
Empirical Evaluation of Reliability Improvement in an
Evolving Software Product Line

Sandeep Krishnan
Dept. of Computer Science

Iowa State University
Ames, IA 50014

sandeepk@iastate.edu

Robyn R. Lutz
Dept. of Computer Science

Iowa State University
& JPL/Caltech

rlutz@iastate.edu

Katerina Goševa-
Popstojanova

Lane Dept. of CSEE
West Virginia University

Morgantown, WV 26506-6109

Katerina.Goseva@mail.wvu.edu

ABSTRACT

Reliability is important to software product-line developers
since many product lines require reliable operation. It is
typically assumed that as a software product line matures,
its reliability improves. Since post-deployment failures im-
pact reliability, we study this claim on an open-source soft-
ware product line, Eclipse. We investigate the failure trend
of common components (reused across all products), high-
reuse variation components (reused in five or six products)
and low-reuse variation components (reused in one or two
products) as Eclipse evolves. We also study how much the
common and variation components change over time both
in terms of addition of new files and modification of existing
files. Quantitative results from mining and analysis of the
Eclipse bug and release repositories show that as the prod-
uct line evolves, fewer serious failures occur in components
implementing commonality, and that these components also
exhibit less change over time. These results were roughly
as expected. However, contrary to expectation, components
implementing variations, even when reused in five or more
products, continue to evolve fairly rapidly. Perhaps as a re-
sult, the number of severe failures in variation components
shows no uniform pattern of decrease over time. The paper
describes and discusses this and related results.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Product metrics,
Process metrics

General Terms

Reliability

Keywords

Software product lines, reliability, failures, reuse, change

1. INTRODUCTION
Reliability is important to software product-line develop-

ers since many product lines require reliable operation. It is
typically assumed that as a software product line matures,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’11, May 21-22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00.

its reliability improves. The systematic reuse opportuni-
ties provided by software product line (SPL) techniques are
considered to be an important factor in achieving increased
quality and reliability across the product line. Empirically
investigating the relationship between reuse and reliability
in a gradually evolving software product line can help us
understand the utility of SPL techniques and, perhaps, to
improve existing SPL practice.

We follow Weiss and Lai in defining a product line as
“a family of products designed to take advantage of their
common aspects and predicted variabilities [26].” It has been
reported that planned reuse of artifacts allows more rapid
development of new products and lower-cost maintenance
of existing products [4], [11], [24], [26]. Since the artifacts
such as design, code, etc. are reused and maintained via a
centralized, domain-engineered repository, there is reason to
anticipate that the quality and reliability of both the existing
products and the new products may improve over time.

In a product line, some requirements are shared by all the
products in the product line. These are the common require-
ments and are called commonalities. The components im-
plementing commonalities are called common components.
The products also differ from each other based on a set
of variation requirements called variabilities. The compo-
nents implementing variations are called variation compo-
nents. As the common and variation components are reused
across products, they go through iterative cycles of testing,
operation and maintenance that over time identify and re-
move many of the bugs that can lead to failures.

We define reliability as continuity of correct service [6].
A failure is a departure of the system or system compo-
nent behavior from its required behavior, while a fault is an
accidental condition which, if encountered, may cause the
system or system component to fail to perform as required.
Post-deployment failures are indicators of the reliability of
the system or components.

In this paper we study how reliability, measured by the
number of post-deployment failures, changes as Eclipse, a
large, open-source software product line evolves over time.
Eclipse documentation describes Eclipse as a platform for
building integrated web and application development tool-
ing. Eclipse provides a range of products based on the needs
of different user groups. Since post-deployment failures im-
pact reliability, we study the failure trend of common com-
ponents and variation components as Eclipse evolves. We
also study how much the common and variation components
change over time. The relationships between reliability and

1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’11, May 21–22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00

103

change, and between quality and change, in a single system
have been studied in several important and insightful pa-
pers, as described in Section 8. Most relevant to this study,
Mohagheghi and Conradi have analyzed defect density in
product lines [19] [20]. We are not aware, however, of other
work that has quantitatively studied reliability in terms of
failure occurrence and change within the context of a real-
world, evolving product line.
We consider three types of SPL components: common

components reused in all products; high-reuse variation com-
ponents, used in many but not all products; and low-reuse
variation components, used in only one or two products.
The research questions that we investigate are described in
detail in Section 4 and briefly here.

1. Failure trends. Do serious failures (both in terms of
raw numbers and percentages of all failures) decrease
over time as the common/high-reuse variation/low-
reuse variation components evolve over releases?

2. Change trends. Does the percentage of new files and/or
modifications to the source code decrease across re-
leases for the common/high-reuse variation/low-reuse
variation components?

3. Failure/Change relationships. Does the number of se-
rious failures normalized for source-code changes de-
crease over time for the common/high-reuse variation/low-
reuse variation components.

Several interesting findings result from the investigation
and are described in the rest of the paper. The main contri-
butions of the work are:

• As the product line evolves, fewer serious failures occur
in components implementing commonality, and these
components also exhibit less change over time.

• The occurrence of failures in variation components shows
no uniform pattern of decrease as the product line
evolves, even when normalized for the occurrence of
change.

• Although the number of failures in some variation com-
ponents decreases as the product line matures, the per-
centage of severe failures in those components holds
steady or even increases.

• Components implementing variations, even when reused
in five or more products, continue to evolve fairly rapidly.

• In common components, the percentage of new files
shows a decreasing trend as the product line evolves.

• In variation components that are lightly reused, the
percentage of new files generally shows a decreasing
trend, comparable in values to one of the common com-
ponents.

• Heavily reused variation components have a very low
percentage of new files, much lower than either com-
mon components or lightly reused variation compo-
nents.

This paper is organized as follows. Section 2 describes
Eclipse and gives the reasons for considering it as a software

product line. Section 3 presents the approach to data collec-
tion and analysis. Section 4 lists the research questions that
are investigated. Section 5 presents the findings. Section 6
summarizes and discusses the results in the context of SPLs.
Section 7 discusses threats to validity. Section 8 describes
additional related work. Section 9 provides concluding re-
marks.

2. ECLIPSE PRODUCT LINE
In the commercial sector, multiple industries claim to have

experienced the benefits of software product line engineer-
ing techniques. The SPL Hall of Fame [5], for example, lists
leading industries that have successfully introduced SPL tech-
niques into their production environments. It is accepted
widely that product line engineering techniques improve the
quality of the products [4], [16], [26]. However, empirically
investigating such claims is difficult because it requires data
that spans the evolution of the product lines. There is, in
general, a lack of available product line data.

Eclipse is a notable exception. The evolution of Eclipse’s
products is documented in public failure reports, change
reports and source code available across its component re-
leases. The Eclipse web site describes Eclipse as an ecosys-
tem due to its plugin-based architecture. Developers be-
longing to varied software communities can develop plugins
which are integrated with other existing plugins. This makes
Eclipse flexible enough to be used by different user commu-
nities.

Another view is to look at Eclipse from a product line
perspective. Following Chastek, McGregor and Northrop
[9], we consider Eclipse as a software product line. Eclipse
provides a set of different products to satisfy the needs of dif-
ferent user communities. Each product has a set of common
features, yet each product differs from other products based
on some variation features. The features are developed in a
systematic manner with planned reuse for the future. The
features are implemented in Eclipse as plugin components
which are integrated to form the products. The products of
the Eclipse product line are the multiple package distribu-
tions provided by Eclipse for different user communities.

2.1 Products
Each year Eclipse provides more products based on the

needs of its user-communities. For Java developers, the
Eclipse Java package is available; for C/C++ developers,
Eclipse provides the C/C++ distribution package, etc. In
2007, five package distributions were available: Eclipse Java,
Eclipse JEE,Eclipse C/C++, Eclipse RCP and Eclipse Clas-
sic. In 2008, two more products became available: Eclipse
Modeling and Eclipse Reporting. 2009 saw the introduction
of Eclipse PHP and Eclipse Pulsar. In 2010, Eclipse had
twelve products, including three new ones: Eclipse C/C++
Linux, Eclipse SOA and Eclipse Javascript. Fig. 1’s columns
list the 2010 products. In each release, new products are
introduced based on the needs of the user communities by
reusing the common components and existing variation com-
ponents, and by implementing any required new variabilities
in new component files.

2.2 Components
The products are composed of components which are im-

plemented as plugins. For the 2010 release, the components
in the Eclipse product line are shown as rows in Fig. 1. The

2104

Figure 1: Eclipse Product Line for the year 2010 [http://www.eclipse.org/downloads/compare.php]

individual cells indicate which components are used/reused
in which products.
We observe three categories of components: common, high

reuse variation and low-reuse variation.
Common components. The first category contains the

common components reused in all products. The large com-
ponent RCP/Platform is the only common component reused
across all products. Henceforth in the paper, we abbreviate
the RCP/Platform component to Platform. To consider a
finer level of granularity we look at the failure trends for
the five of the fourteen subcomponents of Platform with
the largest number of severe failures: Resources, Runtime,
SWT, UI and Debug. We choose these particular subcom-
ponents because they contribute over 70% of the failures
in Platform. We refer to each subcomponent as Platform-
subcomponent name. Failure numbers for the Platform com-
ponent are the sum of the failures for each of its fourteen sub-
components and we refer to the sum as Platform-combined.
High-reuse variation components. The second category is

the set of variation components with high reuse. This cat-
egory consists of the components that are reused in some
but not all products, and the number of products in which
these components are reused increases with each subsequent
release from 2007 to 2010. The components in this cate-
gory are EMF, GEF, JDT, Mylyn, Webtools, XMLtools,
and PDE.
Low-reuse variation components. The third category is

the set of variation components with low reuse. This cate-
gory includes components that are reused across some but
not all products, and the number of products in which they
are reused does not increase with each release. These com-
ponents are reused in at most two products in the releases.
The components in this category are CDT, Datatools and
Java EE Tools (called JEEtools here).
For this study, we analyzed eleven components as well as

five subcomponents of the common component, Platform.
Table 1 lists the components studied.

Table 1: List of components

Category Component
Common Platform

High-reuse variation EMF
GEF
JDT
Mylyn

Webtools
XMLtools

PDE
Low-reuse variation CDT

Datatools
JEEtools

3. APPROACH
We observe the four most recent releases of the Eclipse

Product Line, from 2007 till 2010. The individual compo-
nents that form the products were available before 2007.
However, the integration of these components into products
began from 2007, leading us to select these four releases for
our investigation.

In this work we focus on the effect of evolution for each
component across these four releases on the post-release
failures of the components. Post-release failures are those
that occur after the software is operational. For a user-
community, the number of post-release failures encountered
strongly affects their opinion of the quality of the software.
We also analyze the amount of change in the source code of
these components across the four releases.

3.1 Failure Trends in an Evolving SPL

3.1.1 Data Sources and Severity Categories

The failure reports come from the public Eclipse Bugzilla
database [2]. Users can query the database through a web

3105

interface and retrieve the results in graphical or textual for-
mat. We collect data for five of the six [3] severity categories:
blocker, critical, major, normal and minor. We exclude the
trivial failure category as these do not contribute signifi-
cantly toward reliability.
We consider the failures in the top five severity categories

to be the total failures for a given component. We aggre-
gate the failures in the most serious three categories (blocker,
critical and major) into a single category called severe fail-
ures. These failures all have serious consequences for the
user, such as a major loss of functionality, crash, or block-
age without a workaround.
A total of 9,266 failures are identified for the 11 compo-

nents considered in this study across the four releases. Of
these, approximately 1,542 are severe failures. The number
of total failures and severe failures for each release is shown
in Table 2.

Table 2: Number of total and severe failures

Year 2007 2008 2009 2010 Total
All Failures 2928 2781 2089 1468 9266

Severe Failures 496 497 303 246 1542

3.1.2 Data Collection, Integration and Analysis

For each of the components listed in Table 1, we query the
Eclipse Bugzilla database and retrieve the number of total
failures and the number of severe failures. In the Bugzilla
database, data can be retrieved for each component or for
each of the individual subcomponents of the component. We
first map the plugins to the components for each distribu-
tion of every product. We collect the post-release failure
data for only those subcomponents that have corresponding
plugins in the product distributions. This is to ensure that
we consider failures for only those subcomponents present in
the distribution and not for other subcomponents that may
not have been present during that particular release. The
numbers for these subcomponents are aggregated to calcu-
late the number of failures for each component. Although
this approach is more time consuming than directly finding
the numbers for the components from Bugzilla, it allows us
to get more accurate numbers for the components based on
the product distributions.
We analyze the collected data in two ways. First we cal-

culate the raw number of severe failures for each of the three
categories of components (common, high-reuse variation and
low-reuse variation). This is to investigate whether there are
interesting patterns such as decreasing or increasing trends
in the number of severe failures. The second way that we
look at the data is by the percentage of severe failures. To
detect, when a failure occurs, how often its effects are judged
to be severe and how this factor changes over time, we deter-
mine the percentage of the total failures that are severe. If
the percentage of severe failures increases or remains stable
over time, it may indicate that the impact of failure on users
is not necessarily decreasing, even if the number of severe
failures is decreasing.

3.2 Change Trends in an Evolving SPL

3.2.1 Data Sources and Type of Changes

In order to measure the amount of change to the source-
code, we mine the CVS release repository of Eclipse, which
is our source for change data. There are two ways in Eclipse
to readily observe software change. This study uses both

these types of change to try to characterize the SPL evo-
lution. The first kind of observable change is changes to
existing files. We measure change to existing files in terms
of modifications to existing code. Since the number of mod-
ifications is large, we calculate the number of Kchanges to
the source code in each release of a component. Kchanges is
the number of modifications to existing files for that compo-
nent, divided by 1000. The second kind of observable change
is change via new files. Since the number of new files is not
as large, we calculate the percentage of files that are new for
each release of each component.

3.2.2 Data Collection, Integration, and Analysis

We use the tool cvschangelogbuilder-2.5 [1] to query the
CVS repository. The plugins for each component are avail-
able in the different Eclipse product distributions/packages.
The plugins associated with these components are also an-
notated with the corresponding release numbers. Using this
information of plugin name and associated release number,
we query the CVS repository. The commit information also
is annotated with whether files are changed or added. Us-
ing this information, we retrieve the number of changes and
the number of additions made to the source-code per release
using textual pattern matching. We match patterns like
changed and added and find the number of times files are
changed and number of new files added. We aggregate the
number of changes for all plugins of a component to calculate
the number of additions and modifications for each compo-
nent. Since data is not available for all releases of some
components, we exclude these components (PDE, Mylyn,
EMF and Datatools) from the change analysis. However,
we collect data for majority of components in each of the
three categories and analyze them. Of the 11 components
examined in this study, data is available and retrieved for
7 components (Platform, JDT, GEF, Webtools, XMLtools,
CDT, and JEEtools).

4. RESEARCH QUESTIONS
To investigate whether the reliability of products (mea-

sured in terms of their components) in the Eclipse PL im-
proved with reuse, we studied the following research ques-
tions.

1. Failure trends

(a) Failure trends for common components

(i) Do the number of severe failures (blocker, criti-
cal and major) decrease with time as the com-
mon component is being reused across multiple
releases?

(ii) Does the percentage of severe failures decrease
with time as the common component is being
reused across multiple releases?

(b) Failure trends for high-reuse variation components

(i) Do the number of severe failures decrease with
time as the high-reuse variation components are
being reused across multiple releases?

(ii) Does the percentage of severe failures decrease
with time as the high-reuse variation components
are being reused across multiple releases?

4106

(c) Failure trends for low-reuse variation components

(i) Same as b(i) but for low-reuse variation compo-
nents.

(ii) Same as b(ii) but for low-reuse variation compo-
nents.

2. Change trends

(a) Does the percentage of new files and/or modifications
to the source code for the common components de-
crease across releases?

(b) Does the percentage of new files and/or modifications
to the source code for the variation components de-
crease across releases?

3. Failures/Change relationship

(a) Is there a decrease in the number of failures with re-
spect to changes (new file creation/code modifications)
for the common components across releases?

(b) Is there a decrease in the number of failures with re-
spect to changes (new file creation/code modifications)
for the variation components across releases?

5. OBSERVATIONS
There were several interesting observations from our study.

5.1 Failure Trends

5.1.1 Failure Trend for Common Components

These are the components that have been reused in all
products.

(i) Number of severe failures decreases over time, as ex-
pected. Fig. 2 shows the decreasing number of severe
failures for the five individual subcomponents of Plat-
form and for the aggregate Platform-combined which
is the sum of the failures for its fourteen subcompo-
nents. Note that the 2007 Release is labeled as 1, 2008
Release as 2 and so on.

(ii) Percentage of severe failures tends to stabilize and even
shows a gradual increase over time, contrary to our
expectations. As shown in Fig. 3, the percentage of
severe failures for Platform-combined tends to remain
in the range of 14.5% to 17%, rather than continuing
to drop.

In fact, for Platform-combined, the percentage of se-
vere failures increases over the last three releases. SWT,
UI, Resources and Platform-combined show an increase
in the percentage of severe failures from release 3 to
release 4. Of the remaining two subcomponents, Run-
time and Debug, Debug shows a decrease of approx-
imately 1% only from release 3 to 4. Only Runtime
subcomponent shows a significantly decreasing trend
over the last three releases. This shows that from re-
lease 3 to 4 the percentage of severe failures does not
exhibit a significant decrease for the common subcom-
ponents.

Figure 2: Number of severe failures in common com-
ponents

Figure 3: Percentage of severe failures in common
components

5.1.2 Failure Trend for High-reuse Variation Com-
ponents

These are the components which are reused increasingly
in multiple products across the four releases.

(i) Number of severe failures does not monotonically de-
crease over time and shows mixed behavior, contrary
to our expectations. Fig. 4 shows that this monotonic
decrease occurs for some components (JDT), but not
for others. For example, PDE, Mylyn and GEF show
an increase in the number of severe failures from re-
lease 1 to 2. EMF shows an increase in the fourth re-
lease. Other components show uneven behavior. For
example, Webtools and XMLtools show an increase in
severe failures from release 1 to 2, then a decrease from
release 2 to 3 and again an increase from release 3 to
4.

The data suggest that for variation components
with high reuse, the trend for number of severe failures
over time is highly mixed and dependent on the compo-
nent. While we would expect that highly reused varia-
tion components tend to behave like common compo-
nents, only a few of them do.

(ii) Percentage of severe failures also shows a mixed trend
contrary to our expectations. Fig. 5 shows that the val-
ues for percentage of severe failures also show similar
uneven trends. PDE and the last three releases of JDT
show trends similar to the common Platform-combined
component, with the percentage of severe failures tend-
ing to stabilize at 9.5% to 13%. However, the values

5107

for Webtools and XMLtools fluctuate in a large range
of 4% to 27% with alternating increases and decreases
in the percentage values. Six of the seven components
have a higher percentage of severe failures in release
4 than in release 3. Interestingly, although the num-
ber of severe failures for JDT steadily decrease from
release 2 to 4, the percentage of severe failures steadily
increases for these releases.

Figure 4: Number of severe failures in variation com-
ponents with high reuse

Figure 5: Percentage of severe failures in variation
components with high reuse

5.1.3 Failure Trend for Low-reuse Variation Compo-
nents

Variation components with low reuse display tendencies
similar to variation components with high reuse.

(i) Number of severe failures show mixed trends and do not
monotonically decrease. The low-reuse variation com-
ponents have a higher number of severe failures than
most of the high-reuse variation components, which
matches our expectations. However, we also observe
mixed trends. Fig. 6 shows an overall decrease in the
number of severe failures from release 1 to 4 for CDT.
The number of severe failures for JEEtools increases
from release 1 to 2, then decreases from release 2 to
3 and then remains stable from release 3 to 4. Data-
tools shows an alternate rise and drop in the number
of severe failures. The number of severe failures do
not monotonically decrease for all components; rather
there is a mixed behavior.

(ii) Percentage of severe failures shows mixed trends and
not a decreasing trend. For low-reuse variation compo-
nents, the percentage of severe failures fluctuates less

than for high-reuse variation components. Only CDT
shows a steady decrease in percentage values as seen
in Fig. 7. JEEtools shows an increase from release 1 to
2, then a decrease from 2 to 3 and the remains stable
from 3 to 4, whereas Datatools first decreases, then
increases and remains stable. Thus, the percentage
of severe failures shows mixed results similar to the
trends for number of severe failures.

Figure 6: Number of severe failures in variation com-
ponents with low reuse

Figure 7: Percentage of severe failures in variation
components with low reuse

5.2 Change Trends
Section 3 described two kinds of observable changes as

Eclipse evolved: creation of new files and modifications to
existing files. We first discuss trends related to new files
and the occurrence of failures in the next subsection, and
then trends related to modifications to existing files and the
occurrence of failures in the following subsection.

5.2.1 SPL Evolution With Respect to New Files

We investigate the amount of change in the common com-
ponents by calculating the percentage of new files for each
component in each release. Table 3 gives the percentage of
new files per release for each component we analyze. Cells
with“No-info” indicate that the data for that particular time
period were not available in the Eclipse repository. Cells
with “-” indicate that there were no new files added in that
time period. For the common components, the percentage of
new files gradually decreases across the four releases. This
is consistent with the SPL expectation that the common
components, since they contain features shared by all prod-
ucts, will be relatively stable. We also see that in the initial
release, the percentage of new files is very high.

6108

For the high-reuse variation components, the percentages
of new files are less than for the common components/ sub-
components. The percentages of the files that are new for
a given component tend to be stable across releases, rather
than showing a decreasing trend (as the common compo-
nents do).
For the low-reuse variation components, the percentages

of new files are comparable to the common components and
subcomponents. These percentages are also much higher
than for the high-reuse variation components. They show
an overall decreasing trend as per our expectations with the
last release of JEEtools being an exception.

5.2.2 SPL Modification of Existing Code

Modification to existing code is observed by calculating
the number of code changes normalized to the number of
files over the sequential releases of the components. There
is no overarching trend, except that a single component,
SWT, has a significantly larger modification rate over time
than any other component. For space reasons we do not in-
clude this table. The two smallest common components in
this study, in terms of number of files (Resource and Run-
time), have the lowest modification rate among the common
components. However, even the common components do not
show a decreasing modification rate across releases. To sum-
marize, existing as well as new files show significant change,
and even the common components were not reused intact,
but were modified on an ongoing basis.

Table 3: Percentage of new files for commonalities
and variabilities

Category Component
Percentage of new files

2007 2008 2009 2010

Common

Debug 14.87 4.32 4.26 3.16
UI 9.10 6.57 4.80 No-info

SWT 28.82 15.77 7.70 4.74
Resources 42.76 1.32 - 5.15
Runtime - - - -

High-reuse

JDT 2.28 6.43 1.91 1.03
Webtools 1.44 13.30 1.26 1.23
XMLtools 3.78 7.41 2.21 4.18

GEF 0.53 1.90 0.68 2.18

Low-reuse
CDT 22.97 12.05 3.53 3.51

JEEtools 29.92 9.44 2.13 7.31

Table 4: Failures/new-file for commonalities and vari-
abilities

Category Component
Failures/new-file

2007 2008 2009 2010

Common

Debug 0.09 0.21 0.15 0.10
UI 0.27 0.25 0.19 No-info

SWT 0.44 0.58 0.83 1.37
Resources 0.05 2.50 - 0.86
Runtime - - - -

High-reuse

JDT 1.95 0.17 0.40 0.43
Webtools 0.16 0.03 0.07 0.11
XMLtools 0.09 0.15 0.05 0.06

GEF 1.33 0.55 0.75 0.15

Low-reuse
CDT 0.05 0.07 0.25 0.17

JEEtools 0.03 0.11 0.24 0.06

5.3 Failure/Change Trends
One reason for increased failures might be large amounts

of new/changed code that introduced faults. To analyze
the failure/evolution relationship, for each component we
extracted the number of new files added in each release and

Table 5: Failures/Kchanges for commonalities and
variabilities

Category Component
Failures/Kchanges

2007 2008 2009 2010

Common

Debug 6.92 7.47 14.81 4.71
UI 18.02 14.79 12.72 No-info

SWT 26.64 6.90 7.83 10.86
Resources 44.44 50.51 34.88 35.82
Runtime 200.00 857.14 235.29 250.00

High-reuse

JDT 59.94 5.95 3.84 8.51
Webtools 4.47 2.31 3.95 3.24
XMLtools 3.02 17.29 2.65 5.91

GEF 90.91 39.74 51.72 1.62

Low-reuse
CDT 6.65 5.83 10.98 9.69

JEEtools 6.54 17.51 14.00 6.56

the number of times existing files were changed. Table 4
shows the number of severe failures per new file and Table
5 the number of severe failures per 1000 changes.

5.3.1 Failure/Evolution Relationship for New Files

Interestingly, the rise in the percentage of new files for
three of the four high-reuse variation components (as seen
in Table 3) is accompanied by an increase in the number of
severe failures (as seen in Fig. 4). For the second release,
Webtools, XMLtools and GEF show an increase in the per-
centage of new files and also a corresponding increase in the
number of severe failures from the first release. Similarly
in the fourth release, XMLtools shows an increase in the
percentage of new files and also an increase in the number
of severe failures. This may indicate a relationship between
the failures and the number of new files.

Table 4 shows a non-uniform increase or decrease in the
ratio of failures over new files. However, comparing the Fail-
ures/new file values of release 1 to release 4, there is one ob-
servation that distinguishes the common components from
the variation components. With the exception of the Debug
subcomponent, for the other two common subcomponents
for which we have valid data (SWT and Resources), release
1 has a lower Failures/new-file value than release 4, with the
difference being more than 0.8. This means that the addi-
tion of new files in later releases of the evolution led to more
failures. For the high-reuse variation components, however,
we observe that the values in release 1 are always higher
than in release 4, which may mean that the addition of new
files in later stages did not lead to as many failures as in
the early stages. Low-reuse variation components also show
trends similar to the common subcomponents.

5.3.2 Failure/Modification Relationship for Existing
Files

As a reminder, Kchanges is the number of modifications
to existing files divided by 1000. Table 5 shows that most
components do not have a steadily decreasing rate for Fail-
ures/Kchanges. Even for common components, the Fail-
ures/Kchanges decreases over releases for only one of the
five subcomponents (UI). For Debug, Failures/Kchanges in-
creases in the first three releases, and for SWT it increases
from release 2 to 4. Resources and Runtime first show an in-
crease, then a decrease and then tend to remain stable. The
high-reuse and low-reuse variation components show simi-
larly mixed trends in the Failures/Kchanges. With respect
to changes, failures fluctuate a great deal with no distin-
guishing upward or downward trend.

7109

6. DISCUSSION OF THE RESULTS
The highlights of the empirical observations about post-

deployment failures and stability of changes in the open-
source, evolving product line Eclipse are summarized as fol-
lows:

1. Components/subcomponents implementing common-
ality reused in every product exhibit fewer serious post-
deployment failures across releases.

2. Variable components, both heavily and lightly reused,
do not show a monotonically decreasing trend for post-
deployment failures across releases. No obvious trend
is observed even when failures are normalized for the
number of changes made to existing files or for the
number of new files.

3. Although the number of failures in some variation com-
ponents decreases as the product line matures, the per-
centage of severe failures in those components holds
steady or even increases.

4. The percentages of new files in common components
show a decreasing trend as the product line evolves
through releases. The values of these percentages are
roughly comparable to lightly reused variation com-
ponents, but higher than for heavily reused variation
components.

Briefly, as expected, common components experience fewer
severe post-deployment failures and less change as the prod-
uct line matures through releases. Conversely, contrary to
typical expectations, variable components, even if reused in
multiple products, do not show a decreasing pattern either
in post-deployment failures or in the changes made/new files
added across subsequent releases. These findings clearly in-
dicate that the improvement of post-deployment quality and
the stability of source code do not depend solely on how of-
ten components are reused.
None of the Eclipse components considered in our study

was reused intact(“as-is”). “As-is” reuse without change to
existing components might have led to more straightforward
conclusions about the benefits of reuse in software product
lines. The extent of enhancements/new features added with
each release is one of the factors that may help explain the
mixed results for the variation components and that may de-
termine the benefit of reuse for software product lines such
as Eclipse that undergo rapid evolution. This finding of
on-going change in reused elements merits further investi-
gation that should take into account the amount of change
measured at a finer granularity (e.g., blocks or lines of source
code), and possibly include metrics such as the size and com-
plexity of the components.
The mixed results of this study also suggest that there

may be other factors associated with these reuse compo-
nents, such as the amount of pre-deployment testing and
the extent of field usage, that are not accounted for in this
analysis. Unfortunately, as pointed out in [10], this informa-
tion is typically unavailable to allow more in-depth study in
this direction.

7. THREATS TO VALIDITY
This section discusses the internal and external validity of

the study.

A threat to the internal validity of the study is that we an-
alyzed only one common component, namely Platform. To
moderate this we investigated five subcomponents of Plat-
form. Platform is a large component, and each of these
subcomponents is comparable in size to other components
in our study. Each of these Platform subcomponents pro-
vides a specific common functionality. Also, each of these
subcomponents has a large number of severe failures.

Another threat to internal validity is the limited number
of releases in the study. While analyzing more releases might
give additional insight into the trends, the 2007-2010 releases
provide a representative picture of the current product-line
situation. We decided not to include the minor quarterly re-
leases into our analysis because there were fewer users down-
loading them and because the entries in the bug database
for these minor releases were missing data for several compo-
nents. Some of the minor releases reported higher numbers
of failures while others did not report any. We plan to ob-
serve future releases as they come and incorporate the new
data for analysis.

A third threat to the internal validity is that the number
and severity of failures may be affected by the expertise of
the programmers who worked on the components. To alle-
viate this, we have normalized the failures with respect to
the number of changes and additions to source code files,
rather than normalizing it with the lines of code for each
component. This is in accordance with Mockus, Fielding
and Herbsleb who identify the programmer’s lack of exper-
tise, leading to unnecessarily lengthy code, as one of the
reasons for seemingly lower failure density [18]. In addition,
because each component in Eclipse is typically developed by
multiple programmers, this threat may be alleviated.

An external validity threat to this study is the extent to
which these conclusions can be generalized to other product
lines. Eclipse is a large product line with many developers
in an open-source, geographically distributed effort. This
means that the development of Eclipse product line is prob-
ably more varied in terms of the people involved and the
development techniques used than in commercial product
lines. The effect of the large number of contributors (e.g.,
the Platform component lists more than 100 developers) re-
mains to be studied. Chastek, McGregor and Northrop con-
sider the open-source development to be largely beneficial
in terms of quality [9]. We hope to study other open-source
SPLs and currently are studying a commercial SPL to learn
more about reuse, change and reliability in SPLs.

8. RELATED WORK
There have been many studies observing the failure trends

or profiles for commercial as well as open source systems.
Work to date has been done to identify causes of failures,
distribution of different types of failures, classification of
the consequences of failures, comparison of the failure den-
sity of open-source systems to commercial systems, and de-
fect/failure prediction for individual systems. However, stud-
ies investigating the effects of software product line engi-
neering and their benefits by mining the failure databases
are rare.

The work most closely related to ours is that of Mo-
hagheghi and Conradi [19], [20], who reported on a system
developed using a product family approach. They compared
the fault density and the stability (amount of change) of

8110

the reused and non-reused components. They observed that
reused components have lower fault density and less modi-
fied code as compared to non-reused components. Our work
is similar to theirs in [19] in that both consider the effect of
reuse on the quality of product lines, but we focus on post-
deployment failures, rather than fault densities, since fail-
ures are experienced by end users and affect reliability more
directly. Further, we consider the effects of code change
specifically on the severe failures. Eclipse also involves com-
ponents reused across more products than in [19].
For Eclipse, Zimmermann, Premraj and Zeller [28] per-

formed defect prediction for different releases by using the
data from the Bugzilla database. Like us, they used the
Eclipse data, but their purpose was primarily to predict,
based on static attributes, the defects in the next release.
Mockus, Fielding and Herbsleb [18] investigate the effec-
tiveness of open-source software development methods on
Apache in terms of defect density, developer participation
and other factors. They showed that for some measures of
defects and changes, open-source systems appear to perform
better while for other measures, the commercial systems per-
form better. In our study we use one of the measures they
recommend.
Fenton and Ohlsson [10] analyzed the faults and failures in

a commercial system and tested several hypotheses related
to failure profiles. Their results related the distribution of
faults to failures and the predictive accuracy of some widely
used metrics. They found that pre-release faults are an or-
der of magnitude greater than the operational failures in the
first twelve months. Lutz and Mikulski [15] analyzed serious
failures/anomalies in safety-critical spacecraft during oper-
ations. Hamill and Goševa-Popstojanova [13] conducted a
study of two large systems to identify the distribution of
different types of software faults and whether they are lo-
calized or distributed across the system. They analyzed dif-
ferent categories of faults and their contribution to the total
number of faults in the system. Børretzen and Conradi [7]
performed a study of four business-critical systems to in-
vestigate their fault profiles. They classified the faults into
multiple categories and analyzed the distribution of different
types of faults.
Paulson, Succi and Eberlein [23] investigated the growth

pattern of open-source systems and compared them with
that for commercial systems. They found no significant dif-
ference between the two in terms of software growth, sim-
plicity and modularity of code. They found, however, that
in terms of defect fixes, open-source systems have more fre-
quent fixes to defects.
A comparative study of software reliability modeling for

open source software was performed recently by Rahmani,
Azadmanesh and Najjar [25]. They analyzed five open source
software systems, collected the failure reports for them and
compared the prediction capability of three reliability mod-
els on this data. One of their results was that the failure
patterns for open-source softwares follow a Weibull distri-
bution.
There has been a significant amount of work in the area

of defect prediction for both commercial and open-source
software. Studies reported in [28], [21], [22], [27], [12] have
used bug reports and bug repositories such as Bugzilla for
predicting defects and failures. Jiang, Menzies, Cukic and
others [14], [17] have used machine learning algorithms to
perform defect prediction.

Catal and Diri [8] recently found that 60% of the 74 papers
they reviewed used non-public (private or commercial) data
sets, making it difficult to reproduce the results. Only 31%
of the papers used public datasets, and the rest were either
partial or their source was unknown. Their findings confirm
the need for public datasets such as those offered in the
Eclipse repository.

9. CONCLUSION
The work reported here considers Eclipse as an evolving

product line and distinguishes common components that
implement commonalities and are shared across all prod-
ucts from high-reuse components that implement variations
reused in many products, and from low-reuse components
that implement variations used in only one or two products.
We study the occurrence of severe failures, change to source
code, and addition of new files over time across the four most
recent Eclipse releases. The motivating question is whether
the data from the Eclipse bug, change, and source code re-
lease repositories support the typical expectation that as a
software product line matures, its reliability, as measured by
serious post-deployment failures, improves.

The quantitative results are mixed. In support of the
claim is that fewer serious failures occur in components/ sub-
components implementing commonality, and that these com-
ponents exhibit less change over time. Moreover, in common
components the percentage of new files shows a decreasing
trend as the product line evolves. However, the percentage
of new files for the common components is higher than for
variation components that are heavily reused. The occur-
rence of failures in variation components shows no uniform
pattern of decrease, even when normalized for the occurrence
of change. Components implementing variations, even when
reused in five or more products, continue to evolve fairly
rapidly. Although the number of failures in some variation
components decreases as the product line matures, the per-
centage of severe failures in those components holds steady
or even increases. Heavily reused variation components have
a very low percentage of new files, much lower than either
common components or lightly reused variation components.
Contrary to our expectations, the number of failures in vari-
ation components shows no uniform pattern of decrease over
time even if reused in multiple products.

The study reveals no simple answer to the question of
whether reliability improves as a product line matures, but
does suggest that on-going change may stay higher than
commonly supposed, contributing to failure rates that per-
sist in a lower-than-expected reliability range over time. The
results of the current study point up the need for more de-
tailed investigation of the relationship between failure and
change in both open-source and proprietary software prod-
uct lines.

10. ACKNOWLEDGMENTS
This work was supported by National Science Foundation

grants 0916275 and 0916284 with funds from the American
Recovery and Reinvestment Act of 2009.

REFERENCES
[1] Cvschangelogbuilder, tool for generating cvs log

reports. http://cvschangelogb.sourceforge.net/.

[2] Eclipse bugzilla wiki homepage.
https://bugs.eclipse.org/bugs/.

9111

[3] Eclipse bugzilla wiki homepage.
http://wiki.eclipse.org/Eclipse/Bug_Tracking.

[4] Software engineering institute, software product lines.
http://www.sei.cmu.edu/productlines/.

[5] Software product line hall of fame.
http://www.splc.net/fame.html.

[6] A. Avizienis, J. claude Laprie, and B. Randell.
Fundamental concepts of dependability, 2001.

[7] J. A. Børretzen and R. Conradi. Results and
experiences from an empirical study of fault reports in
industrial projects. In PROFES 2006. LNCS, pages
389–394. Springer, 2006.

[8] C. Catal and B. Diri. A systematic review of software
fault prediction studies. Expert Systems with
Applications, 36(4):7346–7354, 2009.

[9] G. Chastek, J. McGregor, and L. Northrop.
Observations from viewing eclipse as a product line. In
Proceedings on the Third International Workshop on
Open Source Software and Product Lines, pages 1–6,
2007.

[10] N. E. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system. IEEE
Trans. on Software Engineering, 26:797–814, 2000.

[11] H. Gomaa. Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 2004.

[12] P. J. Guo, T. Zimmermann, N. Nagappan, and
B. Murphy. Characterizing and predicting which bugs
get fixed: an empirical study of Microsoft Windows. In
Proc. of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1,
ICSE’10, pages 495–504, New York, NY, USA, 2010.
ACM.

[13] M. Hamill and K. Goševa-Popstojanova. Common
trends in software fault and failure data. IEEE Trans.
Softw. Eng., 35:484–496, July 2009.

[14] Y. Jiang, B. Cukic, and T. Menzies. Can data
transformation help in the detection of fault-prone
modules? In Proc. of the 2008 workshop on Defects in
large software systems, DEFECTS ’08, pages 16–20,
New York, NY, USA, 2008. ACM.

[15] R. R. Lutz and I. C. Mikulski. Empirical analysis of
safety-critical anomalies during operations. IEEE
Transactions on Software Engineering, 30:172–180,
2004.

[16] R. R. Lutz, D. M. Weiss, S. Krishnan, and J. Yang.
Software product line engineering for long-lived,
sustainable systems. In J. Bosch and J. Lee, editors,
SPLC, volume 6287 of Lecture Notes in Computer
Science, pages 430–434. Springer, 2010.

[17] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang,
and A. Bener. Defect prediction from static code
features: current results, limitations, new approaches.
Automated Software Engg., 17:375–407, December
2010.

[18] A. Mockus, R. T. Fielding, and J. Herbsleb. A case
study of open source software development: the
apache server. In Proceedings of the 22nd
International Conference on Software Engineering
(ICSE 2000), pages 263–272. ACM Press, 2000.

[19] P. Mohagheghi and R. Conradi. An empirical
investigation of software reuse benefits in a large
telecom product. ACM Transactions on Software
Engineering and Methodology, 17:13:1–13:31, June
2008.

[20] P. Mohagheghi, R. Conradi, O. M. Killi, and
H. Schwarz. An empirical study of software reuse vs.
defect-density and stability. In Proceedings of the 26th
International Conference on Software Engineering,
ICSE ’04, pages 282–292, Washington, DC, USA,
2004. IEEE Computer Society.

[21] N. Nagappan, T. Ball, and A. Zeller. Mining metrics
to predict component failures. In Proceedings of the
28th international conference on Software engineering,
ICSE ’06, pages 452–461, New York, NY, USA, 2006.

[22] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig,
and B. Murphy. Change bursts as defect predictors. In
ISSRE, pages 309–318, 2010.

[23] J. W. Paulson, G. Succi, and A. Eberlein. An
empirical study of open-source and closed-source
software products. IEEE Transactions on Software
Engineering, 30:246–256, 2004.

[24] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software
Product Line Engineering: Foundations, Principles
and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[25] C. Rahmani, A. Azadmanesh, and L. Najjar. A
comparative analysis of open source software
reliability. Journal of Software, 5:1384–1394,
December 2010.

[26] D. M. Weiss and C. T. R. Lai. Software product-line
engineering: a family-based software development
process. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999.

[27] T. Zimmermann, N. Nagappan, and A. Zeller.
Predicting Bugs from History, chapter Predicting Bugs
from History, pages 69–88. Springer, February 2008.

[28] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for eclipse. In Proceedings of the
Third International Workshop on Predictor Models in
Software Engineering, May 2007.

10112

