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KaterinaGǒseva- Popstojanova
�
, KishorTrivedi

Department of Electrical and Computer Engineering
Duke University, Durham, NC 27708-0294
E-mail: � katerina, kst � @ee.duke.edu.mk

Abstract

Since the early 1970’s a number of models have been
proposed for estimating software reliability. However, the
realism of many of the underlying assumptions and the ap-
plicability of these models continue to be questioned. Our
research work was motivated by the fact that although there
are practical situations in which the assumption of inde-
pendence among successive software failures could be eas-
ily violated, much of the published literature on software
reliability modeling does not seriously address this issue.
In this paper we present a modeling framework based on
Markov renewal processes which naturally introduces de-
pendence among successive software runs and enables the
phenomena of failure correlation to be precisely character-
ized. Thus, incorporating failure correlation into depend-
ability and performability predictions contributes toward
more realistic modeling of software systems in operation.

1. Introduction

A numberof analyticalmodelshave beenproposedto
addressthe problemof quantifying the software reliabil-
ity. Most of themare focusedon estimatingsoftware re-
liability basedon its failurehistory, eitherduringits debug-
gingphaseor duringits validationphase[15], [5] [4], [12],
[18]. Thesemodelstreatthesoftwareasblackbox,assum-
ing someparametricmodelof thetime betweenfailuresor
of the numberof failuresover a finite time interval. On
theotherhand,socalledwhitebox modelsthataccountfor
thesoftwarestructure[9] aremostlyrestrictedto theopera-
tionalphaseof thesoftwarelife cycle.

One of the commonassumptionsmadeby most soft-
warereliability modelsis the assumptionof independence�
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amongsuccessive failures.In [13] it is emphasizedthatal-
thoughthereis an evidencethat failuresoccur in groups,
that is, therearesomedependencies,theassumptionof in-
dependenceis madeto castthemodelsinto mathematically
tractableform andsimplify theestimationof modelparam-
eters. However, oneof the reasons“why conventionalre-
liability theoryfails for software”, listedin [10], is thatthe
software runs are not always independent.The indepen-
denceof successive software runs can be affectedby op-
erationalconditionssuchasthe independenceof input se-
quence,theextentto which internalstateof a softwarehas
beenaffected,andthe natureof operationsundertaken for
executionresumption[11]. For instance,in many applica-
tions, suchas real-timecontrol systems,the sequenceof
input valuesto the softwarearecorrelatedin time due to
physicalconstraints.For thesereasons,given a failure of
a softwarefor particularinput, thereis a greaterlikelihood
of it failing for successive inputs.In applicationsthatoper-
ateondemand,similar typesof demandsmadeonsoftware
tendto occurcloseto eachotherwhich canresultin a suc-
cessionof failures.

To summarize,although there may be dependencies
amongsuccessive software runs which can result in fail-
ureclustering,only a few publishedpapersconsiderthis is-
sue.TheseincludetheempiricallydevelopedFourierseries
model [2] and the Compound-Poissonsoftware reliability
model [16]. Most of the existing modelsof fault-tolerant
softwarealsoassumeindependenceamongsuccessiveruns.
The only exceptionsare the modelspresentedin [3] and
[17].

We have recentlyproposeda software reliability mod-
eling framework that is capableof incorporatingthe pos-
sible dependenceamongsuccessive softwareruns, that is,
theeffectof failureclustering.In [7] wehavedemonstrated
its usefor testingphaseandvalidationphase.Thegoalof
thispaperis to extendourpreviouswork [8] by applingthe
modelto theoperationalphasewhenthesoftware’s ability
to delivera properserviceis preservedandthereliability is
stable.Theuseof Markov renewal processesleadsto both
conceptualsimplificationin building themodelandcompu-



tationalsimplificationin derivinganumberof measuresthat
quantifythesoftwarebehavior, suchasreliability, availabil-
ity andperformability. In addition,theproposedapproach
allows a greatflexibility in generalizingthe model; it can
easilybeextendedto cover severalkey areas,suchasreal-
timesoftwareandfault-tolerantsoftware.

Thepaperis organizedasfollows. Theconceptualmodel
is given in Section2. Section3 presentsour modeling
framework basedon Markov renewal processes.In Sec-
tion 4 westudysoftwarereliability. Next wederivetwo dif-
ferentperformabilitymeasuresin Section5 andtheexpres-
sion for availability in Section6. The possibleextensions
andgeneralizationsof thepresentedmodelarediscussedin
Section7. Finally, theconcludingremarksaregivenin Sec-
tion 8.

2. Conceptual model

First considerin somedetail the conceptof software
runs. The operationof softwarecanbe broken down into
aseriesof runs[12]. Eachrunperformsmappingfrom aset
of input variablesto a setof outputvariablesandconsumes
a certainamountof executiontime. Evenfor thesoftware
thatoperatescontinuouslyit is still possibleandmorecon-
venientto divide the operationinto runsby subdivision of
timeassociatedwith someuser-orientedtasks[12]. Thein-
formation associatedwith software runs can generallybe
groupedinto two categories:� Input and Outcome. Thedescriptiveinformationabout

eachspecificrun generallyspecifiestheinput, theop-
erationalenvironment,andtheoutcomethathasbeen
obtained(successor failure).� Timing. This includesspecific time associatedwith
eachrun, suchasstart time, normalterminationtime
for successfulruns,or failuretime for failedruns.

Sinceeachsoftwarerunhastwo possibleoutcomes,suc-
cessandfailure,thestandardwayof lookingatthesequence
of softwarerunsis to considerit asa sequenceof indepen-
dentBernoullitrials,whereeachtrial hasprobabilityof suc-
cess� andprobabilityof failure �
	����� . The two dis-
tribution functions,binomialandgeometric,areconnected
with theindependentBernoulli trials:� numberof runs that have failed among � successive

softwarerunshasthebinomialpmf� numberof softwarerunsbetweentwo failureshasthe
geometricpmf.

Sincethenumberof softwareruns � is largeandthefailure
probability ��	����� is small, the well known limiting
resultsfor thebinomialandgeometricpmf areusuallyused
asbasicassumptionsin softwarereliability models:

� numberof failuresin the limit hasthe Poissondistri-
bution� time betweenfailuresin thelimit is exponentiallydis-
tributed.

Thework presentedin this paperattemptsto extendthe
classicalsoftwarereliability theoryin ordertoconsiderase-
quenceof possiblydependentsoftwareruns.Thesequence
of successive software runs (successfulor failed) can be
viewed asa realizationof point eventsin time, that is, as
a point process.Poissonprocessis thesimplestpoint pro-
cess.It considersonly thefailurepoints,that is, disregards
thesuccessfulrunsbetweentwo failuresandignoresthein-
formation conveyed by them. In this paperwe view the
sequenceof dependentsoftware runs, when the outcome
of eachrun dependson the outcomeof the previous run,
asa sequenceof dependentBernoulli trials. Therefore,we
needto considerbothfailedandsuccessfulruns. A conve-
nientway of specifyinga sequenceof morethanoneclass
of pointsin continuoustimeis theMarkov renewal process.

3. Modeling framework based on Markov
renewal processes

Considera processconstructedasfollows. First take a�
-statehomogeneousdiscretetime Markov chain(DTMC)

with transitionprobabilitymatrix ��	�� ������� . Next construct
a processin continuoustime by makingthe time spentin
a transitionfrom state  to state ! have distribution func-
tion "#���%$'&)( , suchthattimesaremutuallyindependent.Such
a processis a semiMarkov process(SMP).The family of
stochasticprocessesusedin this paper, calledMarkov re-
newal process(MRP), may be shown to be equivalent to
thefamily of SMP[1]. Thus,theSMPrecordsthestateof
theprocessat eachtime point & , while theMRP is a point
(counting)processwhich recordsthenumberof timeseach
of the possiblestateshasbeenvisited up to time & . If one
regardstheMRPasconsistingof

�
dependentrenewal pro-

cesses*,+-$'&)( , ./.0. , *�12$'&)( , where *3�)$4&)( refersto thepoints
of class , theobservedprocessof pointsis thesuperposition*�$'&)(5	6*�+7$'&)(98:./.0.;8<*31=$4&)( .

The Markov renewal model formulation allows great
flexibility in both building and solving the model. Thus,
webuild themodelin two stages,describingintuitively and
separatelythetwo elementsof randomnessin softwareop-
eration: theuncertaintyabouttheoutcomeof thesoftware
run and the uncertaintyaboutthe time that takes the run
to be completed.First we definea DTMC which consid-
erstheoutcomesfrom thesequenceof possiblydependent
softwarerunsin discretetime. Next, we constructthepro-
cessin continuostime by attachingthedistributionsof the
run’sexecutiontimeto thetransitionsof theDTMC turning
it into anMRP.



3.1. Model in discrete time

Weview thesequenceof softwarerunsin discretetimeas
asequenceof dependentBernoulli trials in which theprob-
ability of successor failureateachtrial dependsontheout-
comeof the previous trial. Let us associatewith the  -th
softwarerunabinaryvaluedrandomvariable> �9	@?@A denotesa successon the  -th run� denotesa failureon the  -th run.

Supposethat if  -th run resultsin failuretheprobability
of failureandtheprobabilityof successat the $' B8<�;( -st run
are ��C > �ED#+F	G�2H > �9	G�JIK	L� and ��C > �ED#+F	 A H > �9	G�JIM	�NO� respectively. Similarly, if  -th run resultsin success
thenthereareprobabilities��C > �ED#+�	 A H > �P	 A IQ	L� and��C > �ED#+F	��%H > �9	 A IK	��=R� of successandfailurerespec-
tively at the $4 S8L�;( -st run. A veryplausibleassumptionfor
operationalsoftwareis thattheprobabilitiesof failure �T��
and � aremuchsmallerthanthe probabilitiesof success�
and �U�� . A programfor which this assumptioncouldnot
bemadewouldbeenormouslyunreliable,andit is unlikely
thatits usewouldbeeverattempted.

Thesequenceof dependentBernoulli trials C > �WV  �XY�7I
definesadiscretetimeMarkov chainwith two statesshown
in Figure1. Oneof thestates,denotedby 0, is regardedas
successandtheother, denotedby 1,asfailure.Accordingly,
transitionprobabilitymatrix is givenby

�G	[Z � �\]��\^� � _ . (1)

Since� and � areprobabilities,it follows that Aa` � V � ` �
and H �a8��bc�%H ` � . However, theboundarycases,when
theequalitieshold,areexcludedfrom furtheranalysissince
they aresomewhat trivial with no practicalinterest.Thus,
we imposethecondition A]d � V � d � on transitionproba-
bilities, which impliesthat H �Q8^�M<�%H d � . In otherwords,
theMarkov chainis irreducibleandaperiodic,with all states
recurrentnonnull.
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Figure 1. Markov interpretation of dependent
Bernoulli trials

Firstconsiderin somedetailthepropertiesof theMarkov
chain.Sincewe considertheoperationalusageof software

whenthereliability is stable,it is assumedthat theDTMC
is stationaryin thewide sense[1]. It meansthat themeane � > � � is constante � > � �S	6��C > � 	��7IK	:f (2)

andautocovarianceis a functionof
�

onlyg�hji � > � V > �kD91j�S	 e � > � > �ED91;�lO$ e � > �4�m()n7. (3)

It is obvious that f is the unconditionalper run failure
probability. Thus,wehave��C > �ED#+\	��JIM	N��C > �ED#+\	��2H > �9	 A IP��C > �o	 A I8���C > �ED#+F	G�2H > �9	G�JI5��C > �9	G�7I%.
The stationarity of the chain (2) imposes thatfQ	�$)�\p�S(�$W�\qfr(98<�jf V thatis,

f3	 �\]�s ]�tq� V A,d f d �7. (4)

The correlationcoefficient betweenoutcomesof the soft-
ware

�
runsapartis specifiedby the autocorrelationfunc-

tion u 1 	 g�hji � > �vV > �kD#1 �'wJxzy%{=� > � �|. It canbeshown thatthe
correlationcoefficientbetweenoutcomesof two successive
runsis givenby

uo+\	 �Mqf�\qf . (5)

Using(4) it follows thattheautocorrelationfunctionof lag
1 givenby (5) canbeexpressedasu + 	��38��NO� V z� d u + d �7. (6)

Deriving onestepprobabilities� and � asfunctionsof f
and uo+ (given by (4) and(6) respectively), transformsthe
DTMC transitionprobabilitymatrix (1) into

�G	[Z $)�\}f%(98~f\uo+ fzqf\uS+$)�\}f%(�O$)�\^fr(SuS+ fK86$W�\qfr(Suo+
_ . (7)

It is obviousfrom equation(6) that uo+U	 A if �38<��	�� ,
that is, eachrun can fail with probability ��	��3�� in-
dependentlyof the outcomeof previous run. In this case
the Markov chain describesa sequenceof independent
Bernoulli trials. If uo+��	 A thenthe DTMC describesthe
sequenceof dependentBernoulli trials and enablesus to
accommodatepossibledependenceamongsuccessive runs.
Dependingon the relationbetweenthe conditionalproba-
bilitiesof failure ��\� and � wecandescribeeitherpresence
or lackof failureclustering.Therefore,wekeep �5t� fixed
andlet either ������
� or � d ��
� . It follows that the
modeladmitsasspecialcasesthefollowing:

1. Failures are independent $���	��K��l( . Eachrun has
the sameprobability of failure, independentlyof the
outcomeof thepreviousrun.



2. A lack of clustering $�� d ��Q�S( . Successivesoftware
runsarenegatively correlatedz� d uS+ d�A , that is,
softwarefailure is moreprobableaftera successthan
aftera failure.

3. Failures occur in clusters $������bq�l( . Successive
runs are positively correlatedA�d uS+ d � , that is,
softwarefailure is moreprobableafter a failure than
aftera success.

3.2. Model in continuous time

Thenext stepin themodelconstructionis toobtainapro-
cessin continuoustime by consideringthe time spentin a
transitionfrom state to state! with a distribution function"#���r$'&)( . In our case"#���%$4&)( arethedistributionsof thedura-
tion of softwareruns, that is, the time that takessoftware
runsto beexecuted.It is assumedthatsoftwareexecution
time ����� hasthe samedistribution "����l$'&)(b	@��C;����� ` &�I
(with finite mean

e � �o�W�-� ) regardlessof the outcome,that
is, " ��� $4&)(}	�"��W��$'&)( for AG`  V ! ` � . Consideringthe
situationwhensoftwareexecutiontimesarenot identically
distributedfor successfulandfailedrunsis straightforward
andwill bediscussedin Section7.

With theadditionof "�����$'&)( to theDTMC, weobtainthe
model in continuoustime, that is, an MRP. Thus, the se-
quenceof software runs in continuoustime constitutesa
point processwith two classesof points: successandfail-
ure. The total numberof softwareruns C;*�$4&)( V &]X A I is
a superpositionof two dependentrenewal processes*��9$4&)(
and *3�\$'&)( whichreferto thenumberof timesstatesA (suc-
cess)and � (failure)of theDTMC have beenvisited in the
interval $ A V &|� .

In what follows we derive a numberof reliability, per-
formabilityandavailability measuresandrevealhow failure
correlationinfluenceseachof themeasures.

4. Software reliability modeling

In softwarereliability modelingonly thepointsof partic-
ular type,i.e., failuresareof interest.Therefore,it is neces-
saryto consideronly thedistributionof aninterval between
successive failures " � $4&)( which is the interval distribution
of thepoint process* � $4&)( that recordsthenumberof fail-
uresin theinterval $ A V &|� . If we assumethatthe initial state
is A with probability � then the point process* � $4&)( is a
delayedrenewal processwith a time to first failurehaving
differentCDF from thetimesbetweensuccessive failures.

We derive the distribution of the time betweenfailures
(inter-failure time) " � $4&)( in two steps. First considerthe
discreterandomvariable� definedasanumberof runsbe-
tweentwosuccessivevisitsto thefailurestateof theDTMC.

Clearly, therandomvariable� hasthepmf��C;��	 � IK	Y? � if
� 	G�$)�\q�7(2� 1;� n $W�\]�l( if
� X s . (8)

Next, considerthemodelin continuoustime. It followsthat
the CDF of the inter-failure time " � $4&)(Q	���C;� � ` &�I is
givenby

" � $'&)(P	:�F"����l$'&)(#8���1�� n $W�\^�7(2� 1;� n $)�\p�S(o" 1/���� $'&)( (9)

where " 1/���� denotesthe
�
-fold convolution of " �W� . The

Laplace- Stieltjestransform(LST) of "��U$'&)( is givenby�"��U$ �;(5	 � �"����l$��j(986$W�\]�t^�7( �" n�W� $ �;(�\p� �" ��� $��j( (10)

where
�"����l$��j( is theLST of "�����$4&)( .

In a similar mannerit canbeshown thatthedistribution
of thetime to first failurehastheLST givenby�" + $ �;(¡	 $W�\]�l( �"����l$��j(�\]� �" ��� $ �j( . (11)

Dependingontheparticulardistributionof theexecution
time "�����$4&)( , the expressionfor " � $��j( canbe invertedei-
thersymbolicallyor numericallyto obtainthesolutionfor"#�\$4&)( in time domain.Reasonablysimpleclosed-formre-
sultscanbeobtainedwhenthedistribution functionof the
run’sexecutiontime " �W� $'&)( hasrationalLST, suchasstage-
typedistributionsdiscussedin [1]. In thatcase

�"#�U$ �j( is also
a rationalfunctionandthe inversionof (10) is in principle
straightforward.

We now develop somegeneralpropertiesof the distri-
butionof thetimebetweenfailures.Dueto thewell known
propertyof theLST, themomentscanbederivedeasilyby a
simpledifferentiationof (10). It follows thatthemeantime
to failure(MTTF) is givenbye � �o���S	��¢ �"#�M$��j(¢ � £££££ ¤ �o¥

	 s ��tq��\]� e � � ��� � (12)

where
e � � ��� � is the run’s meanexecutiontime. Thenby

equation(4) wehavee � � � �S	 �f e � �����7� . (13)

This result hasa simplephysicalinterpretationwhen one
accountsfor the fact that �jw-f is the meannumberof runs
betweentwo failures

e � �¦� . Thus,theMTTF is aproductof
the meannumberof runsbetweentwo successive failures
andtherun’smeanexecutiontime1.

1Note that §B¨#©Eª4« is a properdistribution function with finite mean¬\ ® ¨�¯ asa consequenceof theassumptionsthatwe made( °M±�²=³�´F±�µ
and °U± ¬\ ®r¶|· ¯B±]¸ ). Althoughit is trivial to considerthepossiblede-
fective distributionsof the timesbetweenfailures(viz, the non-existence
of MTTF), thediscussionis omitteddueto thespacelimitations.



If successive runsareindependent( �
	���}� ), MTTF
becomes

e � � �E¹� �\	 e � � �W� �4w=$W��q�l( which meansthat we
canrewrite (12)ase � � � �S	º$ s ]�tq�7( e � � �k¹� �S	�$W�Uqu + ( e � � �E¹� � . (14)

Also, wederiveanexpressionfor thevariance

xQy%{2� � � �S	 xby%{=� �����7�f 8 $W�\qfr(�$)�R8~u + (f n $)�U}uo+�( $ e � �����-�'( n .
It follows thatthesquaredcoefficientof variationisg n»-¼ 	 xQy%{2� �o���$ e � �o���m( n 	 ��\quS+ g n»�½k¾¼ 8 uo+�\quS+ $)�\ s fr(

(15)

where
g »l½¿¾¼ is the coefficient of variation for the caseof

independentsuccessive runs. Since f d �jw s will besatis-
fiedfor any softwarein operationalphase,it followsthatthe
sign of the secondterm of equation(15) will dependonly
on uo+U	^�38��K�� .

Thederivedequationsfor theMTTF (14) andthecoeffi-
cientof variation(15) enableusto studytheeffectsof fail-
urecorrelationonsoftwarereliability� A lack of clustering

When u + d�A from (14)weget
e � � � �9� e � � �E¹� �|.

In this casethe secondterm in (15) is negative and
hence

g n»-¼ d g n»�½k¾¼ w=$W�\quS+/( d g n»l½¿¾¼ .
It follows that assuminga lack of clusteringleadsto
greatermeanandsmallervariabilityof theinter-failure
timescomparedto theindependentcase.� Failures occur in clusters

If, on theotherhand,u + � A then
e � � � � d e � � �k¹� �|.

Sincethesecondtermin (15) is positiveit followsthatg n»j¼ � g n»�½k¾¼ w=$)�\}uo+�(R� g n»l½¿¾¼ .
Theseresults imply that in the presenceof failure
clusteringthe inter-failure time hassmallermeanand
greatervariability comparedto the independentcase.
In otherwords,whenfailuresareindeedclusteredthe
independenceassumptionresultsin optimisticestima-
tions.

We next focuson thespecialcasewhenthedistribution
of therun’s executiontime is exponentialso that À7����$4&)(N	Á e �SÂ�Ã , sinceit relatesthe MRP approachto the existing
softwarereliability models. Inverting(10) leadsto the pdf
of thetimebetweenfailuresgivenby

À-�F$'&)(P	 $W�\^�7(� $W�\]�l( Á e �9ÄÅ+��BÆ/Ç'ÂTÃ 8 $¿��8<�MO�;(� Á e �SÂ�Ã .
(16)

Assumingindependenceamongsuccessive software runs
( �z	��\]� ) reduces(16) toÀ �E¹� $'&)(P	�$W�U]�l( Á e �9Äm+���Æ�Ç4Â�Ã . (17)

It followsthatthetimebetweenfailuresis exponentiallydis-
tributedwith rate $W�Q}�S( Á whenthe successive software
runsareindependentwith exponentiallydistributedexecu-
tion times.In thiscasetheMarkov renewal processreduces
to the homogeneousPoissonprocess.Thus, the standard
wayof describingthefailurebehavior of a softwaresystem
in operationis obtainedasthe simplestspecialcaseof the
presentedmodel.

5. Software performability modeling

Performability is a unified measurethat combinesthe
quantificationsof reliability andperformance,andreveals
their effect on theability of a systemto completea certain
amountof usefulwork. Weproposetwo differentperforma-
bility measures.In bothcasestheperformabilityis defined
with respectto thenumberof softwarerunsthatbenefitthe
userduringaboundedtimeperiodof duration& . In thecase
of thefirst measureif softwarefails at any run it is consid-
eredfailedfor thewholemission,thatis, noruneitherprior
or subsequentto suchfailure is beneficial.Thus,this mea-
sureis appropriatefor mission-criticalsystems.Thesecond
performabilitymeasureis moresuitablefor high availabil-
ity systemssincethe failuresarecountedonly at the run
in which they manifestedthemselves,which meansthatall
successfulrunsduringthegivenperiodarebeneficial.

For the first performabilitymeasureÈ,$4&)( if a software
failsatany run *Q�\$4&)(R� A noruneitherprior or subsequent
to sucha failureis consideredbeneficialandhenceÈt$'&)(F	A . It follows that È,$4&)( canbeformulatedas

Èt$'&)(P	 ? *<$'&)( if * � $4&)(P	 AA otherwise.

Theprobability thatno run fails in � runsis derivedusing
theMarkov property��C > ¹�	 > ¹=�o+\	 > ¹2� n 	�./.0.%	 > n 	 > +\	 A I	6��C > ¹�	 A H > ¹2��+F	 A IFÉ\.0./.\É/��C > n 	 A H > +\	 A IÊ ��C > +\	 A IM	�� ¹=�o+ $W�M}fr(�.
It follows thatthemomentgeneratingfunctionof Èt$'&)( ise � Ë ¤vÌ Ä¿Ã'Ç �S	 e �k���$W��zf%(J�lÍ Ä¿Ã'Ç|�o+ 8<Ë ¤ Í Ä¿Ã'Ç $W��zfr(%��Í Ä¿Ã'Ç��o+ �andits expectationcanbeexpressedase �ÎÈ,$'&)(��o	Ï¢ e � Ë ¤)Ì Ä¿Ã'Ç �¢ � ££££ ¤ �o¥

	 e � *�$4&)(T$W�\qfr(m�lÍ Ä¿Ã'Ç|�o+ �
	 �\}f� e �ÎÈ �k¹ $'&)(|�o	 �\qf$)�\}fr(#8~f7u + e �ÎÈ �k¹ $4&)(|�

(18)



where
e �ÎÈ �E¹ $'&)(|��	 e � *�$4&)(;� Í Ä¿Ã'Ç � is thebenefitthatcanbe

expectedif thesuccessivesoftwarerunswereindependent.
It is clearthatif u + � A then $W�o�fr(Ðw=�E$W�o�fr(78tfJu + � d � ,

thatis, if failuresdo occurin clustersthentheperformabil-
ity
e � Èt$'&)(|� is reducedby factor $)�b�f%(vw=�E$W�QOf%(P86f7u + �

comparedto the independentcase. On the other hand,a
lackof clusteringhasjust theoppositeeffect.

For the second performability measurefailures are
countedonly at the run in which they manifestedthem-
selves,thatis, all successfulrunsupto time & arebeneficial.
It follows that it canbedefinedastheexpectednumberof
successfulrunsin thetime interval $ A V &|�Ñ $'&)(5	 e � * � $'&)(|�o	 ��1���+ " 1/�� $'&)( (19)

where " 1/�� denotesthek-fold convolutionof "�� . TheLST
of (19) is givenby�Ñ $��j(5	 ��1��#+ �" 1� $ �;(5	

�"���$��j(�\ �"��#$��j( . (20)

The distribution of the time between successfulruns"��#$'&)(,	Ò��C0��� ` &�I which is the interval distribution of
therenewal processC;*���$'&)( V &3X A I that registersonly the
successivevisits to stateA is derivedin a similarmanneras"#�\$4&)( . Its LST is givenby�" � $��j(P	 � �" ��� $��j(�86$W�U]�t^�7( �" n�W� $��j(�\^� �" �W� $ �;( . (21)

Substituting(21) into (20) leadsto�Ñ $��j(5	 � �"����l$��j(986$W�\]�tq�7( �" n�W� $ �;(�\q� �"�����$ �j(�p� �"��W��$ �;(TO$)�\p�t^�7( �" n��� $��j( .
(22)

Theexpression(22) canbe invertedeithersymbolicallyor
numericallyto obtainthesolutionfor

Ñ $'&)( in timedomain.
However, sincethetime interval $ A V &|� is muchgreaterthan�o� , thatis, many successfulrunsareexpectedto takeplace
up to time & wecanusetheasymptoticform of therenewal
functionfor large & ( &TÓÕÔ ) [1]Ñ $'&)(5Ö &e � ���B� . (23)

By simple differentiation of (21) we get
e � � � �×	e � � ��� �'wB$W�Fqfr( . HenceÑ $4&)(5Ö�$)�\}f%(�É &e � � ��� � . (24)

The above resultcanbe givena simpleintuitive meaning;
the secondterm in equation(24) is the expectednumber

of software runs for large & . Multipling it by the per run
probabilityof success�N�f givesus theexpectednumber
of successfulruns.

Having in mind that theexpectednumberof successful
runsfor theindependentcaseisÑ �E¹ $'&)(PÖ�� &e � �����7�
it is clearthat(24)canberewrittenasÑ $'&)(5Ö �\qf� Ñ �E¹ $'&)(P	 �\qf$W�\qfr(98�f7uo+ Ñ �E¹ $'&)(�. (25)

It follows from (25) that the failure clustering( uS+:� A )
hasthe sameeffect on

Ñ $4&)( ason the first performability
measure:theexpectednumberof successfulrun in $ A V &|� is
reducedby factor $W�\qfr(Ðw=�E$W�\qfr(98�f7uS+�� comparedto the
independentcase.Of course,(25) is a limiting resultonly,
whereas(18) is exact.

6. Software availability modeling

An instantaneousavailability is simply the probability
that the software is operationalat time & . Assumingthat
the initial stateis A , the availability is the probability that
the semiMarkov processis in state A at time & , which we
denoteby ØQ$4&)(P	6� ¥Ð¥ $4&)( . ThesemiMarkov processwill be
in stateA at time & , givenit wasin stateA at &P	 A , if oneof
thefollowing mutuallyexclusiveeventsoccurs:� notransitionoccursin $ A V &|� with probability �=NÙ ¥ $4&)( ,

where Ù ¥ $'&)(]	��l"��W��$'&)(F8�$W�3~�l(W"�����$'&)(p	Ú"����l$'&)(
denotesthedistributionof theamountof timeuntil the
next transitionoccursgiven that the processhasjust
enteredA� the processreturnsto state A before & accordingto"��9$4&)( and then, in the remainingtime, endingup in
stateA accordingto �9¥Ð¥r$4&)( .

Thus,� ¥Ð¥ $4&)(P	����Ù ¥ $'&)(/8�Û Ã¥ � ¥v¥ $'&j�Ül( ¢ " � $'Ül( andhence
theLST of theavailability becomes�Ø�$��j(5	 �\ �" ��� $ �j(�F �"���$��j( 	 �\^� �" �W� $ �;(�¡86$W�\]�tq�7( �" �W� $ �;( . (26)

If the distribution of the run’s execution time " ��� $'&)( is
given,theaboveequationenablesusto computetheinstan-
taneousavailability ØQ$4&)( asa function of time. Often we
areinterestedin a steady-stateavailability Ø definedasthe
limiting valueof Ø3$'&)( as & approachesinfinity. To exam-
ine limiting form of Ø3$'&)( as &¡Ó�Ô requiresananalysisof�ØQ$ �;( as �KÓ A , thatis,

Øc	�ÝEÞkß¤)à ¥
�Ø3$��j(5	 �\^�s p�t^� 	��\qfB. (27)



Notethatthesteady-stateavailability wouldalsodependon
the run’s meanexecutiontimes if they were different for
successfulandfailedruns.

Sincetheavailability for theindependentcaseis Ø �E¹ 	� it follows form (27) that whenfailuresoccur in clusters
( u + � A ) the softwareavailability is reducedby the same
factorasperformability $W�=Nfr(vw��á	�$)�=Kfr(Ðw=�E$W�=Nfr(�8bf7u + � .
7. Extensions and generalizations

Thepresentedmodelcanbegeneralizedin many ways.
We now discusssomeof thesegeneralizations,together
with brief commentson thenatureof new ideasinvolved.

i) Markov renewal process with more than two states
Thetwo stateDTMC describesa sequenceof dependent

Bernoullitrialsandnaturallygeneralizesthetraditionalway
of looking at thesequenceof softwareruns. Nevertheless,
by addingsuitablestatesto theDTMC we canaccountfor
failureswith differentseverity, softwaremaintenanceor pe-
riodsof timewhenthesoftwareis idle.

ii) Higher order of dependance
For thepresentedmodelwe have assumedthat the out-

comeof thenext runto beexecuted
> �kD#+ will dependprob-

abilistically on thepresentrun only
> � andis independent

of the pasthistory, that is, we assumethat the embedded
Markov chainis afirst orderchain.However, thehypothesis
thattheDTMC is of agivenorderneedsto betested.Thus,
if thedependencegoesbackmorethanonerun thesystem
canbedescribedby a modelof higherorder. In suchcases
thehigherorderMarkov chaincanberepresentedasa first
orderchainby redefiningthestatespaceappropriately[1].
This representationis usefulbecausetheresultsfor thefirst
orderMarkov chaincanbecarriedover. However, thesize
of thestatespacegrowsfastwith theorderof thechain.

iii) Real-time software
In real-timeapplicationseachrun is undera real-time

constraintwhich takesthe form of an upperboundon the
time to completea softwareexecution. It meansthat �����
will be the time uponthe endof executionor uponreach-
ing a deadline â , whichever occursfirst. It follows that
run’s execution time CDF will coincide with "�����$'&)( forA3` & d â , otherwiseit will beequalto � .
iv) Fault-tolerant software

Theproposedmodelingapproachcanbeusedfor mod-
eling fault-tolerantsoftware(FTS)systems.Perrun failure
probability f andrun’s executiontime distribution "�����$4&)(
for a particularFTS structurecanbe derivedusinga vari-
etyof existingFTSmodels(see[6] andreferencestherein).
Thus,in additionto the inter-versionfailurecorrelationon
a singlerun consideredin relatedworks,our approachen-
ablesus to accountfor the correlationamongsuccessive

failures.

v) Different CDF for the execution times of the success-
ful and failed runs

If weassumethatsoftwareexecutiontimesarenot iden-
tically distributedfor successfulandfailedrunsthenthedis-
tributionfunctions"��Î�r$4&)( will dependof thetypeof pointat
theendof the interval. Thus, "#¥v¥2$'&)(�	Y"T+�¥%$'&)(z	Y" ���jã $'&)(
and "9¥�+J$'&)(Y	ä"T+Ð+7$4&)(�	å" ��� ¼ $'&)( , where " �W�jã $4&)( and"��W� ¼ $'&)( arethedistributionfunctionsof theexecutiontimes
of the successful����� ã andfailed runs �o�W� ¼ , respectively.
By makingappropriatechangesin (9) we get the interval
distributionof thefailureprocess* � $4&)(" � $'&)(P	:��{%C0� � ` &�IK	:�-"���� ¼ $4&)(98��1�� n $)�\q�7(=� 1;� n5" ÄE1;��+WÇ���W�jã $'&)(5$W�U]�l(S"���� ¼ $'&)(�. (28)

MTTF andvarianceof theinter-failuretime canbederived
in thesamemannerasin Section4.

Now considerthe time betweenevents C0�9+ V � n V ./.0.�I of
the point process*<$'&)( , where �S� indicatesthe execution
time of  -th run. Therearetwo typesof intervals �o� with
CDF " �W�jã $'&)( and " ��� ¼ $'&)( thatoccurin accordancewith a
DTMC transitionprobability matrix � given by (1). The
interval distribution of the point process*<$'&)( is " » $'&)(,	$W�\qfr(W"���� ã $4&)(98~fr"���� ¼ $'&)( wheref is givenby (4).

Thecorrelationalpropertiesof thesequenceC0� � I arede-
scribedby thelag 1 autocorrelationfunctionæ 	 g�hji � � �vV � �ED#+ �xQy%{2� �\� (29)

which can be shown to be equal to equation(30). The
derivationis notgivenheredueto thespacelimitations.

It follows from (30) that the executiontimesof succes-
sive softwareruns �o� arecorrelatedif theoutcomeof each
softwarerun is dependenton the outcomeof the previous
run uS+
�	 A , andtheexecutiontimesof thesuccessfuland
failed runshave differentmeans

e � � ���-ã �á�	 e � � ��� ¼ � . In
other words u + �	 A implies that the classesof succes-
sive eventsaredependent,but in order the timesbetween
eventsto bedependenttheadditionalcondition

e � ����� ã �\�	e � �o�W� ¼ � is necessary.

vi) Matrix form solution of the model
The model formulationand the derivation of the mea-

suresof interestpresentedin thepaperarean intuitive and
naturalway to view the problem. However, this approach
becomestoo cumbersomeif we considerthemodelwhich
consistsof DTMC with morestatesanddifferentdistribu-
tion functions" �Î� $4&)( attachedto thetransitionsfrom state 
to ! . In thatcaseit is reasonableto usethesolutionin ma-
trix form. For detailedandextensivetreatmentthereaderis
referredto [14].



æ 	 $ e � � ���jã �� e � � ��� ¼ �'( n $)�\}f%(Sf$W�\qfr(�xQy%{2� ����� ã �=8�fUxby%{=� ����� ¼ �B8:$)�\}fr(ofb$ e � ����� ã �� e � ����� ¼ �'( n ÉTuS+ (30)

8. Conclusion

The researchwork presentedin this paperis devotedto
the developmentof the modelingframework that consid-
ersa sequenceof possiblydependentsoftwarerunsanden-
ablesustostudytheeffectsof failurecorrelationonreliabil-
ity, performabilityandavailability of thesoftwaresystemin
operationalphase.TheproposedMarkov renewal approach
allowsa greatflexibility in building, solvingandgeneraliz-
ing themodel.Thus,wedescribeintuitively andseparately
thetwo elementsof randomnessin softwareoperation:the
uncertaintyabouttheoutcomesof thesoftwarerunsandthe
uncertaintyaboutthe time that takes the runs to be com-
pleted. Using the theoryof Markov renewal processeswe
have derived a numberof dependabilityand performabil-
ity measuresthatquantifysoftwarebehavior. We have also
presenteda brief discussionof thepossibleextensionsand
generalizationsof thepresentedmodel.

Theaim of this paperis to extendtheclassicalsoftware
reliability theory by incorporatingfailure correlationinto
thepredictionswhichwebelievehasimportantpracticalim-
plications.Theobtainedresultsclearlydemonstratethatas-
sumingindependenceamongsuccessive softwarerunswill
result in optimistic estimationswhen failuresdo occur in
clusters.It follows thattheeffectof correlationamongsuc-
cessivesoftwarefailureshasto betakeninto account,espe-
cially in applicationswherethekey issueis not to overesti-
matethedependabilityor performability. Thesubjectof our
future researchis the applicabilityof the modelto various
examplesof softwaresystemsin operation.
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