
Sensitivity of Software Usage to Changes in the Operational Profile

Sunil Kamavaram and Katerina Goševa-Popstojanova
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506-6109
{sunil, katerina }@csee.wvu.edu

Abstract

In this paper we present a methodology for uncertainty
analysis of the software operational profile suitable for
large complex component–based applications and applica-
ble throughout the software life cycle. Within this method-
ology we develop a method for studying the sensitivity of
software usage to changes in the operational profile based
on perturbation theory. This method is then illustrated on
three case studies: software developed for the European
Space Agency, an e–commerce application, and real–time
control software. Results show that components with small
execution rates are the most sensitive to the changes in the
operational profile. This observation is very important due
to the fact that rarely executed components usually handle
critical functionalities such as exception handling or recov-
ery.

1 Introduction

Verification and validation of software products, as well
as the predictive quality of software reliability estimates are
affected by the ability to estimate the correct operational
profile. However, the estimation of a trustworthy opera-
tional profile is difficult because it requires anticipating the
field usage of the software and a priori knowledge about the
application and system environments. A typical example
would be a flight control system of a spacecraft in which
very critical software components are activated by physi-
cal events whose frequencies during the field usage are un-
known. Further, in process control applications various soft-
ware components are activated by complex sequences of
events whose frequencies can hardly be estimated a priori.
In other cases, a single operational profile is not sufficient to
describe the use of the product by different users. Because
the effort required to derive an operational profile for each
group of users is usually extremely high, the usual solution
is to adopt an approximate operational profile that repre-
sents a rough average of the operational profiles of different
users. In addition, software systems evolve because func-
tions are added or modified. As a consequence, the way in

which the software is used also evolves, and the operational
profile changes. This, of course, will invalidate any exist-
ing estimates of the operational profile. For these reasons,
uncertainty analysis of the operational profile and software
reliability estimates are of essential importance.

Several papers that use discrete Markov chains to de-
scribe software usage are relevant to our work. In [26]
Markov analysis of software specifications was presented
and entropy was used as a measure of uncertainty. In [25]
the impact of uncertainties in the operational profile on the
usage coverage was analyzed.

The most common method for uncertainty analysis in
software reliability is conducting sensitivity studies. In [3],
[20], [21] sensitivity of software reliability estimates to er-
rors in the operational profile has been investigated in the
context of black–box reliability growth models. In [4], [23]
architecture–based models have been used to study the sen-
sitivity of software reliability estimates. In these studies
the operational profile was assumed to be fixed (i.e., fixed
known values for transition probabilities) and the sensitiv-
ity of software reliability was studied with respect to the
reliability of each component. Sensitivity studies of soft-
ware reliability with respect to the transition probabilities
(i.e., operational profile) and component reliabilities were
presented in [7], [9], [27].

In addition to sensitivity studies, there have been sev-
eral attempts to quantify the variability of software relia-
bility. In [19] authors used black–box approach and de-
rived the mean and the variance of the failure probability
for a software system that, in its current version, has not
failed. The same problem was considered in [1] for the
software with partitioned input domain. However, in this
work it was recognized that there is uncertainty in the esti-
mations of the reliability for each partition, as well as uncer-
tainty in the probability of using each partition. In [24] the
mean and the variance of software failure probability for the
architecture–based model were estimated using Bayesian
approach and assuming Beta prior distributions for compo-
nent failure probabilities. In another related work [16] three
optimization models for software reliability allocation under
an uncertain operational profile were formulated and solved.

From the above it is obvious that uncertainty analysis

was not used systematically and extensively in the area of
software reliability. Recently, we have developed a method-
ology for uncertainty analysis of the operational profile and
software reliability [10]. Our methodology is suitable for
large complex component–based applications and applica-
ble through the software life cycle. Within this methodology
we have considered several methods for uncertainty analy-
sis. In [15] we have used entropy for uncertainty analysis.
Entropy is a well know concept from information theory that
allows us to quantify the uncertainty of the operational pro-
file, uncertainty of the overall system reliability, and compo-
nent uncertainties. Although the obtained results are useful
for verification and validation of component–based systems,
the method based on entropy does not provide an estimate
of software reliability. In [10] we have used method of mo-
ments and Monte Carlo simulation to quantify the uncer-
tainty of software reliability estimates. We have argued that
the uncertainty analysis provides richer measures of soft-
ware reliability than the traditional point estimate. These
measures can be used for guiding allocation of testing ef-
forts, making quantitative claims about the quality of the
software subjected to different operational usages, and for
reliability certification of component–based software sys-
tems.

In this paper, we present a new method for uncertainty
analysis of the software operational profile based on pertur-
bation theory. Perturbation theory, as well as entropy, does
not provide estimates of the software reliability measures.
Thus, we can say the perturbation theory and entropy as
methods for studying uncertainty are complementary with
the method of moments and Monte Carlo simulation.

The rest of the paper is organized as follows. In sec-
tion 2 we briefly describe our methodology for uncertainty
analysis. Section 3 presents an overview of the perturbation
theory and its use for sensitivity analysis of software usage.
In section 4 the perturbation theory as a method for uncer-
tainty analysis is applied and validated on three case studies:
the software developed for the European Space Agency, an
e–commerce application, and a real–time control software.
Finally, the concluding remarks are given in section 5.

2 Methodology for uncertainty analysis of the
operational profile

Our methodology for uncertainty analysis of the soft-
ware operational profile is presented in Figure 1. We use the
architecture–based approach to describe the software oper-
ational profile. Software architecture shows the behavior of
the software with respect to the manner in which different
components interact. Dynamic information in software ar-
chitecture represented by the probabilities of control trans-
fer clearly depends on the software usage, that is, the op-
erational profile. We use state–based approach to build the
model of the software operational profile [8], [9]; the states
represent active components and arcs represent the trans-

fer of control. Here, we assume that the transfer of con-
trol between the components has a Markov property. There-
fore, the operational profile is modelled with a discrete time
Markov chain (DTMC) with a transition probability matrix
P = [pij], wherepij = Pr{program transfers the control
from component i to component j}.

We construct the Markov chain in two phases. The
structural phase involves the establishment of the static
software architecture. The static software architecture can
be build using different abstraction levels as defined by the
specification, or obtained using parser–based or lexically
based tools. Thedynamical statistical phaseinvolves the
estimation of the relative frequencies of component interac-
tions, that is, transition probabilities which are clearly de-
pendent on the operational profile. During the early phases
of the software development, dynamic software behavior
can be captured using UML use cases and sequence dia-
grams. During the integration phase profiles or test cover-
age tools can be used to obtain data necessary to describe
dynamic behavior. Next, we briefly describe two different
approaches that we use to build a DTMC that represents the
software operational profile.

• Intended Approach is used in early phases of soft-
ware development. We base our estimates on histori-
cal data from similar products or on high level infor-
mation about software architecture and usage obtained
from specification and design documents. Since UML
is rapidly becoming a standard for software develop-
ment, in intended approach we are looking into the
UML annotations such as use cases and sequence di-
agrams [2]. Use case diagrams provide graphical de-
scription of how external objects interact with the sys-
tem, while sequence diagrams show components and
messages that are exchanged between them.

• Informed Approach is used during the late phases of
the software development when testing or field data be-
come available. Thus, component traces obtained us-
ing profilers [28] and test coverage tools [29] can be
used to obtain a set of execution paths and establish
the frequency count of the transition arcs.

The discrete time Markov chain proves to be a good
model for software architectures and operational profiles for
several reasons. From the software engineering point of
view, the model can be build both in early and late phases of
the software life cycle. Once the model has been built, any
number of statistically typical test cases can be generated
from the model [26]. From the analytical point of view, this
is a tractable stochastic process with well developed theory,
analytical results, and computational algorithms. Further-
more, the model provides basis for building the several dif-
ferent architecture-based software reliability models [8].

Figure 1. Methodology for uncertainty analysis of the operational profile

3 Overview of perturbation theory

Perturbation theory provides mathematical means to
study how the stationary distribution of an irreducible dis-
crete time Markov chain changes due to the variation of
transition probabilities. As described in section 2 we de-
scribe the operational profile of a software as a discrete
time Markov chain with transition probability matrixP .
The stationary distribution vector ofP is a positive vector
πT = (π1, π2, . . . , πn) that is obtained by solving the equa-
tion

πT P = πT ,

n∑

j=1

πj = 1. (1)

Sinceπi can be interpreted as the expected execution rate
of a componenti in the long run, it represents a measure
of component usage which can be used to identify critical
components.

SupposeP is perturbed by a matrixE. Then, the re-
sultant matrixP̄ = P − E is also a transition probability
matrix of an irreducible discrete time Markov chain. Sen-
sitivity results concerning the absolute perturbations have
been phrased in terms of the perturb matrixE = P − P̄ as

‖πT − π̄T ‖ ≤ k‖E‖∞ (2)

where‖E‖∞ is the norm of the perturb matrix andk is a
condition number used as measure of sensitivity. In [5], [6],
[14] eight different condition numbersk1, . . . , k8, which
give different bounds are discussed. Most of the condition
numbers are expressed in terms of either the fundamental
matrix Z ≡ (A + eπT)−1 [18] of the underlying Markov

chain or the group inverse ofA ≡ I − P [22]. Several con-
dition numbers provide good numerical measure of the max-
imal extent to which the magnitude of the perturbation can
be amplified. However, some numbers suffer from certain
shortcomings and are not satisfying because of the follow-
ing two reasons. First, irreducible chains exist for which
the bounds are not tight, that is, the condition numberk
may seriously overestimate the sensitivity to perturbations.
Second, the bounds generally provide very little information
about the relative error in individual stationary probabilities.

The condition numberk8, expressed in terms of the
mean first passage times in the Markov chain, provides the
tightest bound on the stationary probability vector. More-
over, viewing sensitivity in terms of mean passage times
can sometimes help practitioners decide whether or not to
expect sensitivity by merely observing the structure of the
chain without computing or estimating the condition num-
bers. Therefore, in this paper we use the condition number
k8 expressed in terms of mean passage time to estimate the
bounds on stationary probabilities.

Let P andP̄ denote two transition probability matrices
of a software which are represented by two irreduciblen
state Markov chains with respective stationary probability
vectorsπT andπ̄T . Let Mij denote the mean first passage
time from statei to statej andMjj denote the mean re-
turn time for the statej in the unperturbed chain. A stan-
dard procedure for computing the mean first passage times
of a finite irreducible discrete time Markov chains was de-
veloped in [11], [12], [13]. The matrixM (i.e., mean first
passage time matrix) is computed using Meyer’s group in-
verse matrix [18] given by

A# ≡ Z −Π (3)

whereZ ≡ [I − P + Π]−1 andΠ = eπT .
The diagonal elementsMjj of the matrixM specify the

mean return time of the states and non-diagonal elements
Mij specify the mean first passage time from statei to state
j. The matrixM is estimated using the equation [12]

M = [Mij] = [I −A# + LA#
d]D (4)

whereI is the identity matrix,A# is Meyer’s group inverse
matrix given by equation (3),L = ee′ = [1] (e is a column
vector with all elements equal to 1,e′ is a row vector with
all elements equal to 1),A#

d is Meyer’s group inverse matrix
with non-diagonal elements being zero, andD = (Πd)−1.

Using the condition number expressed in terms of the
mean first passage times, the absolute change in thej-th
stationary probability [13] is estimated as

|πj − π̄j | ≤ maxi 6=j Mij − 1
2 ·Mjj

||E||∞ (5)

which leads the to relative change inπj given by

|πj − π̄j |
πj

≤ maxi 6=j Mij − 1
2

||E||∞. (6)

4 Application of perturbation analysis on
case studies

In this section we illustrate the use of perturbation the-
ory as a method for uncertainty analysis of the operational
profile on three different case studies.

4.1 European Space Agency software

The application from the European Space Agency (ESA)
[9] provides language–oriented user interface, which allows
the user to explain the configuration of an array of antennas.
The application purpose is to prepare a data file in accor-
dance with a predefined format and characteristics from the
user, given the array antenna configuration described using
the Array Definition Language.

The program was developed in C language and consists
of almost 10,000 lines of code. It has been extensively used
after the last fault removal without failures. This gold ver-
sion was used as an oracle in the experiment. A set of test
cases was generated randomly accordingly to the known
operational profile determined by interviewing the users of
the program. Component traces obtained during the testing
were used for building the software operational profile and
estimating transition probabilities. It follows that for the
ESA case study we use informed approach.

DTMC that represents the software operational profile is
shown in Figure 2. Components 1, 2 and 3 correspond to the
Parser, the Computational and the Formatting subsystems
respectively; state E represents the completion of execution.

The choice for decomposition was made in order to reach
a tradeoff between the number of components, their size
and the ability to collect data needed for use in the model.
Transition probabilities were estimated usingpij = nij

ni
,

wherenij is the number of times control was transferred
form componenti to componentj, andni =

∑
j nij .

p 12

 p

 1-p

23

2

1

3

E

1

 23

1-p
 12

Figure 2. Operational profile of the ESA case
study

The stability of the above Markov chain is studied by
perturbing the transition probability matrix (i.e., operational
profile). We consider the transition probability matrix of
operational profile A denoted byPA and the perturb matrix
E which leads to the transition probability matrixPB =
PA − E of the operational profile B.

PA =




0 0.5933 0 0.4067
0 0 0.7704 0.2296
0 0 0 1
1 0 0 0


 (7)

E =




0 0.1431 0 −0.1431
0 0 −0.1018 0.1018
0 0 0 0
0 0 0 0


 (8)

Using the equations (5) and (6) we estimate the absolute
and relative changes in components execution rates. As it
can be seen from Table 1, the operational profile A is abso-
lutely stable since each stationary probability is insensitive
in the absolute sense to perturbations inPA.

Next, we consider a hypothetical example based on the
European Space Agency application which has a loop back
from component 2 to 1 [9]. The operational profile of the
hypothetical example is shown in Figure 3. Note that for the
high values of the transition probabilityp21 the components
1 and 2 will be executed within a loop many times.

States 1 2 3 E

Execution rate 0.3278 0.1945 0.1498 0.3278
Absolute change 0.0962 0.1153 0.1217 0.0962
Relative change 0.2934 0.5926 0.8119 0.2934

Table 1. Perturbation analysis of the ESA case
study

p 12

 p23

2

1

3

E

 12

1

p 21

 1-p -p

1-p

 21 23

Figure 3. Operational profile of the hypotheti-
cal example

Here, we assume that the transition probability matrix
PC of the hypothetical example is perturbed by matrix E
which results into a new operational profilePD = PC −E.

PC =




0 0.8 0 0.2
0.25 0 0.25 0.5
0 0 0 1
1 0 0 0


 (9)

E =




0 0 0 0
0.5 0 0 −0.5
0 0 0 0
0 0 0 0


 (10)

From the results given in Table 2 it can be seen that the
operational profileC is not stable in relative sense to the
perturbations. In particular, the component 3 which has the
smallest execution rate is the most sensitive in relative sense
to the changes made to the transition probability matrixPC .

4.2 E–commerce application

In this section we analyze the sensitivity of a software
usage in a typical e–commerce application adopted from
[17]. In the e–commerce applications users interact with
the Web sites through sessions that consist of consecutive
request to execute e–business functions (search, add to cart,

States 1 2 3 E

Execution rate 0.3571 0.2857 0.0714 0.2857
Absolute change 0.3214 0.3571 0.4643 0.3571
Relative change 0.9 1.25 6.5 1.25

Table 2. Perturbation analysis of the hypothet-
ical example

pay and so on) during a single visit to the site. In [17], the
user’s navigation pattern within a session is captured by so
called Customer Behavior Model Graph (CBMG). The Cus-
tomer Behavior Model Graph describes how the users navi-
gate through the site, which functions they use, and the fre-
quency of transitions from one function to another function.
DTMC that describes the typical e–commerce application is
shown in Figure 4.

Figure 4. Operational profile of the e–
commerce case study

As discussed in section 2, building the DTMC includes
first construction of the structure of the application, and then
assigning transition probabilities. For Web applications,
there is usually a close resemblance between navigation pat-
terns and the underling Web design and code because Web
sites are designed to support directly such navigations. Con-
sequently, the basic structure can be easily identified from
product specifications, related design documents, and other
information sources, which corresponds to our intended ap-
proach. Also one might use the informed approach, such
as for example to extract the operational profile from the
HTML code or from the Web access logs.

Due to a large number of diverse users, a single opera-
tional profile is not sufficient to describe the use of the Web
site by different users. Thus, in [17] two operational profiles
were given showing the usage of the same e–commerce site

by two different types of users: an occasional buyer and a
heavy buyer. Here, we consider the operational profile P
typical for the occasional buyer and the perturb matrix E
that leads to operational profile typical for the heavy buyer.

P =




0 0.5 0.5 0 0 0 0
0 0.4 0.35 0 0.2 0 0.05
0 0.35 0.4 0 0.2 0 0.05
0 0.2 0.2 0.05 0.2 0.3 0.05
0 0.425 0.425 0.05 0 0 0.1
0 0 0 0 0 0 1
1 0 0 0 0 0 0




(11)

E =




0 0 0 0 0 0 0
0 −0.05 −0.005 0 0.2 0 0.1
0 −0.05 −0.005 0 0.2 0 0.1
0 0.025 0.025 0.05 −0.1 0 0
0 −0.1 −0.1 0.25 0 0 −0.05
0 0 0 0 0 0 0
0 0 0 0 0 0 0




(12)
As shown earlier, components with lower execution

rates are more sensitive relatively to the changes in the op-
erational profile. Thus, it can be observed from the re-
sults shown in Table 3 that the components ‘Add’ and ‘Pay’
which are visited rarely in the operational profile of an occa-
sional buyer exhibit excessive relative change in the execu-
tion rate due to the changes in the operational profile. In par-
ticular, the relative change of the expected execution rate of
the component ‘Add’ is one order of magnitude higher than
‘Select’ and two orders of magnitude higher than ‘Browse’
and ‘Search’. Further, the relative change of the expected
execution rate of component ‘Pay’ is one order of magni-
tude higher than the relative change of the expected execu-
tion rate of ‘Add’ component.

4.3 Real–time control software

The real-time control software presented in this sec-
tion is a real world application whose operational profile
is shown in Figure 5. Due to confidentiality issues, details
about this application are not provided. The operational pro-
file for this case study was built using the intended approach.
For this application we had available the UML use cases
and sequence diagrams. We built the DTMC using UML
sequence diagram that presents software components used
for the given scenario and the messages that are exchanged
between these components. The expression used to estimate
the transition probability from componenti to componentj
is given bypij = nij

ni
, wherenij is the number of times

messages are transmitted from componenti to componentj
andni is the total number of messages from componenti to
all other components that are present in the scenario.

The sensitivity of the operational profile of the real–time
control software given in Figure 5 is analyzed by perturbing
the transition probability matrixP with perturb matrixE.

Figure 5. Operational profile of the real–time
control software

The resulting matrixP̄ represents a different usage of the
real–time control application.

P =

S
C1
C2
C3
C4
C5
C6
E




0 0.5 0.5 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 1/9 1/9 0 1/9 2/9 4/9 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1




(13)

E =

S
C1
C2
C3
C4
C5
C6
E




0 −0.3 0.3 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1/9 1/9 0 1/9 0 −1/3 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1




(14)
Table 4 shows the results of the perturbation analysis

of the real–time control software obtained using equations
(5) and (6). We observe from the table that the execution
rates of components C1, C2, and C3 have the same absolute
change. However, the execution rate of the component C1
and C2 are more sensitive in relative sense to the perturba-
tions than component C3. Further, components C4 and C5
which are visited rarely are the most sensitive to changes in
the relative sense.

States Execution rate Absolute change Relative change

Entry 0.0542 0.2365 4.3615
Browse 0.3666 0.3149 0.8589
Search 0.3666 0.3149 0.8589
Add 0.0078 0.2652 34
Select 0.1428 0.2779 1.875
Pay 0.0023 0.2494 106.58
Exit 0.0542 0.2365 4.3615

Table 3. Perturbation analysis of the e–commerce case study

States Execution rate Absolute change Relative change

S 0.1333 0.2889 2.1667
C1 0.1 0.3 3
C2 0.1 0.3 3
C3 0.3 0.3 1
C4 0.0333 0.3556 10.667
C5 0.0667 0.3778 5.6667
C6 0.1333 0.2889 2.1667
E 0.1333 0.2889 2.1667

Table 4. Perturbation analysis of the real–time control software

5 Conclusion

In this paper we have presented a method for uncertainty
analysis based on perturbation theory that can be used to
study how the change in the operational profile affects the
expected execution rates of software components. We have
applied this method on three different case studies: Euro-
pean Space Agency software, an e–commerce application,
and a real–time control software. The results show that the
stability of operational profile can be studied by looking at
the small stationary probabilities. Thus, if a small station-
ary probability is relative insensitive, then the operational
profile is stable in both absolute and relative sense. Further,
components with small execution rates (i.e., small stationary
probabilities) are the most sensitive to changes in the oper-
ational profile. This observation is very important for soft-
ware verification and validation due to the fact that rarely
executed components usually handle critical functionalities
such as for example exception handling or recovery.

Acknowledgements

This work is funded in part by grant from the NASA
Office of Safety and Mission Assurance (OSMA) Software
Assurance Research Program (SARP) managed through the
NASA Independent Verification and Validation (IV&V) Fa-
cility, Fairmont, West Virginia and by grant from the NASA
West Virginia Space Grant Consortium, Research Initiation
Grant Program.

References

[1] T. Adams, “Total Variance Approach to Software Re-
liability Estimation”, IEEE Trans. Software Engineer-
ing, Vol. 22, No.9, 1996, pp. 687-688.

[2] G. Booch, J. Runbaugh and I. Jacobson,The Unified
Modeling Language User Guide, Addison-Wesley,
1998.

[3] M. Chen, A. P. Mathur and V. J. Rego, “A Case
Study to Investigate Sensitivity of Reliability Esti-
mates to Errors in Operational Profile”,Proc. 5th In-
ternational Sysmposium on Software Reliability Engi-
neering, 1994, pp. 276-281.

[4] R. C. Cheung, “A User-Oriented Software Reliability
Model”, IEEE Trans. Software Engineering, Vol. 16,
No. 2, 1980, pp. 118-125.

[5] G. E. Cho and C. D. Meyer, “Markov Chain Sensitiv-
ity Measured by Mean First Passage Times”,Linear
Algebra Appl., 316, 2000, pp. 21-28.

[6] G. E. Cho and C. D. Meyer, “Comparison of Per-
turbation Bounds for the Stationary Distribution of
a Markov Chain”,Linear Algebra Appl., 335, 2001,
pp.137-150.

[7] S. S. Gokhale and K. S. Trivedi, “Reliability Predic-
tion and Sensitivity Analysis Based on Software Ar-
chitecture”,Proc. 13th International Symposium Soft-
ware Reliability Engineering, 2002, pp. 64-75.

[8] K. Goševa–Popstojanova and K. S. Trivedi,
“Architecture-Based Approach to Reliability Assess-
ment of Software System”,Performance Evaluation,
Vol. 45, N0. 2-3, 2001, pp. 179-204.

[9] K. Goševa–Popstojanova, A. P. Mathur, and K. S.
Trivedi, “Comparison of Architecture-Based Software
Reliability Models”, Proc. 12th International Sym-
posium on Software Reliability Engineering (ISSRE
2001), 2001, Hong Kong, pp.22-31.

[10] K. Goševa–Popstojanova and S. Kamavaram, “Assess-
ing Uncertainty in Reliability of Component-Based
Software System”,Proc. 14th IEEE International
Symposium on Software Reliability (ISSRE 2003),
Denver, CO, Nov. 2003.

[11] J. J. Hunter, “A Survey of Generalized Inverses and
their Use in Stochastic Modeling”,Res. Lett. Inf. Math.
Sci., 1, 2000, pp. 25-36.

[12] J. J. Hunter, “Generalized Inverses, Stationary Dis-
tributions and Mean First Passage Times with Appli-
cations to Perturbed Markov Chains”,Res. Lett. Inf.
Math. Sci., 3, 2002, pp. 99-116.

[13] J. J. Hunter, “Stationary Distributions and Mean First
Passage Times of Perturbed Markov Chains”,Re-
search Letters in Information and Mathematical Sci-
ences, Institute of Information and Mathematical Sci-
ences, Massey University, Auckland, New Zealand, 3,
2002 pp. 85-98.

[14] I. C. F. Ipsen and C. D. Meyer, “Uniform Stability of
Markov Chains”,SIAM J. Matrix Anal. Appl., Vol. 15,
1994, pp. 1061-1074.

[15] S. Kamavaram and K. Goševa-Popstojanova, “Entropy
as a Measure of Uncertainty in Software Reliabil-
ity”, 13th Int’l Symp. Software Reliability Engineer-
ing, 2002, Student paper, pp. 209-210.

[16] Y-W Leung, “Software Reliability Allocation under an
Uncertain Operational Profile”,Journal of the Opera-
tional Research Society, Vol. 48, 1997, pp. 401-411.

[17] D. A. Menasce, “TCP-W A Banchmark for E-
Commerce”,IEEE Internet Computing, Vol.6, No.3,
May/June 2002, pp.83-87.

[18] C. D. Meyer, “ensitivity of the Stationary Distribution
of a Markov Chain”,SIAM J. Matrix Anal. Appl., Vol.
15, No. 3, July 1994, pp. 715-728.

[19] K. W. Miller, L. J. Morell, R. E. Noonan, S. K. Park,
D. M. Nikol, B. W. Murrill, and J. M. Voas, “Estimat-
ing the Probability of Failure when Testing Reveals no
Failures”,IEEE Trans. Software Engineering, Vol.18,
No.1, 1992, pp. 33- 43.

[20] J.D.Musa,“Sensitivity of Field Failure Intensity to Op-
erational Profile Errors”,Proc. 5th International Sysm-
posium on Software Reliability Engineering, 1994,
pp.334-337.

[21] A. Pasquini, A. N. Crespo and P. Matrella, “Sensitivity
of Reliability–Growth Models to Operational Profile
Errors vs. Testing Accuracy”,IEEE Trans. Reliability,
Vol. 45, No. 4, 1996, pp. 531-540.

[22] Paul J. Schweitzer, “Perturbation Theory and Finite
Markov Chains”,J. Appl. Prob.5, 1968, pp. 401-413.

[23] K. Siegrist, “Reliability of System with Markov Trans-
fer of Control”, IEEE Trans. Reliability, Vol. 14, No.
7, 1988, pp. 1409-1053.

[24] H. Singh, V. Cortellessa, B. Cukic, E. Guntel, and
V. Bharadwaj, “A Bayesian Approach to Reliability
Prediction and Assessment of Component Based Sys-
tems”,12th Int’l Symp. Software Reliability Engineer-
ing, 2001, pp. 12-21.

[25] A. Wesslen, P. Runeson and B. Regnell, “Assessing
the Sensitivity to Usage Profile Changes in Test Plan-
ning”, Proc. 11th International Symposium on Soft-
ware Reliability Engineering, 2000, pp. 317-326.

[26] J. A. Whittaker and J. H. Poore, “Markov Analysis of
Software Specifications”,ACM Trans. Software Engi-
neering and Methodology, Vol. 2, No. 1, 1993, pp. 93-
106.

[27] S. M. Yacoub, B. Cukic and H. H. Ammar, “Scenario-
Based Reliability Analysis of Component-Based Soft-
ware”, Proc. 10th Internaional Symposium on Soft-
ware Reliability Engineering, 1999, pp. 22-31.

[28] http://www.gnu.org/manual/gprof-2.9.1/htmlmono/
gprof.html

[29] http://xsuds.argreenhouse.com

