
Measurement–based Performance Analysis of E–commerce Applications with
Web Services Components

Venu Datla and Katerina Goševa–Popstojanova
Lane Department of Computer Science and Electrical Engineering

West Virginia University
Morgantown, WV 26506-6109

{venud, katerina}@csee.wvu.edu

Abstract

Web services are increasingly used to enable interoper-
ability and flexible integration of e-business systems. In this
paper we focus on measurement-based performance analy-
sis of an e-commerce application which uses Web services
components to execute business operations. In our exper-
iments we use a session-oriented workload generated by a
tool developed accordingly to the TPC-W specification. The
empirical results are obtained for two different user profiles,
Browsing and Ordering, under different workload intensities.
Unlike the previous work which was focused on the overall
server response time and throughput, we present Web inter-
action, software architecture, and hardware resource level
analysis of the system performance. In particular, we pro-
pose a method for extracting component level response times
from the application server logs and study the impact of
Web services and other components on the server perfor-
mance. The results show that the response times of Web ser-
vices components increase significantly under higher work-
load intensities when compared to other components. From
the hardware resource measurements it is obvious that the
higher response times of Web services components are due
to parsing XML messages and contention for database re-
sources. The results of our study identify software compo-
nents and hardware resources which are potential bottle-
necks in the system and thus provide valuable information
for capacity planning of e-commerce applications.

1. Introduction

Modern e-commerce applications are large-scale, dis-
tributed and depend on various inter-enterprise and intra-
enterprise services for execution. Since these services are de-
veloped on different platforms, programming languages and
technologies their integration with the application becomes a
complex task. The Web services architecture facilitate inter-
operability and flexible integration of systems developed on
heterogeneous environments. The interface of a Web service

is described in a machine processable format. Other systems
can communicate with the service using XML messages that
are conveyed via Internet protocols such as HTTP, SMTP,
and FTP. The interface details of a Web service can be pub-
lished in a repository to allow other users and applications to
discover the service. Individual services can be assembled
to create business-to-business applications. A brief descrip-
tion of the core standards used in Web services architecture is
given next. For more detailed overview the reader is referred
to [6], [19].

• Web Service Description Language (WSDL) is an XML
grammar for specifying the properties of a Web service
such as what it does, where it is located, and how it is
invoked. It describes the messages exchanged by the
service, operations supported by the service, protocol
bindings and endpoints of the service, etc. Generally
WSDL descriptions are published in a service registry
for automatic discovery.

• Simple Object Access Protocol (SOAP) is a standard for
sending messages and making remote procedural calls
over the Internet. It is independent of the program-
ming language, object model, operating system, and
platform. It uses HTTP as the transport protocol and
XML for data encoding. However, other transport pro-
tocols, such as FTP, SMPT, or even raw TCP/IP sock-
ets, may also be used. SOAP defines two types of mes-
sages, request and response, to allow service requesters
to request a remote procedure and service providers to
respond to such requests.

• Universal Discovery, Description, and Integration
(UDDI) provides a standard way for businesses to pub-
lish and discover Web services. The UDDI specification
consists of an XML schema for UDDI data structures
and description of UDDI APIs specifications.

With service oriented architecture, interoperability and
ease of integration, Web services have become a popular
choice for developing Web applications. Enterprise appli-
cation development technologies like .NET and J2EE have

Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05)
0-7695-2430-3/05 $20.00 © 2005 IEEE

incorporated support for Web service standards in their spec-
ifications. Facilities for Web services development in .NET
and J2EE platforms are compared in [14]. Companies like
Amazon, Google, and Microsoft have released Web service
interfaces for some of their Internet services.

The Web services technology has a lot of potential for
application-to-application communication since it promotes
interoperability and extensibility among these applications.
Of course, Quality of Service (QoS) provided by Web ser-
vices will play a major role in their success and adoption
rate. Although some emerging standards address methods
for achieving message delivery guarantees (WS-Reliability
[24]) and integrity and confidentiality (WS-Security [31]),
the current state of practice in description and discovery of
Web services does not include specification of QoS attributes
such as performance, reliability, availability, and security. In
other words, Web services technology has not yet addressed
questions such as will the Web service meet the performance
requirement of 2 ms response time or will the Web service be
available when needed? Until these questions are addressed,
it is unrealistic to expect that businesses will discover Web
services in a UDDI registry based on functional requirements
and invoke that service without having any assurance that the
QoS requirements will be met.

In this paper we present a measurement–based study of
performance of e-commerce applications that use Web ser-
vices to execute business operations. We focus on software
architectural view of the e-commerce prototype and analyze
the performance aspects of Web services components under
controlled workload conditions. We also measure the im-
pact of the application execution on the hardware resources
of the system. The paper is organized as follows. In section
2 we discuss the related work on performance evaluation of
Web services and emphasize our contributions. The descrip-
tion of the prototype, including the software architecture, im-
plementation, and deployment details, is given in section 3.
The workload used in our experiments and the measurement
methodology are described in sections 4 and 5, respectively.
Section 6 presents the experimental results. Finally, the con-
cluding remarks are given in section 7.

2. Related work and our contributions

Performance is an important quality aspect of Web ser-
vices because of their distributed nature. Surprisingly, only
a few papers have focused on performance evaluation of
Web services in the past. The throughput and overall sys-
tem response time of two variants of J2EE Pet store appli-
cation [29], one implemented using Java Messaging Service
(JMS) and the other using Web services, were studied in [9].
In this work the workload was generated using the Siege tool
[23] and it was shown that the JMS version has better perfor-
mance than the Web services version of the application. A
similar study was presented in [18]. The authors empirically
compared two versions of an electronic book inventory sys-
tem implemented using Active Server Pages (ASP) and Web

services. The workload generator used in this study was S-
client [2]. The results showed that the ASP implementation
has higher throughput and lower response time than the Web
services implementation.

Analytical performance modeling techniques have been
used to identify performance problems in Web applications
in [4] and [11]. Layered Queuing Network (LQN) model
is used in [4] to calculate response times of a Web service
based clinical decision support system. The LQN model
is built based on the software architecture. The model is
not validated with actual measurements. Queuing network
model for performance evaluation of an e-commerce appli-
cation was proposed in [11]. The estimates of the response
times, throughput, and utilization were compared with ac-
tual measurements. Although this application was not imple-
mented using Web services, the paper describes performance
evaluation of a large scale J2EE application which is related
to our work. Another related work on analytical modelling
of QoS attributes (i.e., response time, reliability, and cost) of
workflows and Web service processes was based on reduc-
tion rules [3].

A simulation technique for analyzing performance of
composite Web services was proposed in [5]. In this paper
the authors considered a scenario of an online book store and
used the simulation tool JSIM to build the simulation model
of this scenario. The service time, communication latency,
and waiting time for each Web service in the scenario were
measured by load testing. The results from the simulation
model were found to be close to the results obtained from
the actual service execution.

In this paper we focus on measurement-based study of
Web services performance. For this purpose we developed a
three tier e-commerce prototype of an online travel agency.
Our intention is not to test stand alone Web services, but to
examine how they perform when integrated into applications.
The functionalities of our e-commerce system that require
interaction with other, most likely heterogeneous, systems
(e.g., planning itineraries, currency conversion, validation of
credit card information) are implemented as Web services.

Since the traffic in e-commerce environments is based on
sessions, request-based workload generators used in [5], [18]
are not suitable for our application. Therefore, we have de-
veloped a session-based workload generation tool based on
TPC-W benchmark specification [30]. TPC-W is oriented
toward business-to-consumer e-commerce interactions and
tests many important elements of most e-commerce appli-
cations [13]. It should be emphasized that implementing the
TPC-W benchmark is a complex task that involves manag-
ing a wide spectrum of software and communication tech-
nologies [7]. Our implementation of the workload generator
adapts the workload designed for an online bookstore given
in TPC-W to suit the requirements of our application (i.e.,
online travel agency).

Unlike the previous work [4], [9], and [18] which ana-
lyzed the overall throughput and response times of Web ser-
vice based applications, we measure the performance at ar-

Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05)
0-7695-2430-3/05 $20.00 © 2005 IEEE

chitectural level, that is, we study the impact of Web services
and other components on the performance of the system. For
this purpose we have instrumented the application to record
the component execution events in the Application server
logs and developed scripts in AWK [22] scripting language
to automate the task of extracting response times for each
component from the Application server logs. To the best of
our knowledge, the method for data extraction from Appli-
cation server logs has not been used earlier for studying Web
services performance. In addition to the architectural level
measurements, we study the impact of the application on the
hardware resources of the deployment environment.

In our experiments we use two different workload pro-
files, Ordering and Browsing, and compare the correspond-
ing components response times, as well as hardware resource
usage for different workload intensities. It should be noted
that although the overall throughput and system response
time were measured under increasing load in [9] and [18],
different workload profiles were not considered. The empiri-
cal results presented in this paper contribute toward quantify-
ing the overhead introduced by Web services and help iden-
tifying software components and hardware resources which
are bottlenecks in the system. In particular, we show that
Web services components have significantly higher response
time under Ordering profile. This information is valuable for
system designers due to the fact that customers in Ordering
profile tend to have more ordering activity and generate rev-
enue. From this perspective, our work is complementary to
the work presented in [12] which was focused on priority-
based resource management policies aimed at increasing the
business-oriented metrics such as revenue per second.

3. Prototype description

In this section we describe the software architecture, im-
plementation and deployment details of our prototype e-
commerce application - an online travel agency which offers
flight booking services to its customers. Specifically, the ap-
plication provides online customers with facilities to search
for flights, choose flights that match their preferences, and
purchase tickets securely.

3.1. Software architecture

Our prototype is designed in a three-tier architecture
which is suitable for development of e-commerce systems
because they are distributed and typically span several sys-
tems such as Web servers, application servers, and data-
base servers. Based on the logical functionality, in three-
tier architecture, the application is organized into user in-
terface layer, business logic layer, and data layer. The user
interface layer of our application consists of a set of Web
pages: Home page, Search page, Search Results
page, Shopping Cart page, Customer Login page,
Check Credit page, and Process Order page. The
last three Web pages are secured using HTTPS protocol since

they transmit sensitive information such as credit card infor-
mation and passwords.

The business logic layer contains components that imple-
ment the core functions of the travel agency application. The
main components in this layer are:

• Flights-WS is a Web service that takes flight details
like start date, end date, origin, destination, and number
of passengers from the customer and returns a SOAP
message containing a list of matching flights. This Web
service is hosted locally. The first version of our proto-
type integrated the publicly available Web service [20]
which has the same functionality. However, this service
had poor availability. Furthermore, when it was avail-
able the service responded with server error whenever
more than five simultaneous search requests were gen-
erated. Due to these reasons we decided to implement
the Flights-WS and host it locally.

• Credit-WS is a Web service which validates cus-
tomer’s credit card information. This Web service is
hosted locally.

• Currency-WS is a locally hosted Web service which
calculates the exchange rates between two currencies.
The WSDL of a similar but publicly hosted Web service
is located at [21].

• Customer-EJB component stores the customer infor-
mation such as name and ID for the duration of the cus-
tomer session.

• Login-EJB component performs the login function
by validating customer’s username and password.

• Order-EJB component is responsible for maintaining
the persistence of customer orders. Persistence is an
important aspect since the order information should be
preserved even after the customer logs out of the sys-
tem.

It should be noted that components that require inter-
operability in order to interact with other (possibly het-
erogeneous) systems are implemented as Web services
(Flights-WS, Credit-WS, and Currency-WS).

The data layer of our application consists of a backend
relational database management system that stores persis-
tent information in the form of tables. The components
of the business logic layer, Flights-WS, Credit-WS,
Order-EJB, Customer-EJB, and Login-EJB manip-
ulate the data in the corresponding database tables to process
requests from the user interface layer.

3.2. Implementation details

Our online travel agency application is implemented us-
ing J2EE [27], a widely used standard which facilitates de-
velopment of scalable, robust, multi-tiered enterprise sys-
tems. The user interface layer is written in Java Server Pages

Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05)
0-7695-2430-3/05 $20.00 © 2005 IEEE

(JSP) which is a J2EE technology for creating dynamic Web
content. We use Tomcat v5.0 as a Web server.

The business logic layer components are implemented
using Web services and Enterprise Java Beans (EJB). We use
J2EE 1.4 Application Server which supports Web services
in the form of JAX-RPC API to create the Web service com-
ponents Credit-WS, Flights-WS, and Currency-WS.
The other business logic layer components, Order-EJB,
Customer-EJB, and Login-EJB, are implemented as
EJB which is a J2EE standard for developing server side
components.

Finally, we use Oracle 9i Release 2 as a database server.

3.3. Deployment details

The UML deployment diagram of our prototype appli-
cation is shown in Figure 1. The Web server and EJB
components run on the same machine with a 3 GHz Pen-
tium 4 processor and 1 GB RAM. The application server
which hosts the Web services components (Flights-WS,
Currency-WS, and Credit-WS) runs on another system
with a 3GHz Pentium 4 processor and 1GB RAM. The data-
base server runs on a different machine with the same con-
figuration and 120 GB disk drive. We use a 1.2 GHz Pentium
M processor with 512 MB RAM system to run the workload
generator. All these machines run Windows 2000 operating
system and are connected through Ethernet LAN with 100
Mbps speed.

We decided to develop all Web services and host them
locally due to two main reasons. First, as explained in Sec-
tion 3.1, during our initial experiments we found that some
of the public Web services have low availability and reliabil-
ity. This does not seem to be an isolated incident. In [17] it
was reported that in 2001 48% of the production UDDI reg-
istry had links that were unusable. A more recent study [10]
reported similar findings - during six months period (August
2003 – January 2004) 67% of the public Web services reg-
istered in the UDDI registry were invalid (i.e., their WSDL
files were either inaccessible or not registered). This state
of the practice prevents integration of public Web services in
any application which relies on them to achieve high depend-
ability.

Second, by hosting all software components locally we
avoid accounting for network latency which is beyond our
control. This, however, does not limit the scope of our re-
search since our goal is to study the contribution of software
components to the response time of e-commerce interactions
at the server–side rather than to study end-to-end response
time as perceived by the user. Even more, hosting all com-
ponents locally supports experiments with higher workload
which may not be possible with publicly hosted Web services
components.

4. Workload description

A key issue in performance evaluation of software sys-
tems is the workload characterization which should closely

Figure 1. UML deployment diagram of the
travel agency application

represent the behavior of real users. Our previous work was
focused on detailed characterization of the Web workload in
terms of user sessions based on data extracted from actual
Web logs of ten Web servers [8]. In this paper we take a dif-
ferent approach - we analyze the performance of e-commerce
applications using synthetically generated workload which
allows us to run controlled experiments. An excellent survey
presented in [1] analyzes in details popular Web workload
benchmarking tools such as httperf [15], SPECweb99 [25],
Surge [16], S-Client [2], TPC-W [30], and Web Stone [32].

For our application the workload should emulate the ac-
tivity of online customers interacting with the e-commerce
Web site through a browser. The customer behavior under
these conditions is session oriented. Benchmarking tools
such as SPECweb99 and S-Client are request-based and do
not capture the concept of customer sessions. We decided to
use the TPC-W [30], a benchmark from Transaction Process-
ing Performance Council (TPC), which specifies a session-
based workload for simulating customer activities for an on-
line bookstore application. TPC-W is a well designed bench-
mark oriented toward business-to-customer e-commerce ap-
plications which was studied and evaluated in [7], [13]. Its

Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05)
0-7695-2430-3/05 $20.00 © 2005 IEEE

Figure 2. DTMC for the travel agency application

main features include generation of multiple online browser
sessions, dynamic page generation with database access and
update, authentication through secure socket layer (SSL) or
transport layer security (TSL), and enforcement of ACID
properties on database transactions. Another advantage of
TCP-W benchmark is the capability of generating different
Web interaction mixes which consists of different percent-
ages of browse and ordering operations. It is important to
emphasize that TPC-W benchmark is a specification, not a
tool that can readily be used for workload generation. As a
part of this research effort, we have developed a workload
generation tool accordingly to TPC-W specification. This is
a complex task that requires knowledge of wide spectrum of
software and communication technologies [7]. It should be
noted that our implementation adapts the workload designed
originally in TPC-W specification for an online bookstore to
suit the requirements of an online travel agency.

Workload characterization in TPC-W is based on the cus-
tomer’s view of the system and it can be described with a Dis-
crete Time Markov Chain (DTMC) which characterizes the
customers request patterns. DTMC consists of a set of user
states; each request is represented as a transition from one
state to another. Accordingly to the Markov property, the
transition to the next state is a function of the current state
and the transition probability. The probabilities associated
with transitions are determined from the workload profiles
(i.e., Web interaction mixes). Note that in [13] the DTMC
model is called a Customer Behavior Model Graph (CBMG).

The DTMC which defines the user sessions for our ap-
plication is show in Figure 2. Each customer session starts
in the Home state and navigates through the states of the
DTMC. For each user session the emulated browser (client)
in TPC-W generates a random number from a negative expo-
nential distribution which represents the User Session Min-
imum Duration (USMD). The user session ends when the
USMD has elapsed and the next Web interaction is Home
Web interaction. Because there will be on average a non-
zero time between the USMD elapsing and the next selec-
tion of Home Web interaction, the actual average duration of
user sessions will be somewhat greater than USMD. The user
session does not end until the next Home Web interaction in

order to maintain the required mix of Web interactions (i.e.,
workload profile). A new customer session is started as soon
as the workload generator terminates the current session. The
clients in TPC-W workload follow the closed loop model. In
this model the workload consists of a fixed number of clients
which generate new request only after the response on the
previously submitted request is received from the server.

The TPC-W workload is made up of a set of Web
interactions which can be classified as either Browse
or Order depending on whether they involve brows-
ing and searching on the site or whether they play
an explicit role in the ordering process. In our case
the browsing category consists of Home, Search, and
Search Results interactions, while the ordering cate-
gory consists of Shopping Cart, Customer Login,
Check Credit, and Process Order interactions. In
this paper we present experiments with two different work-
load profiles. The Browsing profile describes the behav-
ior of customers who spend most of their time browsing and
searching and rarely place orders for tickets. In this profile
79% of requests are for interactions in browsing group and
only 21% are for interactions in the ordering group. In the
Ordering profile customers tend to have more ordering ac-
tivity, that is, 50% of requests are for browsing interactions
and 50% for ordering interactions. The detailed mixes of
Web interactions for these two profiles are shown in Table 1.

The workload generated accordingly to TPC-W specifi-
cation consists of three phases: ramp–up interval, steady–
state interval, and ramp–down interval [30]. During the
ramp–up interval the system initializes its components and
reaches a steady–state. The data must be collected over a
measurement interval during which the throughput level is in
a steady–state condition that represents the true sustainable
performance of the application. In our experiments the dura-
tion of the ramp–up, steady–state, and ramp–down intervals
are 5, 30, and 1 minute, respectively.

Another important requirement imposed by the TPC-W
specification is that the size of the database tables must
be scaled accordingly to the number of clients. For both
Ordering and Browsing profiles we run experiments
with 50, 100, 150, and 200 clients. Therefore, following the

Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05)
0-7695-2430-3/05 $20.00 © 2005 IEEE

Browsing profile (79-21) Ordering profile (50-50)
Browse 79% 50%

Home 21.0% 17.0%
Search 30.0% 17.5%
Search results 28.0% 15.5%

Order 21% 50%
Shopping cart 12.0% 14.0%
Customer Login 3.2% 13.0%
Check credit 2.9% 11.5%
Process order 2.9% 11.5%

Table 1. Mixes of Web interactions for Browsing and Ordering profiles

TPC-W specification [30], we populate the database with a
customer table of size 576,000 rows. TPC-W specification
also requires average think time and average user session du-
ration to be reported, which in our case are 7 seconds and 11
minutes, respectively. Finally, TPC-W imposes restrictions
on the response times for each type of Web interaction shown
in Figure 2 and requires reporting of the 90th percentile re-
sponse time during the steady–state measurement interval.

5. Measurement methodology

For each Web interaction the TPC-W benchmark mea-
sures at the client-side (i.e., Emulated Browser) the Web In-
teraction Response Time (WIRT) which is defined as the dif-
ference between the time measured after the last byte of the
last HTTP response that completes the Web interaction is re-
ceived by the Emulated Browser (EB) from the System Un-
der Test (SUT) and the time measured before the first byte of
the first HTTP request of the Web interaction is sent by the
EB to the SUT.

Our goal is to measure the response time at software ar-
chitectural level which will allow us to study how each soft-
ware component contributes towards server–side response
time for each Web interaction. The Web interactions pre-
sented in Figure 2 involve executing from one to three differ-
ent software components (see Section 3.1) as listed below.

• Home interaction: Home page and Customer-EJB

• Search interaction: Search page

• Search Results interaction: Search Results
page and Flights-WS

• Shopping Cart interaction: Shopping Cart
page

• Customer Login interaction: Customer Login
page

• Check Credit interaction: Check Credit page,
Login-EJB, and Currency-WS

• Process Order interaction: Process Order
page, Credit-WS, and Order-EJB.

We extract information about the response times of
components participating in each Web interaction from
the Application server logs. J2EE Application servers
record application events in ASCII log files using the
java.util.logging API [28]. An application event
may be a request for Web page, execution of an EJB method,
a request for a Web service, error, exception and so on. The
format of the records in the application server logs is shown
in Figure 3 [26]. It contains the time stamp of the event, log
level that identifies priority of the message, name of the ap-
plication server, component that logs this message, key value
pairs containing thread ID, message ID, and the message.

Figure 3. Format of a record from the Applica-
tion server log

In default server settings only critical events such as
errors and exceptions are logged. We modified the ap-
plication server settings to enable the Web container and
EJB container to log time stamps of all relevant events
in our application. Then, the application components
were instrumented by adding statements which call the
java.util.logging API. This API persists compo-
nents response times in the application server logs. Since
during our experiments many events were recorded in the
application server logs, their size was in range of hundreds
of Mega bytes. Of course, extracting the response times for
each execution of each component cannot be done manually.
Therefore, we wrote scripts in AWK scripting language [22]
which parse the application server logs and automatically ex-
tract component level response times.

In addition to software architecture level measurements,
we also study the hardware resource usage of Web services
based e-commerce application. For hardware resource level
measurements we use Windows 2000 performance monitor-
ing tool. In particular, we use the Performance Logs and
Alerts utility to create counter logs which record data about
hardware usage and activity of system services. Since the

Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05)
0-7695-2430-3/05 $20.00 © 2005 IEEE

components of our e-commerce application are deployed
across several machines (see Figure 1), on each machine we
record the percentage of non-idle processor time spent in user
mode (%User Time) and the rate of read and write operations
on the disk (Disk Transfers/sec).

6. Experimental results

First, we analyze the response times of the Search,
Shopping Cart, and Customer Login interactions
which serve only static html content. Since response times
of these interactions are similar, we discuss only the re-
sults of the Search interaction. As it can be seen from
Figure 4, which shows the 90th percentile response times
for Search interaction, the response times for Ordering
and Browsing profiles are approximately the same for 50,
100, 150 customers. For 200 customers the response time
in Ordering profile is higher than in Browsing profile.
This is due to the fact that the CPU utilization of the ma-
chine hosting the Web server has slightly higher utilization
for Ordering than for Browsing profile.

Figure 4. Response times for Search Web in-
teraction

Next, we discuss the performance of the Home interac-
tion which involves processing of Customer-EJB com-
ponent and the html content of the Home page. The con-
tributions of each component to the overall response times
of Home interactions for both profiles and different number
of customers are shown in Figure 5. It is obvious that the
response times increase almost linearly with the increase of
the number of clients for both profiles. The response times in
Ordering profile, however, are approximately 10% higher
than in Browsing profile. It should be noted that in our
implementation, the Customer-EJB component retrieves
customer information from the database only during the first
visit to the Home page. In all subsequent requests, the
Customer-EJB does not make database calls, hence the
calls to this component are relatively inexpensive.

Finally, we consider the remaining three interactions,
Search Results, Credit Check, and Process
Order, which involve calls to Web services components.

Figure 5. Response times for Home Web inter-
action

Figures 6, 7, and 8 show the distribution of the response
times of these interactions across different components used
to process the corresponding interaction, for the two work-
load profiles under different workload intensities. Several
common observations can be drawn from Figures 6, 7, and
8. First, for each interaction the overall interaction response
time, as well as the corresponding components’ response
times are approximately the same for the both profiles when
the workload consists of 50, 100 and 150 clients. For each
profile, the response time in case of 200 clients is signifi-
cantly higher than the response time for 150 clients. This
increase is mainly due to the increase of the response time
of Web services components. Furthermore, the response
times of Web services components in the Ordering pro-
file are nearly 20% higher than in the Browsing profile
when the workload intensity is 200 clients. Next, for all
workload intensities and both profiles 60–80% of the overall
response times of Search Results, Credit Check,
and Process Order interactions is spent in executing
Web services components. It is interesting to notice that the
values of the response times of Web services components are
much higher than the response times of any other compo-
nent in any interaction. Thus, it follows that the Web ser-
vice components are the performance bottlenecks not only in
Search, Credit Check, and Process order inter-
actions, but in the whole system as well.

Web service calls are expensive because they communi-
cate by XML based protocols such as SOAP. This type of
communication requires Web service endpoint to convert the
SOAP request messages into method calls to local objects, as
well as to encode the results into SOAP messages before they
can be transmitted to the Web service client. These parsing
and encoding activities incur additional overhead on the per-
formance of the system. Since parsing and encoding of XML
messages are CPU intensive activities we analyze the CPU
utilization on the machine where Web services components
are deployed (i.e., Application Server 2 in Figure 1). As ex-
pected, we observe from Figure 9 that the CPU utilization in-
creases with the number of clients for both Ordering and

Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05)
0-7695-2430-3/05 $20.00 © 2005 IEEE

Figure 6. Response times for Search Results
Web interaction

Figure 7. Response times for Credit Check
Web interaction

Browsing profiles. More interesting observation, however,
is that the increase in CPU utilization for 200 clients with re-
spect to 150 clients is significantly higher than between other
workload intensities (i.e., 150 and 100 clients, or 100 and 50
clients). Obviously, one of the reasons for increased response
time of Web services components under higher workload is
the overhead due to parsing and encoding the XML messages
which leads to increased CPU utilization.

We also study the disk activity on the Database server
(i.e., Server 3 in Figure 1) because the Web services and EJB
components in our application perform operations on the
backend database to serve user requests. It can be observed
from Figure 10 that the number of disk transfers per sec-
ond for Ordering profile are higher than for Browsing
profile regardless of the number of customers. Furthermore,
the difference increases with the workload intensity, which
clearly explains the increase in response times of Web ser-
vices and EJB components.

7. Conclusion

In this paper we present a measurement–based perfor-
mance analysis of an e–commerce application which in-

Figure 8. Response times for Process Order
Web interaction

cludes Web services components in the business logic layer.
The experimental setup includes a prototype of an online
travel agency with a three tier architecture deployed on sev-
eral machines and a workload generator developed accord-
ingly to the TPC-W specification. The empirical results are
obtained for two different workload profiles, Ordering and
Browsing, under different workload intensities of 50, 100,
150, and 200 clients.

In contrast to the related work which evaluated the overall
application response time, our study includes measurements
and analysis of server-side performance at different levels.

• Software architectural level allows us to study the dis-
tribution of the Web interactions response time among
different components used to process the interaction.

• Hardware resource level provides additional insights
and helps explaining the observed phenomena.

The results show that Web services components tend to
become bottlenecks in the system, particularly in heavy load
conditions. This phenomenon is attributed to the overhead
introduced by the additional processing of the XML mes-
sages and, basically, is the price paid for the interoperability
and flexibility of integration. One of the solutions to this
problem is to develop more efficient XML parsers. Also, the
application server vendors should incorporate better mecha-
nisms to perform encoding and decoding of SOAP messages.

Another interesting observation is that under higher
workload the response time for the Ordering profile be-
comes significantly worse than the response time for the
Browsing profile. This is an important observation due to
the fact that the customers in the Ordering profile gener-
ate more revenue to the organization as they have higher pur-
chasing activity. The main reasons for the worse response
time in Ordering profile are the higher database activity
and contention for database resources which affect the per-
formance of the EJB components and even more the perfor-
mance of Web services components. To improve the per-
formance of components that access the backend databases,

Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05)
0-7695-2430-3/05 $20.00 © 2005 IEEE

Figure 9. CPU utilization in Ordering and Browsing Profiles at Application server 2

Figure 10. Database Disk activity in Ordering and Browsing Profiles at Server 3

application developers can use techniques such as database
connection pooling.

In summary, analyzing the performance of e-commerce
applications at different levels (i.e., Web interaction, soft-
ware architecture, and hardware resource levels) provides
insightful information about potential bottlenecks (i.e., soft-
ware components and hardware resources) and enables sys-
tem designers and application developers to improve perfor-
mance in a cost effective manner. The wide adoption of new
technologies such as Web services, to large extent, will de-
pend on the capability to assess and even more to provide
guarantees for their QoS. We believe that the research work
presented in this paper is a step towards this goal.

8. Acknowledgement

This work is funded in part by the NASA Office of Safety
and Mission Assurance (OSMA) Software Assurance Re-
search Program (SARP) under grant managed through the
NASA IV&V Facility, Fairmont, West Virginia and by the
National Science Foundation under CAREER grant number
CNS-0447715.

References

[1] M. Andreolini, V. Cardellini and M. Colajanni, “Bench-
marking Models and Tools for Distributed Web-server
systems”, Performance Evaluation of Complex Sys-
tems: Techniques and Tools, Lecture Notes in Com-
puter science, Springer-Verlag, Sep. 2002, Vol.2459,
pp. 208–235.

[2] G. Banga and P. Druschel, “Measuring the Capacity of
a Web Server under Realistic Loads”, World Wide Web,
May 1999, pp. 69–89.

[3] J. Cardoso, J. Miller, A. Sheth, and J. Arnold, “Model-
ing Quality of Service for Workflows and Web Service
Processes”, Technical Report, LSDIS Lab, Computer
Science Department, The University of Georgia.

[4] C. Catley, D. Petriu and M. Frize, “Software Per-
formance Engineering of a Web Service-based Clin-
ical Decision Support Infrastructure”, 4th Interna-
tional Workshop on Software and Performance, Red-
wood Shores, California, 2004, pp. 130–138.

[5] S. Chandrasekaran, J. Miller, G. Silver, B. Arpinar,
and A. Sheth, “Performance Analysis and Simulation

Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05)
0-7695-2430-3/05 $20.00 © 2005 IEEE

of Composite Web Services”, International Journal of
Electronic Commerce & Business Media, Vol.13, No.2,
2003, pp. 18–30.

[6] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,
and S. Weerawarana, “Unraveling the Web Services
Web”, IEEE Internet Computing, March–April 2002,
pp. 86–93.

[7] D. Garcia and J. Garcia, “TPC-W E-commerce Banch-
mark Evaluation”, IEEE Computer, February 2003,
pp. 42–48.

[8] K. Goševa–Popstojanova, S. Mazimdar, and A. Singh,
“Empirical Study of Session-based Workload and Reli-
ability for Web Servers”, 15th IEEE International Sym-
posium on Software Reliability, Saint-Malo, France,
November 2004, pp. 403–414.

[9] K. Juse, S. Kounev, and A. Buchmann, “PetStore-WS:
Measuring the Performance Implications of Web Ser-
vices”, 29th International Conference of the Computer
Measurement Group (CMG) on Resource Management
and Performance Evaluation of Enterprise Computing
Systems, December 2003.

[10] S. M. Kim and M. Rosu, “A Survey of Public Web Ser-
vices”, 13th International World Wide Web Conference,
New York, USA, May 2004, pp. 312–313.

[11] S. Kounev and A. Buchmann, “Performance Model-
ing and Evaluation of Large-Scale J2EE Applications”,
29th International Conference of the Computer Mea-
surement Group (CMG) on Resource Management and
Performance Evaluation of Enterprise Computing Sys-
tems, December 2003.

[12] D. Menasce, V. A. F. Almeida, R. Foneca, and M.
A. Mendes, “Business-oriented Resource Management
Policies for E-commerce Servers”, Performance Eval-
uation, Vol.42, No.2-3, 2000, pp. 223–239.

[13] D. Menasce, “TPC-W, A Benchmark for E-
Commerce”, IEEE Internet Computing, May-June
2002, pp. 83–87.

[14] G. Miller, “NET vs. J2EE”, Communications of the
ACM, June 2003, pp. 64–67.

[15] D. Mosberger and T. Jin, “httperf – A tool for measur-
ing Web server performance”, ACM Performance Eval-
uation Review, Dec. 1998, pp. 31–37.

[16] B. Paul and C. Mark, “Generating Representative Web
Workloads for Network and Server Performance Evalu-
ation”, ACM SIGMETRICS, June 1998, Madison, WI,
pp. 151–160.

[17] S. Run, “A Model for Web Services Discovery with
QoS”, ACM SIGecom Exchanges, Vol.1, Issue 1, March
2003, pp. 1–10.

[18] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J.
Schiller, “Performance Impact of Web Services on In-
ternet Servers”, International Conference on Parallel
and Distributed Computing and Systems, Marina Del
Rey, USA, Nov. 2003.

[19] A. Tsalgatidou and T. Pilioura, “An Overview of
Standards and Related Technology in Web Services”,
Distributed and Parallel Databases, Vol.12, 2002,
pp. 135–162.

[20] Airfares Web service endpoint:
http://ws.netviagens.com/webservices/AirFares.asmx

[21] CurrencyConverter service.
http://www.webservicex.net/CurrencyConvertor.asmx

[22] GNU AWK utility,
http://www.gnu.org/software/gawk/gawk.html.

[23] Jeffrey Fulmer, Siege – An Open Source Stress Tester,
2002. http://www.joedo.org/siege/index.html.

[24] OASIS Web Services Reliable Messaging,
http://docs.oasis-open.org/wsrm/2004/06/WS-
Reliability-CD1.086.pdf.

[25] Standard Performance Evaluation Corp, SPECweb99.
http://www.spec.org/osg/web99.

[26] Sun Java System Application Server Plat-
form Edition 8 Administration Guide, Logging.
http://docs.sun.com/source/817-6088/logging.html.

[27] Sun Microsystems – Java 2 Platform Enterprise Edi-
tion Specification v1.4, http://java.sun.com/j2ee/j2ee-
1 4-fr-spec.pdf.

[28] Sun Microsystems, Java Logging API’s,
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging.

[29] Sun Microsystems, Inc. Java Petstore Application.
Documentation. http://java.sun.com/blueprints/code/
jps131/docs/index.html.

[30] TPC-W Transactional Web Commerce Bench-
mark, Transaction Processing Performance Council.
http://www.tpc.org/tpcw.

[31] Web Services Security Specification, http://www-
106.ibm.com/developerworks/webservices/library/ws-
secure.

[32] WebStone. http://mindcraft.com/webstone

Proceedings of the 2005 IEEE International Conference on e-Business Engineering (ICEBE’05)
0-7695-2430-3/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

