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Abstract

Software systems are known to suffer from outages due
to transient errors. Recently, the phenomenon of “software
aging”, one in which the state of the software system de-
grades with time, has been reported. To counteract this phe-
nomenon,a proactive approach of fault management, called
“software rejuvenation”, has been proposed. This essen-
tially involves gracefully terminating an application or a
system and restarting it in a clean internal state. In this
paper, we discuss stochastic models to evaluate the effec-
tiveness of proactive fault management in operational soft-
ware systems and determine optimal times to perform re-
juvenation, for different scenarios. The latter part of the
paper deals with measurement-based methodologies to de-
tect software aging and estimate its effect on various system
resources. Models are constructed using workload and re-
source usage data collected from the UNIX operating sys-
tem over a period of time. The measurement-based models
are intended to help development of strategies for software
rejuvenation triggered by actual measurements.

1. Introduction

Demands on software reliability and availability have in-
creased tremendously due to the nature of present day ap-
plications. They impose stringent requirements in terms of
cumulative down time and failure free operation of soft-
ware, since in many cases, the consequences of software
failure can lead to huge economic losses or risk to human
life. However, it is almost impossible to fully test and verify
if a piece of software is bug-free. Testing software becomes
harder if it is complex, and further if testing and debugging
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cycle times are reduced due to smaller release time require-
ments. Therefore, the residual faults have to be tolerated in
the operational phase.

Traditional design diversity techniques for fault toler-
ance in software systems, such as N-version programming
and Recovery block, are inherently expensive to implement
due to the multiple functionally equivalent variants of the
software needed. Furthermore, recent studies have reported
the transient nature of software failures [13, 18] for which
design diversity is not very helpful. Transient failures typi-
cally occur because of design faults in software which result
in unacceptable erroneous states in the OS environment of
the process. Hence, environment diversity, a generalization
of system restart [13], has been proposed as a cheap yet
effective technique for software fault-tolerance [16]. The
basic idea here is to modify the operating environment of
the running process.

Traditional fault tolerance techniques arereactivein na-
ture and typically, environment diversity has been done so
far on a corrective basis. On the other hand, proactive fault
management, as the name implies, takes suitable corrective
action to prevent a failurebeforethe system experiences a
fault. Although, this technique has been used ad hoc for
long in physical systems, it has only recently gained recog-
nition and importance.

Recently, the phenomenon ofsoftware aging[17], one
in which error conditions actually accrue with time and/or
load, has been observed. In systems with high reliabil-
ity/availability requirements, software aging can cause out-
ages resulting in high costs. Huang et. al.report this phe-
nomenon in telecommunications billing applications where
over time the application experiences a crash or a hang fail-
ure [17]. Avritzer and Weyuker discuss aging in telecom-
munication switching software where the effect manifests
as gradual performance degradation [1]. Software aging has
also been observed in widely-used software like Netscape
and xrn.

To counteract software aging, a proactive technique



calledsoftware rejuvenationhas been proposed [17]. It in-
volves stopping the running software occasionally, “clean-
ing” its internal state and restarting it. Garbage collection,
flushing operating system kernel tables, reinitializing inter-
nal data structures are some examples of what cleaning the
internal state of a software might involve. An extreme, but
well known example of rejuvenation is a hardware reboot.
It has been implemented in the real-time system collect-
ing billing data for most telephone exchanges in the United
States [2]. A very similar technique calledsoftware capac-
ity restoration, has been used by Avritzer and Weyuker in a
large telecommunications switching software [1], where the
switching computer is rebooted occasionally upon which its
service rate is restored to the peak value. Grey [14] pro-
posed performing operations solely for fault management
in SDI (Strategic Defense Initiative) software which are in-
voked whether or not the fault exists and called it opera-
tional redundancy. Tai et. al. [23] have proposed and ana-
lyzed the use of on-board preventive maintenance for max-
imizing the probability of successful mission completion of
spacecrafts with very long mission times. The necessity of
performing preventive maintenance in a safety critical envi-
ronment is evident from the example of aging in Patriot’s
software [19]. The failure which resulted in loss of hu-
man lives could have been prevented if the computer was
restarted after each 8 hours of running time.

In this paper, we present the two approaches for ana-
lyzing software aging and studying aging-related failures.
Section 2 discusses the analytical modeling approach aimed
at determining optimal times to perform software rejuve-
nation, while Section 3 deals with the measurement based
approach for detection and validation of the existence of
software aging and also estimating its effect on system re-
sources. Section 4 concludes the paper.

2. Analytical models

Preventive maintenance (PM) can be performed at suit-
able times, such as when there is no load on the system,
and thus typically results in lesser downtime and cost than
the corrective approach. Even so, it incurs some overhead
and if done more often than necessary will result in higher
downtime/cost. Therefore, an important research issue is
to determine the optimal times to perform preventive main-
tenance of operational software systems. This section dis-
cuses analytical models for quantitative analysis of software
rejuvenation.

The accuracy of a modeling based approach is deter-
mined by the assumptions made in capturing aging. In
[17, 6, 7, 8, 23] only the failures causing unavailability of
the software are considered, while in [20] only a gradually
decreasing service rate of a software which serves transac-
tions is assumed. In [9], however, both these effects of aging

are considered together in a single model. Models proposed
in [17, 6, 7] are restricted to hypo-exponentially distributed
time to failure. Those proposed in [8, 20, 23] can accom-
modate general distributions but only for the specific aging
effect they capture. Generally distributed time to failure,
as well as the service rate being an arbitrary function of
time are allowed in [9]. It has been noted [22] that transient
failures are partly caused by overload conditions. Only the
model presented in [9] captures the effect of load on aging.

Existing models also differ in the measures being evalu-
ated. In [8, 23] software with a finite mission time is consid-
ered. In the [17, 6, 7, 9] measures of interest in a transaction
based software intended to run forever are evaluated. Since
all previous models except [8] and [23] are just special cases
of the model presented in [9], in the rest of this section we
deal with this model in more detail.

2.1 Preventive maintenance in transactions based
software systems

The macro-states representation of the software behav-
ior considered in [9] is presented in Figure 1. The state in
which the software is available for service (albeit with de-
creasing service rate) is denoted as stateA. After failure a
recovery procedure is started. In stateB the software is re-
covering from failure and is unavailable for service. Lastly,
the software occasionally undergoes PM, denoted by state
C. PM is allowed only from stateA. Once recovery from
failure or PM is complete, the software is reset to stateA
and is as good as new. From this moment, which constitutes
a renewal, the whole process stochastically repeats itself.

B A C

Undergoing PMRecovering

Available

Figure 1. Macro-states representation of the
software behavior

The model is based on the following assumptions. The
system consists of a server type software to which trans-
actions arrive at a constant rate�. Each transaction re-
ceives service for a random period. The service rate of the
software is an arbitrary function measured from the last re-
newal of the software (because of aging) denoted by�(�).
Therefore, a transaction which starts service at timet1, oc-
cupies the server for a time whose distribution is given by

1�e
�

R
t

t1

�(�) dt
. If the software is busy processing a transac-

tion, arriving customers are queued. Total number of trans-
actions that the software can accommodate isK (including



the one being processed) and any more arriving when the
queue is full are lost. The service discipline is FCFS. The
software fails with a rate�(�), that is, theCDF of the time

to failureX is given byFX(t) = 1� e
�

R
t

0
�(�) dt. Times to

recover from failureYf and to perform PMYr are random
variables with associated generalCDFs FYf andFYr re-
spectively. The model does not require any assumptions on
the nature ofFYf andFYr . Only the respective expectations
f = E[Yf ] andr = E[Yr] are assumed to be finite. The
service degradation and hang/crash failures are assumed to
be stochastically independent processes. Their interdepen-
dence, if it exists in the real system, can be approximated by
using parametric dependence in the definitions of�(�) and
�(�). Further, the failure process is stochastically indepen-
dent of the arrival process and any transactions in the queue
at the time of failure or at the time of initiation of PM are
assumed to be lost. Moreover, any transactions which arrive
while the software is recovering or undergoing PM are also
lost.

The effect of aging in the model may be captured by
using decreasing service rate and increasing failure rate,
where the decrease or the increase respectively can be a
function of time, instantaneous load, mean accumulated
load or a combination of the above.

� �(�) = �(t) and�(�) = �(t)
In this case, the service rate and the failure rate are
simply functions of time. To model software sys-
tems with no performance degradation, the combina-
tion�(�) = � and�(�) = �(t) may be used. Further, to
model software systems which undergo performance
degradation but are always available, the special case
of �(�) = � = 0 and�(�) = �(t) can be used.

� �(�) = �(N(t)) and�(�) = �(N(t))
The service rate and the failure rate are functions of in-
stantaneous load on the system, i.e., their value at time
t depend on the number of transactions in the queue at
that timeN(t). This dependence is useful in capturing
overload effects which especially influence the failure
behavior.

� �(�) = �(L(t)) and�(�) = �(L(t))
Since an idle software is not likely to age, service and
failure rates are more realistically modeled as func-
tions of the actual processing time rather than the total
available time. Denote withpi(t); 0 � i � K the
probability that there arei transactions in the queue at
time t given that the software is in stateA. LetL(t) be

defined asL(t) =

Z t

�=0

X
i

cipi(�)d� , whereci is a

coefficient which expresses how being in statei influ-
ences the degradation of the overall system. Ifc0 = 0
andci = 1 for i > 0 thenL(t) represents the average

amount of time the software is busy processing trans-
actions in the interval(0; t]. If ci = 1 for i � 0, then
L(t) = t given that the software is available.

We consider two policies which can be used to deter-
mine the time to perform PM. Under thePolicy I which is
purely time-based, PM is initiated after a constant time�
has elapsed since it was started (or restarted). UnderPolicy
II , which is based on instantaneous load and time, a constant
waiting period� must elapse before PM is attempted. After
this time PM is initiated if and only if there are no trans-
actions in the system. Otherwise, the software waits until
the queue is empty upon which PM is initiated. The actual
PM interval under Policy II is determined by the sum of PM
wait � and the time it takes for the queue to get empty from
that point onwardsB. Since the latter quantity is dependent
on system parameters and can not be controlled, the actual
PM interval has a range[�;1).

Given the above behavioral model the following mea-
sures are derived for each policy: steady state availability
of the softwareASS , long run probability of loss of a trans-
actionPloss, and expected response time of a transaction
given that it is successfully servedTres. The goal is to de-
termine optimal values of� (PM interval under policy I and
PM wait under policy II) based on the constraints on one or
more of these measures.

2.1.1 Evaluation of measures

According to the model described above at any timet the
software can be in any one of three states: up and available
for service (stateA), recovering from a failure (stateB) or
undergoing PM (stateC). LetfZ(t); t � 0g be a stochastic
process which represents the state of the software at timet.
Further, let the sequence of random variablesSi; i > 0 rep-
resent the times at which transitions among different states
take place. Since the entrance timesSi constitute renewal
pointsfZ(Si); i > 0g is an embedded discrete time Markov
chain (DTMC) with a transition probability matrixP given
by:

P =

2
4 0 PAB PAC

1 0 0
1 0 0

3
5 : (1)

The steady state probability�i of the DTMC being in state
i; i 2 fA;B;Cg is:

� = [�A; �B ; �C ] =

�
1

2
;
1

2
PAB ;

1

2
PAC

�
: (2)

The software behavior as a whole is modeled via the
stochastic processf(Z(t); N(t)) ; t � 0g. If Z(t) = A
thenN(t) 2 f0; 1; : : : ;Kg as the queue can accommodate
up toK transactions. IfZ(t) 2 fB;Cg, thenN(t) = 0,



since by assumption all transactions arriving while the soft-
ware is either recovering or undergoing PM are lost. Fur-
ther, the transactions already in the queue at the transition
instant are also discarded. It can be shown that the pro-
cessf(Z(t); N(t)) ; t � 0g is a Markov regenerative pro-
cess (MRGP). Transition to stateA from eitherB orC con-
stitutes a regeneration instant.

Let U be a random variable denoting the sojourn time
in stateA, and denote its expectation byE[U ]. Expected
sojourn times of the MRGP in statesB andC are already
defined to bef andr.

The steady state availability is obtained using the
standard formulae from MRGP theory:
ASS = Prfsoftware is in stateAg

=
�AE[U ]

�Bf + �Cr + �AE[U ]
: (3)

The probability that a transaction is lost is defined as
the ratio of expected number of transactions which are lost
in an interval to the expected total number of transactions
which arrive during that interval. Since the evolution of
fZ(t); N(t)); t > 0g in the intervals comprising of suc-
cessive visits to stateA is stochastically identical it suffices
to consider just one such interval. The number of transac-
tions lost is given by the summation of three quantities: (1)
transactions in the queue when the system is exiting state
A because of the failure or initiation of PM (2) transactions
that arrive while failure recovery or PM is in progress and
(3) transactions that are disregarded due to the buffer being
full. The last quantity is of special significance since the
probability of buffer being full will increase due to the de-
grading service rate. It follows that the probability of loss is
given by,Ploss

=

�AE[Nl] + �

�
�Bf + �Cr + �A

Z
1

0

pK(t)dt

�

� (�Bf + �Cr + �AE[U ])
(4)

whereE[Nl] is the expected number of transactions in the
buffer when the system is exiting stateA. Equation 4 is
valid only for policy II. Under policy I sojourn time in
stateA is limited by �, so the upper limit in the integralR
1

0
pK(t)dt is � instead of1.

Next we derive an upper bound on the mean response
time of a transaction given that it is successfully served,
denoted byTres. The mean number of transactions, de-
noted byE, which are accepted for service while the soft-
ware is in stateA is given by the mean number of trans-
actions which are not accepted due to the buffer being
full, subtracted from the mean total number of transac-
tions which arrive while the software is in stateA, that

is, E = �

�
E[U ]�

Z
1

t=0

pK(t)dt

�
. Out of these transac-

tions, on the average,E[Nl] are discarded later because

of failure or initiation of PM. Therefore, the mean num-
ber of transactions which actually receive service given that
they were accepted is given byE � E[Nl]. The mean total
amount of time the transactions spent in the system while

the software is in stateA is W =

Z
1

t=0

X
i

ipi(t) dt. This

time is composed of the mean time spent by the transac-
tions which were served as well as those which were dis-
carded, denoted asWS andWD , respectively; Therefore,
W = WS + WD. The response time we are interested
in is given byTres = WS=(E �E[Nl]), which is upper
bounded by

Tres <
W

E �E[Nl]
: (5)

Behavior of the system in stateA under policy I
ForZ(t) = A, the subordinated process, i.e., the process

until a regeneration occurs, is determined by the queuing
behavior of the software processing transactions. The pro-
cess is terminated either by a failure (which can happen at
any time) or by initiating PM which under policy I hap-
pens at time� if the software has not failed by that time.
Figure 2 shows the state diagram of the subordinated non-
homogeneous process under policy I. Not included in the
figure is the fact that att = �, the subordinated process is
terminated if it was not terminated before by a transition to
an absorbing state (00; : : : ;K 0).
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Figure 2. Subordinated non-homogeneous
CTMC for t � �

By the above notation,pi(t) is the probability that there
are i transactions queued for service, which is also the
probability of being in statei of the subordinated process
at time t. Note that statei; i = 0; 1; : : : ;K is not to be
confused with statei0; i = 0; 1; : : : ;K which was defined
just to be able to evaluate the quantities of interest. As
such, all the states under the shaded area of the process can
be lumped into a single absorbing state.

Behavior of the system in stateA under policy II
If policy II is assumed, the evolution of the system in

stateA is somewhat more complex. In this case we need to
distinguish betweent � � andt > �, as policy II assumes



that PM will be initiated after time� has elapsed if and only
if the buffer is empty. Fort � �, exactly the same process of
Figure 2 determines the behavior of the software. Fort > �,
the process which models the behavior is shown in Figure 3.
Observe that state0 now belongs to the set of absorbing
states because PM will be initiated once the system becomes
idle thus terminating the subordinated process.

λ
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λ
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Figure 3. Subordinated non-homogeneous
CTMC if t > �

Transient probabilitiespi(t); i = 0; 1; : : : ;K and
pi0(t); i

0 = 00; 10; : : : ;K 0 for both policies can be obtained
by solving the systems of forward differential-difference
equations given in [9]. In general they do not have a closed-
form analytical solution and must be evaluated numerically.
Once these probabilities are obtained, the rest of the quan-
titiesPAB , PAC , E[U ] andE[Nl] can be easily computed
[9] and then substituted into the equations (3), (4) and (5) to
obtain the steady state availabilityASS , the probability of
transaction lostPloss and the upper bound on the response
time of a transactionTres respectively.

2.1.2 Numerical examples

We illustrate the usefulness of the presented model in deter-
mining the optimum value of� (PM interval in the case of
policy I and PM wait in the case of policy II) on the exam-
ples adopted from [9].

First, service rate and failure rate are assumed to be func-
tions of real time where�(t) is defined to be the hazard
function of Weibull distribution, while�(t) is defined to be
a monotone non-increasing function that approximates the
service degradation. Figure 4 showsAss andPloss for both
policies plotted against� for different values of the mean
time to perform PMr.

Under both policies, it can be seen that for any particular
value of�, higher the value ofr, lower is the availability
and higher is the corresponding loss probability. It can also
be observed that the value of� which minimizes probability
of loss is much lower than the one which maximizes avail-
ability. In fact, the probability of loss becomes very high at
values of� which maximize availability. For any specific
value ofr, policy II results in a lower minima in loss prob-

ability than that achieved under policy I. Therefore, if the
objective is to minimize long run probability of loss, such as
in the case of telecommunication switching software, policy
II always fares better than policy I.

Figure 5 showsASS , Ploss and upper bound onTres
plotted against� under policy I.

Each of the figures contains three curves.�(�) and�(�)
in the solid curve are functions of real time�(t) and�(t),
whereas in the dotted curve they are functions (with the
same parameters) of the mean total processing time�(L(t))
and�(L(t)). The dashed curve represents a third system in
which no crash/hang failures occur�(�) = 0, but service
degradation is present with�(�) = �(t). This experiment
illustrates the importance of making the right assumptions
in capturing aging because as seen from the figure, depend-
ing on the forms chosen for�(�) and�(�), the measures vary
in a wide range.

3. Measurement-based estimation

In this Section we describe the measurement-based ap-
proach for detection and validation of the existence of soft-
ware aging. The basic idea is to periodically monitor and
collect data on the attributes responsible for determining the
health of the executing software, in this case the UNIX op-
erating system. For quantifying the effect of aging in op-
erating system resources, the metricEstimated time to ex-
haustionis proposed. The earlier work [10] uses a purely
time-based approach to estimate resource exhaustion times,
whereas the the work recently presented in [25] takes into
account the current system workload as well.

The SNMP-based distributed resource monitoring tool
discussed in [10] was used to collect operating system re-
source usage and system activity data from nine heteroge-
neous UNIX workstations which were connected by an Eth-
ernet LAN at the Duke Department of Electrical and Com-
puter Engineering. In our setup, a central monitoring station
runs the manager program which sendsgetrequests period-
ically to each of the agent programs running on the moni-
tored workstations. The agent programs in turn obtain data
for the manager from their respective machines by execut-
ing various standard UNIX utility programs likepstat, iostat
andvmstat. Data was collected from the machines at inter-
vals of 15 minutes for about 53 days.Four machines, Dol-
phin, ECE, Lincoln and Datc6, suffered outages during this
period. Failures which did not show any signs of resource
exhaustion (presumably due to hardware or other faults) are
not considered in our analysis. The time plots for the moni-
tored objects have missing values if there is an outage or in
the case of monitor timeouts occurring onget requests.
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Figure 4. Results for Experiment 1.
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Figure 5. Results of Experiment 2.

3.1. Time-based estimation

We thus obtain time-ordered values for eachpfmMIB
object, constituting a time series for that object. Our objec-
tive here is to detect aging or a long term trend (increasing
or decreasing) in the values and also to study the nature of
the variations in values. Furthermore, we attempt to relate
failures during this period to the observed values and dis-
cuss methods to quantify aging. Classical time series analy-
sis techniques such as linear and periodic dependency anal-
ysis, and trend detection and estimation [3] are used for our
analysis.

3.1.1 Detection and validation of the existence of aging

As mentioned previously, one of the primary objectives of
the data analysis is to detect and validate the existence of
aging. Detection of trends in operating system resource us-
age and system activity is the approach followed. For the
purposes of prediction, the slope of the trend is estimated.
The primary trend detection technique used issmoothingof
observed data byrobust locally weighted regression, pro-
posed by Cleveland [5]. Figure 6 shows the smoothed data
superimposed on the original data points from the time se-
ries of objects for Rossby. The smoothing technique is used
only to get the global trend between outages and so the re-
sulting smoothed data might not always follow the original
data points. Amount ofreal memory free(plot 1) shows
an overall decrease, whereasfile table size(plot 2) shows

an increase. Plots of some other resources not discussed
here also showed an increase or decrease. Once again, this
corroborates the hypothesis of aging with respect to various
objects.

The seasonal Kendall test [11] was applied to each of
these time series to detect the presence of any global trends
at a significance level,�, of 0.05. The associated statistic is
listed in Table 1. WithZ�=1.96, all values in the table are
such that theH0 hypothesis that no trend exists is rejected.

Table 1. Seasonal Kendall test
Resource Name Rossby Jefferson

Real Memory Free -13.668 -46.977
File Table Size 38.001 47.065

Process Table Size 40.540 38.537
Used Swap Space 15.280 31.660

No. of disk data blocks 48.840 13.673
No. of queues 39.645 13.476

3.1.2 Age quantification and estimation

Given that a global trend is present and that its slope is
calculated for a particular resource, the time at which the
resource will be exhausted because of aging only, is esti-
mated. Table 2 refers to several objects on Rossby and Jef-
ferson and lists an estimate of the slope (change per day)
of the trend obtained by applying Sen’s slope estimate for
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Figure 6. Non-parametric regression smooth-
ing for Rossby objects

data with seasons [10]. A negative slope, as in the case of
real memory, indicates a decreasing trend, whereas a posi-
tive slope, as in the case offile table size, is indicative of an
increasing trend. Given the slope estimate, the table lists the
estimated time to failure of the machine due to aging only
with respect to this particular resource. The calculation of
the time to exhaustion is done by using the initial intercept,
c, the calculated slope,m, and a standard linear approxima-
tion y = mx+ c. The value of the interceptc is taken to be
the mean of the initial 5 days. The minimum value for all
the resources is zero.

A comparative effect of aging on different system re-
sources can be obtained from the above estimates. For ex-
ample, in machine Rossby, the resourceused swap space
has the highest slope andreal memory freehas the sec-
ond highest slope. However, the estimated times to ex-
haustion of both these resources is compared,real memory
free has a lower time to exhaustion thanused swap space.
This is because of the difference in the initial and maxi-

mum/minimum values of these resources. Overall, it was
found that the two resourcesfile table sizeandprocess ta-
ble sizeare not as important asused swap spaceand real
memory freesince they have a very small slope and high
estimated times to failure due to exhaustion. Based on such
comparisons, we can identify important resources to moni-
tor and manage in order to deal with aging related software
failures.

3.2. Time and workload-based estimation

The method discussed in the previous subsection as-
sumes that accumulated use of a resource over a time period
depends only on the elapsed time. However, it is intuitive
that the rate at which a resource is consumed is dependent
on the current workload. In this subsection, we discuss a
measurement-based model to estimate the rate of exhaus-
tion of operating system resources as a function of both
time and the system workload recently presented in [25].
The SNMP-based distributed resource monitoring tool de-
scribed previously was used for collecting operating system
resource usage and system activity parameters (at 10 min
intervals) for over 3 months. Only results for the data col-
lected from the machine Rossby are discussed here. The
longeststretch of sample points in which no reboots or fail-
ures occurred were used for building the model. A semi-
Markov reward model [24] is constructed using the data.
First different workload states are identified using statisti-
cal cluster analysis and a state-space model is constructed.
Corresponding to each resource, a reward function based on
the rate of resource exhaustion in the different states is then
defined. Finally the model is solved to obtain trends and the
estimated exhaustion rates and time to exhaustion for the
resources.

3.2.1 Workload characterization and modeling

The following variables were chosen to characterize the sys-
tem workload -cpuContextSwitch, sysCall, pageIn,andpa-
geOut. Hartigan’s k-means clustering algorithm[15] was
used for partitioning the data points into clusters based on
workload. The statistics for the eleven workload clusters
obtained are shown in Table 3. Clusters whose centroids
were relatively close to each other and those with a small
percentage of data points in them, were merged to simplify
computations. This resulting clusters areW1 = f1; 2; 3g,
W2 = f4; 5g, W3 = f6g, W4 = f7g, W5 = f8g,
W6 = f9g,W7 = f10g andW8 = f11g.

Transition probabilities from one state to another were
computed from data, resulting in transition probability ma-
trix P of the embedded discrete time Markov chain shown
below:



Table 2. Estimated slope and time to exhaustion for Rossby, Velum and Jefferson objects
Resource Initial Max Sen’s Slope 95% Confidence Estimated Time

Name Value Value Estimation Interval to Exhaustion (days)

Rossby
Real Memory Free 40814.17 84980 -252.00 -287.75 : -219.34 161.96

File Table Size 220 7110 1.33 1.30 : 1.39 5167.50
Process Table Size 57 2058 0.43 0.41 : 0.45 4602.30
Used Swap Space 39372 312724 267.08 220.09 : 295.50 1023.50

Jefferson
Real Memory Free 67638.54 114608 -972.00 -1006.81 : -939.08 69.59

File Table Size 268.83 7110 1.33 1.30 : 1.38 5144.36
Process Table Size 67.18 2058 0.30 0.29 : 0.31 6696.41
Used Swap Space 47148.02 524156 577.44 545.69 : 603.14 826.07

Table 3. Statistics for the workload clusters
Cluster Center % of

No. cpuConSw sysCall pgOut pgIn pts.

1 48405.16 94194.66 5.16 677.83 0.98
2 54184.56 122229.68 5.39 81.41 0.76
3 34059.61 193927.00 0.02 136.73 0.93
4 20479.21 45811.71 0.53 243.40 1.89
5 21361.38 37027.41 0.26 12.64 7.17
6 15734.65 54056.27 0.27 14.45 6.55
7 37825.76 40912.18 0.91 12.21 11.77
8 11013.22 38682.46 0.03 10.43 42.87
9 67290.83 37246.76 7.58 19.88 4.93
10 10003.94 32067.20 0.01 9.61 21.23
11 197934.42 67822.48 415.71 184.38 0.93

P =

2
666666664

0:00 0:16 0:22 0:13 0:26 0:03 0:17 0:03
0:07 0:00 0:14 0:14 0:32 0:03 0:31 0:00
0:12 0:26 0:00 0:10 0:43 0:00 0:11 0:02
0:15 0:36 0:06 0:00 0:10 0:22 0:09 0:03
0:03 0:07 0:04 0:01 0:00 0:00 0:85 0:00
0:07 0:16 0:02 0:54 0:12 0:00 0:02 0:07
0:02 0:05 0:00 0:00 0:92 0:00 0:00 0:00
0:31 0:08 0:15 0:23 0:08 0:15 0:00 0:00

3
777777775

The sojourn time distribution for each of the work-
load states was fitted to either 2-stage hyper-exponential
or 2-stage hypo-exponential distribution functions. The fit-
ted distributions, shown in Table 4, were tested using the
Kolmogorov-Smirnov test at a significance level of 0.01.

3.2.2 Modeling resource usage

Two resources,usedSwapSpaceand realMemoryFree, are
considered for the analysis, since the previous time-based

Table 4. Sojourn time distributions
State Sojourn Time Distribution,F (t)

W1 1� 1:602919e�0:9t + 0:6029185e�2:392739t

W2 1� 0:9995e�0:4459902t
� 0:0005e�0:007110071t

W3 1� 0:9952e�0:3274977t
� 0:0048e�0:0175027t

W4 1� 0:841362e�0:3275372t
� 0:158638e�0:03825429t

W5 1� 1:425856e�0:56t + 0:4258555e�1:875t

W6 1� 0:80694e�0:5509307t
� 0:19306e�0:03705756t

W7 1� 2:86533e�1:302t + 1:86533e�2t

W8 1� 0:9883e�0:2655196t
� 0:0117e�0:02710147t

analysis suggested that they are critical resources. For each
resource, the reward function is defined as the rate of cor-
responding resource exhaustion in different states. The
true slope (rate of increase/decrease) of a resource at every
workload state is estimated by using Sen’s non-parametric
method [25]. Table 5 shows the slopes with 95% confi-
dence intervals. It was observed that slopes in a given work-

Table 5. Slope estimates (in KB/10 min)
usedSwapSpace realMemoryFree

State Slope 95 % Conf. Slope 95 % Conf.
Est. Interval Est. Interval

W1 119.3 5.5 - 222.4 -133.7 -137.7 - -133.3
W2 0.57 0.40 - 0.71 -1.47 -1.78 - -1.09
W3 0.76 0.73 - 0.80 -1.43 -2.50 - -0.62
W4 0.57 0.00 - 0.69 -1.23 -1.67 - -0.80
W5 0.78 0.75 - 0.80 0.00 -5.65 - 6.00
W6 0.81 0.64 - 1.00 -1.14 -1.40 - -0.88
W7 0.00 0.00 - 0.00 0.00 0.00 - 0.00
W8 91.8 72.4 - 111.0 91.7 -369.9 - 475.2

load state for a particular resource during different visits to



that state are almost the same. Further, the slopes across
different workload states are different and generally higher
the system activity, higher is the resource utilization. This
validates the assumption that resource usagedoesdepend
on the system workload and the rates of exhaustion vary
with workload changes. It can also be observed from Ta-
ble 5 that the slopes forusedSwapSpacein all the workload
states are non-negative, and the slopes forrealMemoryFree
are non-positive in all the workload states except in one.
It follows thatusedSwapSpaceincreases whereasrealMem-
oryFreedecreases over time which validates the software
aging phenomenon described earlier in the paper.

3.2.3 Results

The semi-Markov reward model was solved using the
SHARPE [21] tool developed at Duke University. The
slope for the workload-based estimation is computed as the
expected cumulative reward rate at steady state from the
model. As in the case of time based estimation, the times
to resource exhaustion is computed using the linear formula
y = mx + c, wherem is the slope andc is the intercept or
the initial values andy is the final (maximum or minimum)
value.

Figures 7 shows the time plots ofusedSwapSpacein ma-
chine Rossby along with the workload and time based esti-
mations, while Table 6 gives the estimates for the slope and
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Figure 7. Time plot and trend estimations of
resource usedSwapSpacein machine Rossby

time to exhaustion for bothusedSwapSpaceandrealMemo-
ryFree. It can be seen that workload based estimations gave
a lower time to resource exhaustion than those computed
using time based estimations. Since the machines failures

due to resource exhaustion were observed much before the
times to resource exhaustion estimated by the time based
method, it follows that the workload based approach results
in better estimations.

3.2.4 Extensions of the measurement based approach

A possible extension of this work could be to consider the
system workload in a more fine-grained manner by deter-
mining the effect of each individual process on particular
resource consumption. Further, for a more general failure
prediction, the combined effect of aging, periodic compo-
nent and transient component of resource usage need to be
modeled and understood. Additionally, the interaction and
correlation between the usage of various resources and their
impact on system availability remains to be explored. It is
precisely for these reasons that the estimated times of fail-
ures done this way do not fully explain the actual times of
failure observed on various machines.

4. Conclusions

In this paper, we have motivated the need for pursuing
preventive maintenance in operational software systems on
scientific basis rather than on the current ad-hoc practice.
Thus, an important research issue is to determine the opti-
mal times to perform the preventive maintenance. In this
regard, we discuss the two possible approaches, analytical
modeling and measurement based approach.

In the first part of the paper, we discuss analytical models
for evaluating the effectiveness of preventive maintenance
in operational software systems which experience aging.
The aim of the analytical modeling approach is determin-
ing the optimal times to perform rejuvenation considering
the tradeoffs of maximizing availability and minimizing the
probability of loss or the response time of a transaction.

The latter part of the paper deals with measurement
based approach for detection and validation of the existence
of software aging. SNMP-based distributed resource mon-
itoring tool is used to monitor and collect data on operat-
ing system resource usage and system activity. Method-
ologies are described to detect software aging and to es-
timate its effect on various system resources. Although
the distributed data collection tool is specific to UNIX, the
methodology can be used for detection and estimation of
aging in other software systems as well. The presented
measurement based approach is important step towards pre-
dicting aging related failures based on actual measurements,
intended to help development of policies that automate the
proactive handling of potential problems.



Table 6. Estimates for slope (in KB/10 min) and time to exhaustion (in days) for usedSwapSpaceand
realMemoryFree

Method usedSwapSpace realMemoryFree
of Slope 95 % Conf. Est. Time to Slope 95 % Conf. Est. Time to

Estimation Estimate Interval Exhaustion Estimate Interval Exhaustion

Time based 0.787 0.786 - 0.788 2276.46 -2.806 -3.026 - -2.630 60.81
Workload based 4.647 1.191 - 7.746 453.62 -3.386 -9.968 - 2.592 50.39
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