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Abstract

Snce the early 1970's a number of models have been
proposed for estimating software reliability. However, the
realism of many of the underlying assumptions and the ap-
plicability of these models continue to be questioned. Our
research work was motivated by the fact that although there
are practical situations in which the assumption of inde-
pendence among successi ve software failures could be eas-
ily violated, much of the published literature on software
reliability modeling does not seriously address this issue.
In this paper we present a modeling framework based on
Markov renewal processes which naturally introduces de-
pendence among successive software runs and enables the
phenomena of failure correlation to be precisely character-
ized. Thus, incorporating failure correlation into depend-
ability and performability predictions contributes toward
more realistic modeling of software systemsin operation.

1. Introduction

A numberof analyticalmodelshave beenproposedo
addresghe problem of quantifying the software reliabil-
ity. Most of themare focusedon estimatingsoftware re-
liability basednits failure history, eitherduringits dehug-
ging phaseor duringits validationphasg15], [5] [4], [12],
[18]. Thesemodelstreatthe softwareasblackbox, assum-
ing someparametrianodelof thetime betweerfailuresor
of the numberof failuresover a finite time interval. On
theotherhand,so calledwhite box modelsthataccountor
thesoftwarestructurg9] aremostlyrestrictedto theopera-
tional phaseof the softwarelife cycle.

One of the commonassumptionsnadeby most soft-
warereliability modelsis the assumptiorof independence
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amongsuccessie failures.In [13] it is emphasizedhatal-
thoughthereis an evidencethat failuresoccurin groups,
thatis, therearesomedependencieshe assumptiorof in-
dependencis madeto castthe modelsinto mathematically
tractableform andsimplify the estimationof modelparam-
eters. However, one of the reasons'why corventionalre-
liability theoryfails for software”, listedin [10], is thatthe
software runs are not always independent. The indepen-
denceof successie software runs can be affectedby op-
erationalconditionssuchasthe independencef input se-
guencethe extentto which internalstateof a softwarehas
beenaffected,andthe natureof operationsundertalen for
executionresumption[11]. For instancejn mary applica-
tions, suchas real-time control systemsthe sequenceof
input valuesto the software are correlatedin time dueto
physicalconstraints. For thesereasonsgiven a failure of
a softwarefor particularinput, thereis a greaterik elihood
of it failing for successie inputs. In applicationghatoper
ateon demandsimilar typesof demandsnadeon software
tendto occurcloseto eachotherwhich canresultin a suc-
cessiorof failures.

To summarize,although there may be dependencies
amongsuccessie software runs which canresultin fail-
ureclustering,only afew publishedoapersonsidetthisis-
sue.Thesencludethe empiricallydevelopedrourierseries
model[2] andthe Compound-Poissosoftware reliability
model[16]. Most of the existing modelsof fault-tolerant
softwarealsoassumeéndependencamongsuccessie runs.
The only exceptionsare the modelspresentedn [3] and
[17].

We have recentlyproposeda software reliability mod-
eling framawork thatis capableof incorporatingthe pos-
sible dependencamongsuccessie softwareruns,thatis,
theeffectof failureclustering.In [7] we have demonstrated
its usefor testingphaseandvalidationphase.The goal of
this paperis to extendour previouswork [8] by applingthe
modelto the operationaphasewhenthe software’s ability
to delivera properserviceis preseredandthereliability is
stable. The useof Markov renaval processeeadsto both
conceptuasimplificationin building themodelandcompu-



tationalsimplificationin deriving anumberof measurethat

guantifythe softwarebehaior, suchasreliability, availabil-

ity andperformability In addition,the proposedapproach
allows a greatflexibility in generalizingthe model; it can

easilybe extendedto cover severalkey areassuchasreal-

time softwareandfault-toleransoftware.

Thepapeiis organizedasfollows. Theconceptuamodel
is given in Section2. Section3 presentsour modeling
framewvork basedon Markov renaval processes.In Sec-
tion 4 we studysoftwarereliability. Next we derive two dif-
ferentperformabilitymeasuref Section5 andthe expres-
sionfor availability in Section6. The possibleextensions
andgeneralizationsf the presentednodelarediscussedh
Section?. Finally, theconcludingremarksaregivenin Sec-
tion 8.

2. Conceptual model

First considerin somedetail the conceptof software
runs. The operationof software canbe broken down into
aseriesof runs[12]. Eachrun performsmappingfrom aset
of input variablego a setof outputvariablesandconsumes
a certainamountof executiontime. Evenfor the software
thatoperatecontinuoushit is still possibleandmorecon-
venientto divide the operationinto runsby subdvision of
time associatedvith someuserorientedtasks[12]. Thein-
formation associatedvith software runs can generallybe
groupednto two cateyories:

e Input and Outcome. Thedescriptveinformationabout
eachspecificrun generallyspecifieghe input, the op-
erationalervironment,andthe outcomethat hasbeen
obtainedsucces®r failure).

e Timing. This includesspecifictime associatedvith
eachrun, suchasstarttime, normalterminationtime
for successfutuns,or failuretime for failedruns.

Sinceeachsoftwarerun hastwo possibleoutcomessuc-
cessandfailure,thestandardvay of lookingatthesequence
of softwarerunsis to considelit asa sequenc®f indepen-
dentBernoullitrials,whereeachtrial hasprobabilityof suc-
cessp andprobability of failureq = 1 — p. Thetwo dis-
tribution functions,binomialandgeometric,areconnected
with theindependenBernoullitrials:

e numberof runsthat have failed amongn successie
softwarerunshasthe binomial pmf

e numberof softwarerunsbetweenwo failureshasthe
geometriqomf.

Sincethenumberof softwarerunsn is largeandthefailure
probabilityg = 1 — p is small, the well known limiting
resultsfor the binomialandgeometrigomf areusuallyused
asbasicassumption softwarereliability models:

o numberof failuresin the limit hasthe Poissondistri-
bution

e time betweerfailuresin thelimit is exponentiallydis-
tributed.

The work presentedn this paperattemptsto extendthe
classicakoftwarereliability theoryin orderto considema se-
guenceof possiblydependensoftwareruns. The sequence
of successie software runs (successfubr failed) can be
viewed as a realizationof point eventsin time, thatis, as
a point process.Poissonprocessds the simplestpoint pro-
cess.It considersonly thefailure points,thatis, disregards
thesuccessfutunsbetweertwo failuresandignoresthein-
formation corveyed by them. In this paperwe view the
sequenceof dependensoftware runs, when the outcome
of eachrun dependsn the outcomeof the previous run,
asa sequenc®f dependenBernoullitrials. Thereforewe
needto considerbothfailed andsuccessfutuns. A corve-
nientway of specifyinga sequenc®f morethanoneclass
of pointsin continuougime is the Markov renaval process.

3. Modeling framework based on Markov
renewal processes

Considera processconstructedasfollows. First take a
k-statehomogeneoudiscretetime Markov chain(DTMC)
with transitionprobabilitymatrix P = [p;;]. Next construct
a processn continuoustime by makingthe time spentin
a transitionfrom state: to statej have distribution func-
tion F;;(t), suchthattimesaremutuallyindependentSuch
a processs a semiMarkov procesgSMP). The family of
stochastigrocessesisedin this paper called Markov re-
newal process(MRP), may be shawvn to be equialentto
thefamily of SMP[1]. Thus,the SMP recordsthe stateof
the processat eachtime point ¢, while the MRP is a point
(counting)processwhich recordsthe numberof timeseach
of the possiblestateshasbeenvisited up to time ¢. If one
regardsthe MRP asconsistingof k¥ dependenteneval pro-
cessesdVy(t), ..., Ng(t), whereN;(t) refersto the points
of classi, theobsenredproces®f pointsis thesuperposition
N(t) = Ni(t) + ... + Np(t).

The Markov renaval model formulation allows great
flexibility in both building and solving the model. Thus,
we build themodelin two stagesdescribingntuitively and
separatelyhetwo elementof randomnes@ softwareop-
eration: the uncertaintyaboutthe outcomeof the software
run and the uncertaintyaboutthe time that takes the run
to be completed. First we definea DTMC which consid-
ersthe outcomedrom the sequencef possiblydependent
softwarerunsin discretetime. Next, we constructhe pro-
cessin continuostime by attachingthe distributionsof the
run’s executiontime to thetransitionsof the DTMC turning
it intoanMRP.



3.1. Model in discretetime

Weview thesequencef softwarerunsin discretdimeas
asequencef dependenBernoullitrialsin which the prob-
ability of successer failureateachtrial depend®nthe out-
comeof the previoustrial. Let us associatevith the i-th
softwarerun abinaryvaluedrandomvariable

7. — 0 denotesisucces®nthei-thrun
*7 1 1 denotesafailureonthesi-thrun.

Supposehatif i-th runresultsin failure the probability
of failureandthe probabilityof succesatthe (i + 1)-strun
areP{Zi+1 = 1|Zz = 1} = qandP{ZH_l = 0|Zz = 1} =
1 — ¢ respectiely. Similarly, if i-th run resultsin success
thenthereareprobabilitiesP{Z; ., = 0|Z; = 0} = p and
P{Z;+1 = 1|Z; = 0} = 1—p of succesandfailurerespec-
tively atthe (i + 1)-strun. A very plausibleassumptiorior
operationakoftwareis thatthe probabilitiesof failure1 — p
andq aremuchsmallerthanthe probabilitiesof succesp
andl — ¢. A programfor which this assumptiorcould not
be madewould beenormoushyunreliable andit is unlikely
thatits usewould be ever attempted.

The sequencef dependenBernoullitrials {Z;,¢ > 1}
definesadiscretetime Markov chainwith two statesshavn
in Figurel. Oneof thestatesdenotedby 0, is regardedas
successndtheother denoteddy 1, asfailure. Accordingly,
transitionprobability matrixis givenby

P:[lfq 1;p]. 1)

Sincep andq areprobabilities;it followsthat0 < p,¢ <1

and|p + ¢ — 1] < 1. However, the boundarycaseswhen
theequalitieshold, areexcludedfrom furtheranalysissince
they aresomavhattrivial with no practicalinterest. Thus,
we imposethe condition0 < p,q < 1 ontransitionproba-
bilities, whichimpliesthat|p + ¢ — 1| < 1. In otherwords,
theMarkov chainis irreducibleandaperiodicwith all states
recurrentnonnull.

p q

1-p

SN

1-q

Figure 1. Markov interpretation of dependent
Bernoulli trials

Firstconsidein somedetailthepropertieof theMarkov
chain. Sincewe considerthe operationalisageof software

whenthereliability is stable,it is assumedhatthe DTMC
is stationaryin the wide sensd1]. It meanghatthe mean
E[Z;] is constant

E[Z)=P{Z;=1} =6 )
andautocwariances afunctionof & only
Cov(Zi, Zirr) = E[Zi Ziyk] — (E[Z:])%. 3)

It is obviousthat§ is the unconditionalper run failure
probability Thus,we have
P{Z;iy1 =1} =P{Z;y1 = 1|Z; =0} P{Z; = 0}
+P{Z;iy1 =1|Z; =1} P{Z; = 1}.

The stationarity of the chain (2)
0 = (1—p)(1—20)+ gb, thatis,

imposes that

0 = 1;1’,
2-p—gq
The correlationcoeficient betweenoutcomesof the soft-
warek runsapartis specifiedby the autocorrelatiorfunc-
tion 8, = Cov[Z;, Z;1 1]/ Var|Z;]. It canbeshowvn thatthe
correlationcoeficient betweeroutcomef two successie
runsis givenby

0<f<1. 4)

_q-"¢
16
Using (4) it follows thatthe autocorrelatiorfunctionof lag
1 givenby (5) canbeexpresseds

B ()

fr=p+q—1, —-1<pfi <1 (6)

Deriving onestepprobabilitiesp andg asfunctionsof 8
andg; (givenby (4) and(6) respectrely), transformsthe
DTMC transitionprobabilitymatrix (1) into

1-6)+6p 0—6p @)
1-0)-(1-0)p 0+1-6)5 |

It is obviousfrom equation(6) that3; = 0if p+ ¢ =1,
thatis, eachrun canfail with probabilityq = 1 — p in-
dependentlyof the outcomeof previousrun. In this case
the Markov chain describesa sequenceof independent
Bernoullitrials. If 8; # 0 thenthe DTMC describeshe
sequencef dependenBernoulli trials and enablesus to
accommodateossibledependencamongsuccessie runs.
Dependingon the relation betweenthe conditionalproba-
bilities of failure1 —p andq we candescribeeitherpresence
or lack of failureclustering.Thereforewe keepl — p fixed
andlet eitherg > 1 —porg < 1 — p. It follows thatthe
modeladmitsasspecialcaseghefollowing:

P =

1. Failuresareindependent (¢ = 1 — p). Eachrun has
the sameprobability of failure, independentlyof the
outcomeof the previousrun.



2. Alack of clustering (¢ < 1—p). Successie software
runsarenegatively correlated-1 < 3; < 0, thatis,
softwarefailure is more probableaftera successhan
afterafailure.

3. Failures occur in clusters (¢ > 1 — p). Successie
runs are positively correlatedd < £, < 1, thatis,
softwarefailure is more probableafter a failure than
afterasuccess.

3.2. Model in continuoustime

Thenext stepin themodelconstructioris to obtainapro-
cessin continuougime by consideringthe time spentin a
transitionfrom state; to statej with a distribution function
F;;(t). In our caseF;;(t) arethedistributionsof the dura-
tion of software runs,thatis, the time that takes software
runsto be executed.It is assumedhat software execution
time 7., hasthe samedistribution Fi, (t) = P{T., < t}
(with finite meanE[T.,]) regardlessof the outcome,that
iS, F;j(t) = Fe(t) for 0 < 4,5 < 1. Consideringthe
situationwhensoftwareexecutiontimesarenotidentically
distributedfor successfuandfailedrunsis straightforvard
andwill bediscussedh Section?.

With theadditionof F.,(t) to the DTMC, we obtainthe
modelin continuoustime, thatis, an MRP. Thus, the se-
guenceof software runsin continuoustime constitutesa
point processwith two classef points: succesandfail-
ure. The total numberof softwareruns {N(¢),t > 0} is
a superpositiorof two dependentenaval processeVs(t)
andNr(t) whichreferto thenumberof timesstated) (suc-
cess)and1 (failure) of the DTMC have beenvisitedin the
interval (0, ¢].

In what follows we derive a numberof reliability, per
formability andavailability measureandrevealhow failure
correlationinfluencesachof themeasures.

4. Software reliability modeling

In softwarereliability modelingonly the pointsof partic-
ulartype,i.e.,failuresareof interest.Thereforejt is neces-
saryto considemnly thedistribution of aninterval between
successie failures Fr (t) which is theinterval distribution
of the point processNVr (t) thatrecordsthe numberof fail-
uresin theinterval (0, ¢]. If we assumehattheinitial state
is 0 with probability 1 thenthe point processNg(t) is a
delayedrenaval processwith a time to first failure having
differentCDF from thetimesbetweersuccessie failures.

We derive the distribution of the time betweenfailures
(inter-failure time) Fx(t) in two steps. First considerthe
discreterandomvariableX definedasanumberof runsbe-
tweentwo successievisitsto thefailurestateof theDTMC.

Clearly, therandomvariableX hasthe pmf

PAX =k} :{ ((Il—fJ)pH 1-p)

Next, considethemodelin continuougime. It followsthat
the CDF of theinterfailuretime Fr(t) = P{Tr < t}is
givenby

it k=1
itk>2 ©

Fr(t) =qFea(t) + Y (1—q)p*> (1—p) Fi7 (1) (9)
k=2

where F** denotesthe k-fold corvolution of F,,. The
Laplace- Stieltjestransform(LST) of Fr (t) is givenby

5 F 1—p—gq) F?
Fr(s) = 2 er(8) + (1 —p—q) Fey (s)
1-—pF.(s)
whereF,, (s) is theLST of F,,(t).

In a similar manneiit canbe shavn thatthedistribution
of thetimeto first failurehasthe LST givenby

(10)

Fi(s) = (A =p) Fea () (11)
1—pFe(s)

Dependingntheparticulardistribution of theexecution
time F,.(t), the expressionfor Fr(s) canbe invertedei-
ther symbolicallyor numericallyto obtainthe solutionfor
Fr(t) in time domain. Reasonablgimpleclosed-formre-
sultscanbe obtainedwhenthe distribution function of the
run’sexecutiontime F, (t) hasrationalLST, suchasstage-
typedistributionsdiscusseéh [1]. In thatcaseFr (s) isalso
a rationalfunction andthe inversionof (10) is in principle
straightforvard.

We now develop somegeneralpropertiesof the distri-
bution of thetime betweerfailures.Dueto thewell known
propertyof theLST, themomentxanbederivedeasilyby a
simpledifferentiationof (10). It followsthatthe meantime
to failure (MTTF) is givenby

pir)= - TEOL 222l gy )
] 1—-p
s=0
where E[T,,] is the run’s meanexecutiontime. Thenby
equation(4) we have
FIT¥) = 5 BIT..] (13
This resulthasa simple physicalinterpretationwhen one
accountdor thefactthat1/6 is the meannumberof runs
betweertwo failuresE[X]. Thus,theMTTF is aproductof
the meannumberof runsbetweentwo successie failures
andtherun’s meanexecutiontime?.

INote that Fr(t) is a properdistritution function with finite mean
E[TF] asaconsequencef theassumptionthatwe made(0 < p,q < 1
and0 < E[Tez] < 00). Althoughit is trivial to considerthe possiblede-
fective distributions of the timesbetweerfailures(viz, the non-eistence
of MTTF), thediscussioris omitteddueto the spacdimitations.



If successie runsareindependenfg = 1 — p), MTTF
becomesE[T{"] = E[T..]/(1 — p) which meansthatwe
canrewrite (12) as

E[Tp] = (2-p—q) E[T"] = (1 - ) E[TF].  (14)
Also, we derive anexpressiorfor thevariance

Var[Tez]  1—=60)1+ 1)
6 62(1 — B1)

It follows thatthe squaredtoeficient of variationis

A
1-p

Var[Tr] = (E[Tea])?.

o _ Var[Tr] 1 9 3
Ot = @ - 1o Tiop )

(15)

WhereCTg. is the coeficient of variationfor the caseof
independensuccessie runs. Sinced < 1/2 will be satis-
fiedfor ary softwarein operationaphaseit followsthatthe
sign of the seconderm of equation(15) will dependonly
ong; =p+q-—1.

Thederivedequationgor the MTTF (14) andthe coefi-
cientof variation(15) enableusto studythe effectsof fail-
urecorrelationon softwarereliability

e A lack of clustering
Whenp; < 0 from (14)we getE[Tr] > E[T{"].

In this casethe secondterm in (15) is negative and

2 2 2
henceC7, < Crin /(1= 1) < Oy
It follows that assuminga lack of clusteringleadsto
greatemeanandsmallervariability of theinter-failure

timescomparedo theindependentase.

e Failuresoccur in clusters
If, ontheotherhand,3; > 0 thenE[Tr] < E[T{"].

Sincethesecondermin (15)is positiveit followsthat
3, > C%}n/(l - f) > C%}n.

Theseresultsimply that in the presenceof failure
clusteringthe inter-failure time hassmallermeanand
greatervariability comparedo the independentase.
In otherwords,whenfailuresareindeedclusteredhe
independencassumptiomesultsin optimisticestima-
tions.

We next focuson the specialcasewhenthe distribution
of therun’s executiontime is exponentialsothat f., (t) =
ue Ht sinceit relatesthe MRP approachto the existing
softwarereliability models. Inverting (10) leadsto the pdf
of thetime betweerfailuresgivenby

(1-9q)

-1
(1 _p)ﬂe—(l—p)pt + (p +4q )
p

fr(t) =
(16)

pert,

Assumingindependence@mongsuccessie software runs
(g =1 — p) reduceg16)to

()= (L—p)pe Pk, (17)

It followsthatthetime betweerfailuresis exponentiallydis-

tributedwith rate (1 — p) u whenthe successie software

runsareindependentvith exponentiallydistributedexecu-

tion times.In this casethe Markov renaval processeduces
to the homogeneou®oissonprocess. Thus, the standard
way of describinghefailurebehaior of a softwaresystem
in operationis obtainedasthe simplestspecialcaseof the

presenteanodel.

5. Softwar e per for mability modeling

Performabilityis a unified measurethat combinesthe
guantificationsof reliability and performanceandreveals
their effect on the ability of a systemto completea certain
amounbf usefulwork. We proposdwo differentperforma-
bility measuresln bothcaseghe performabilityis defined
with respecto the numberof softwarerunsthatbenefitthe
userduringa boundedime periodof durationt. In thecase
of thefirst measuref softwarefails atary runit is consid-
eredfailedfor thewholemission thatis, norun eitherprior
or subsequertb suchfailureis beneficial. Thus,this mea-
sureis appropriatdor mission-criticalsystemsThesecond
performabilitymeasurds more suitablefor high availabil-
ity systemssincethe failuresare countedonly at the run
in which they manifestedhemseles,which meanghatall
successfutunsduringthe givenperiodarebeneficial.

For the first performability measureU(¢) if a software
failsatary run Nz (t) > 0 noruneitherprior or subsequent
to suchafailureis consideredeneficialandhencel (t) =
0. It followsthatU (t) canbeformulatedas

_ [ N@#) ifNp(t)=0
ut) = { 0 otht:;wise.

The probability thatno run fails in n runsis derived using
theMarkov property

P{Z,=Zn1=Zpno=...=Zs=27, =0}
=P{Z,=0|Zp—1 =0} ... -P{Z,=0|Z; = 0}
x P{Z; =0} =p" ' (1-0).

It follows thatthe momentgeneratindunctionof U (t) is
E[esU(t)] — E[l— (1_0) pN(t)—l 4 esN(t)(l_o) pN(t)—l]

andits expectationcanbe expresse@s

esU(t)
EU()] = % e E[N(t) (1 - 0)pN O]
- 1%0 BlU™ ()] = ﬁ E[U™(®)]
(18)



whereE[U"(t)] = E[N(t) pV ] is thebenefitthatcanbe
expectedf thesuccessie softwarerunswereindependent.

It is clearthatif 3; > 0then(1—-6)/[(1-0)+65] < 1,
thatis, if failuresdo occurin clustershenthe performabil-
ity E[U(t)] is reducedby factor(1 — 8)/[(1 — 6) + 64]
comparedo the independentase. On the otherhand,a
lack of clusteringhasjustthe oppositeeffect.

For the second performability measurefailures are
countedonly at the run in which they manifestedthem-
seles,thatis, all successfutunsupto time ¢t arebeneficial.
It follows thatit canbe definedasthe expectednumberof
successfutunsin thetimeinterval (0, ¢]

M(t) = E[Ns(t)] = ) F§*(t) (19)
k=1

Wherng* denotegshek-fold convolutionof Fg. TheLST
of (19)is givenby

M(s) =Y Fb(s) = —=—. (20)

The distribution of the time between successfulruns
Fs(t) = P{Ts < t} whichis theinterval distribution of
therenaval process{Ns(t),t > 0} thatregistersonly the
successie visits to state0 is derivedin a similar manneras
Fr(t). Its LST is givenby

= _ppez(5)+(1_p_q)ﬁgz(s)
Fslo) = 1= qF.o(s) '

(21)

Substituting(21) into (20) leadsto

M(S): Npﬁ‘ez(s)‘t(l_p_Q)Ffm(s) _ .
1- quz(s) _pFew(s) - (1 —P— Q)Fgm(s)
(22)

The expression22) canbe invertedeithersymbolicallyor
numericallyto obtainthesolutionfor A (t) in time domain.
However, sincethetime interval (0, ¢] is muchgreaterthan
Ts, thatis, mary successfutunsareexpectedo take place
up to time ¢t we canusetheasymptotidform of therenaval
functionfor larget (t — o) [1]

t

M(t) ~ E[Ts]" (23)

By simple differentiation of (21) we get E[Ts] =
E[T..]/(1 — 0). Hence

M(t) ~(1-6)- ﬁ (24)

The above resultcanbe given a simple intuitive meaning;
the secondterm in equation(24) is the expectednumber

of softwarerunsfor large t. Multipling it by the perrun
probability of succesd — 8 givesusthe expectednumber
of successfutuns.

Having in mind that the expectednumberof successful
runsfor theindependentaseis

t
E[Te,]

M™(t) ~p

it is clearthat(24) canberewrittenas

1—0  inn 1-6
MO~ == M0 = g4 s,
It follows from (25) that the failure clustering(8; > 0)
hasthe sameeffect on M (t) ason the first performability
measurethe expectedhumberof successfutunin (0,¢] is
reduceddy factor(1 — 6)/[(1 — 6) + 63:] comparedo the
independentase.Of course(25) is alimiting resultonly,
whereag18)is exact.

M), (25)

6. Software availability modeling

An instantaneousvailability is simply the probability
that the software is operationalat time ¢. Assumingthat
the initial stateis 0, the availability is the probability that
the semiMarkov processs in state0 at time ¢, which we
denoteby A(t) = Pyo(t). ThesemiMarkov proceswill be
in state0 attime ¢, givenit wasin state0 att = 0, if oneof
thefollowing mutually exclusive eventsoccurs:

e notransitionoccursin (0, t] with probabilityl — Hy(t),
where Ho(t) = pFey(t) + (1 — p)Fes(t) = Fey(t)
denoteghedistribution of theamountof time until the
next transitionoccursgiven that the processhasjust
entered

e the processreturnsto state0 beforet¢ accordingto
Fs(t) andthen,in the remainingtime, endingup in
state0 accordingo Poo(t).

Thus,Pyo(t) = 1—Hp (t)+f(f Pyo(t—x)dFs(z) andhence
theLST of the availability becomes

A(S)Z l—ﬁ’ew(s) _ 1_qﬁew(3)
l—ﬁ’s(s) 1+(1_p_q)ﬁez(s)‘

If the distribution of the run’s executiontime F,,(t) is
given,theabove equatiorenablesisto computetheinstan-
taneousavailability A(t) asa function of time. Oftenwe
areinterestedn a steady-statevailability A definedasthe
limiting value of A(t) ast approachefinity. To exam-
ine limiting form of A(¢t) ast — oo requiresananalysisof

A(s) ass — 0, thatis,

(26)

A =lim A(s) = 1-4¢

=——— =1-6. 27
§—0 2—-p—q 0 27)



Notethatthe steady-statevailability would alsodependn
the run’s meanexecutiontimesif they were differentfor
successfuandfailedruns.

Sincethe availability for theindependentaseis A =
p it follows form (27) that whenfailuresoccurin clusters
(81 > 0) the software availability is reducedby the same
factorasperformability(1—6) /p = (1—-6)/[(1-6)+60].

7. Extensions and gener alizations

The presentednodelcanbe generalizedn mary ways.
We now discusssomeof thesegeneralizationstogether
with brief comment®onthe natureof new ideasinvolved.

i) Markov renewal processwith morethan two states

Thetwo stateDTMC describes sequencef dependent
Bernoullitrialsandnaturallygeneralizeghetraditionalway
of looking at the sequenc®f softwareruns. Nevertheless,
by addingsuitablestateso the DTMC we canaccountfor
failureswith differentseverity, softwaremaintenancer pe-
riodsof time whenthe softwareis idle.

ii) Higher order of dependance

For the presentednodelwe have assumedhatthe out-
comeof thenext runto beexecutedZ;,, will dependorob-
abilistically on the presentrun only Z; andis independent
of the pasthistory, thatis, we assumehat the embedded
Markov chainis afirst orderchain.However, thehypothesis
thattheDTMC is of agivenorderneeddo betested.Thus,
if the dependencgoesbackmorethanonerun the system
canbedescribedby a modelof higherorder In suchcases
the higherorderMarkov chaincanberepresentedsa first
orderchainby redefiningthe statespaceappropriately[1].
Thisrepresentatiois usefulbecauseheresultsfor thefirst
orderMarkov chaincanbe carriedover. However, the size
of the statespacegrows fastwith the orderof the chain.

iii) Real-time software

In real-time applicationseachrun is undera real-time
constraintwhich takesthe form of an upperboundon the
time to completea software execution. It meansthat T,
will bethetime uponthe endof executionor uponreach-
ing a deadliner, whichever occursfirst. It follows that
run’s executiontime CDF will coincidewith F,(t) for
0 <t < 7, otherwiseit will beequalto 1.

iv) Fault-tolerant software

The proposednodelingapproacicanbe usedfor mod-
eling fault-tolerantsoftware (FTS) systemsPerrun failure
probability & and run’s executiontime distribution F., (t)
for a particularFTS structurecanbe derived usinga vari-
ety of existing FTSmodels(see[6] andreferencesherein).
Thus,in additionto the interversionfailure correlationon
a singlerun consideredn relatedworks, our approacten-
ablesus to accountfor the correlationamongsuccessie

failures.

v) Different CDF for the execution times of the success-
ful and failed runs

If we assumehatsoftwareexecutiontimesarenotiden-
tically distributedfor successfuhndfailedrunsthenthedis-
tributionfunctionsF;; (t) will dependf thetypeof pointat
theendof theinterval. Thus,Fyg(t) = Fio(t) = Fezg (t)
and Fy1(t) = F11(t) = Fey,(t), Where Fe, (t) and
F.. . (t) arethedistributionfunctionsof theexecutiontimes
of the successfull’,,., andfailed runsT,,,, respecirely.
By making appropriatechangesn (9) we getthe intenval
distribution of thefailure processVr(¢)

Frp(t) = Pr{Tr <t} = qF.,.(t) +
S (1 - ) 2 B0 (1) (1= p) Faap (). )
k=2

MTTF andvarianceof theinter-failuretime canbederived
in thesamemannerasin Sectiord.

Now considerthe time betweenevents{Ty, T», ...} of
the point processN (t), whereT; indicatesthe execution
time of ¢-th run. Therearetwo typesof intervals T; with
CDF F.,,(t) andF,,, (t) thatoccurin accordancevith a
DTMC transitionprobability matrix P givenby (1). The
interval distribution of the point processN (t) is Fr(t) =
(1-0)F,,,(t) + 6F.,,.(t) whered is givenby (4).

Thecorrelationapropertiesf thesequencéT; } arede-
scribedby thelag 1 autocorrelatioriunction

_ CO'U[TZ', Ti+1]

Var|T) (29)

which can be shavn to be equalto equation(30). The
derivationis not givenheredueto the spacdimitations.

It follows from (30) thatthe executiontimesof succes-
sive softwarerunsT; arecorrelatedf the outcomeof each
softwarerun is dependenbn the outcomeof the previous
run g; # 0, andthe executiontimesof the successfuand
failed runs have differentmeansE[T.; ] # E[Tezr]- IN
otherwords 51 # 0 implies that the classesof succes-
sive eventsare dependentbut in orderthe timesbetween
eventsto be dependenthe additionalcondition E[T,, ] #
E[T.;,] is necessary

vi) Matrix form solution of the model

The model formulation and the derivation of the mea-
suresof interestpresentedn the paperarean intuitive and
naturalway to view the problem. However, this approach
becomegoo cumbersoméf we considerthe modelwhich
consistsof DTMC with more statesanddifferentdistribu-
tion functionsF;; (t) attachedo thetransitionsrom state;
to j. In thatcaseit is reasonabléo usethe solutionin ma-
trix form. For detailedandextensie treatmenthereadelis
referredto [14].
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8. Conclusion

The researctwork presentedn this paperis devotedto
the developmentof the modeling frameawork that consid-
ersasequencef possiblydependensoftwarerunsanden-
ablesusto studytheeffectsof failurecorrelationonreliabil-
ity, performabilityandavailability of the softwaresystemin
operationaphase.The proposedMarkov renaval approach
allows a greatflexibility in building, solvingandgeneraliz-
ing the model. Thus,we describdntuitively andseparately
thetwo elementof randomnes softwareoperation:the
uncertaintyaboutthe outcome®f thesoftwarerunsandthe
uncertaintyaboutthe time that takes the runsto be com-
pleted. Using the theory of Markov renaval processesve
have derived a numberof dependabilityand performabil-
ity measureghatquantify softwarebehaior. We have also
presented brief discussiorof the possibleextensionsand
generalizationsf thepresentednodel.

The aim of this paperis to extendthe classicalkoftware
reliability theory by incorporatingfailure correlationinto
thepredictionsvhichwebelieve hasimportantpracticalim-
plications.Theobtained-esultsclearlydemonstratéhatas-
sumingindependencamongsuccessie softwarerunswill
resultin optimistic estimationswhen failuresdo occurin
clusters It follows thatthe effect of correlationamongsuc-
cessve softwarefailureshasto betakeninto accountgspe-
cially in applicationsvherethe key issueis notto overesti-
matethedependabilityor performability Thesubjectof our
future researchis the applicability of the modelto various
examplesof softwaresystemsn operation.
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