computer system evaluation. Model composition ap-
proaches, such as Markov reward models, are particularly suitable for combining
different types of models, as well as analytical modeling with measurement or
discrete event simulation.

References

1. Ajmone Marsan, M., Balbo,G., Conte, G.: A Class of Generalized Stochastic Petri
Nets for the Performance Analysis of Multiprocessor Systems. ACM Trans. on
Computer Systems. 2 (1984) 93-122

2. Beaudry, M.D.: Performance — related Reliability Measures for Computing Sys-
tems. IEEE Trans. on Computers. 27 (1978) 540-547

10.

11.

12.

13.

14.

Bobbio, A., Trivedi, K.: An Aggregation Technique for the Transient Analysis of
Stiff Markov Chains. IEEE Trans. on Computers. 35 (1986) 803-814

Bobbio, A., Puliafito, A., Telek, M., Trivedi, K.: Recent Developments in Stochastic
Petri Nets. Journal of Circuits, Systems, and Computers. 8 (1998) 119-158
Bolch, G., Greiner, S., de Meer, H.. Trivedi, K.: Queueing Networks and Markov
Chains, John Wiley & Sons, New York (1998)

Ciardo, G., Blakemore, A., Chimento, P.F., Muppala, J.K., Trivedi, K.S.: Auto-
mated Generation and Analysis of Markov Reward Models using Stochastic Re-
ward Nets. In Mayer, C., Plemmons, R.J. (eds.): Linear Algebra, Markov Chains
and Queueing Models. IMA Volumes in Mathematics and Its Applications. Vol.48.
Springer-Verlag (1993) 145-191

Gross, D., Harris, C.M.: Fundamentals of Queueing Theory. John Wiley & Sons,
New York (1985)

Howard, R.A.: Dynamic Probabilistic Systems, Vol.Il: Semi-Markov and Decision
Processes. John Wiley and Sons, New York (1971)

Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman Hall
(1995)

Lindemann, C.: Stochastic Modeling using DSPNexpress. Oldenburg, Munich
(1994)

Meyer, J.F.: On Evaluating the Performability of Degradable Computing Systems.
IEEE Trans. on Computers. 29 (1980) 720-731

Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer
Science Applications. Prentice-Hall, Englewood Cliffs, New Jersey (1982)
Trivedi, K.S., Sathaye, A.S., Ibe, O.C., Howe, R.C., Aggarwal, A.: Availability
and Performance — Based Sizing of Multiprocessor Systems, Communications in
Reliability, Maintainability and Serviceability. (1996)

Sahner, R.A., Trivedi, K.S., Puliafito, A.: Performance and Reliability Analysis of
Computer Systems. Kluwer Academic Publishers, Norwell (1996)

