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Abstract

With the growing emphasis on reuse, software development process moves toward
component-based software design. As a result, there is a need for modeling ap-
proaches that are capable of considering the architecture of the software and es-
timating the reliability by taking into account the interactions between the com-
ponents, the utilization of the components, and the reliabilities of the components
and of their interfaces with other components. This paper details the state of the
architecture-based approach to reliability assessment of component based software
and describes how it can be used to examine software behavior right from the de-
sign stage to implementation and final deployment. First, the common requirements
of the architecture-based models are identified and the classification is proposed.
Then, the key models in each class are described in detail and the relation among
them is discussed. A critical analysis of underlying assumptions, limitations and
applicability of these models is provided which should be helpful in determining the
directions for future research.

Key words: Architecture-based software reliability, state-based models,
path—based models, additive models

1 Introduction

A number of analytical models have been proposed to address the problem
of quantifying the software reliability, one of the most important metrics of
software quality. The variety of existing software reliability models can be
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classified according to the several different classification systems [57]. The
classification proposed in [45] is based primarily on the phase of software life
cycle during which the models are applicable: debugging phase, validation
phase, or operational phase.

A great deal of research effort in the past has been focused on modeling the
reliability growth during the debugging phase. These so called black—box mod-
els treat the software as a monolithic whole, considering only its interactions
with external environment, without an attempt to model internal structure.
Usually, in these models no information other than the failure data is used.
The common feature of black-box models is the stochastic modeling of the
failure process, assuming some parametric model of cumulative number of fail-
ures over a finite time interval or of the time between failures. Failure data
obtained while the application is tested are then used to estimate model pa-
rameters or to calibrate the model. For extensive survey on the black-box
reliability growth models the reader is referred to books and papers such as
[40,57,45,13,11].

With the growing emphasis on reuse, an increasing number of organizations
are developing and using software not just as all-inclusive applications, as
in the past, but also as component parts of larger applications. The existing
black—box models are clearly inappropriate to model such a large component—
based software system. Instead, there is a need for a modeling technique which
can be used to analyze software components and how they fit together. The
goal of the white-box approach is to estimate the system reliability taking
into account the information about the architecture of the software made out
of components. The motivation for the use of architecture—based approach for
quantitative assessment of software systems include the following:

e developing techniques to analyze the reliability and performance of appli-
cations built from reusable and COTS software components

e understanding how the system reliability /performance depend on its com-
ponent reliabilities/performance and their interactions

e studying the sensitivity of the application reliability to reliabilities of com-
ponents and interfaces

e guiding the process of identifying critical components and interfaces

e developing techniques for quantitative analysis that are applicable through-
out the software life cycle.

Considering that software written from scratch is an exception, and that the
modern software engineering practice is rather to make evolutions from exist-
ing software, a logical consequence is to enhance the predictions performed for
a given product with field data relative to previous, similar, software products.
When only the architecture, and not the code, is available, one can build a
simulation model and conduct studies such as the ones designed to investigate



the impact of components on system reliability and performance for a given
architecture. Managers can use this information to rethink the system’s archi-
tecture and to plan resource allocation, for example. All such projections and
decisions would be constantly updated as new testing data become available.
Given the software architecture, information about the components and their
interactions, one can perform calculations in an enlightening what—if analysis.
What if a certain component were more or less reliable? How would that affect
system reliability? Since architecture-based approach allows insight into the
sensitivity of the total system to each component, it can be used to allocate
effort to those components that are critical from the reliability or performance
point of view. Architecture—based approach can be used to calculate system
reliability from components information, or to stipulate a system reliability
and calculate an allocated reliability of components. It can show the scale and
the scope of effort needed to demonstrate required levels of components reli-
abilities. Finally, it can shed light on the reasonableness of building a system
to desired levels of reliability on the basis of reusing a specific collection of
components.

The aim of this paper is to provide an overview of the architecture—based
approach to reliability assessment of software systems. The rest of the paper
is organized as follows. The common requirements of the architecture-based
models along with a classification are discussed in Section 2. The key mod-
els are classified and described in detail in Sections 3, 4, and 5. The relation
among existing models is discussed in Section 6, while the models assump-
tions, limitations and applicability are discussed in Section 7. The concluding
remarks are presented in Section 8.

2 Common requirements and classification

The main purpose of the following discussion is to focus attention on the
framework within which the existing architecture—based software reliability
models have been developed. Thus, different approaches for the architecture—
based reliability estimation of the software are based on the following common
steps.

Module identification

The basic entity in the architecture—based approach is the standard software
engineering concept of a module. Although there is no universally accepted
definition, a module is conceived as a logically independent component of the
system which performs a well-defined function. This implies that a module
can be designed, implemented, and tested independently. Module definition is
a user level task that depends on the factors such as system being analyzed,
possibility of getting the required data, etc. Module and component will be



used interchangeably in this paper.

Architecture of the software

The software behavior with respect to the manner in which the different mod-
ules of software interact is defined through the software architecture. Inter-
action occurs only by execution control transfer. In the case of sequential
software, at each instant, control lies in one and only one of the modules.
Software architecture may also include the information about the execution
time of each module.

Failure behavior

In the next step, the failure behavior is defined and associated with the soft-
ware architecture. Failure can happen during an execution period of any mod-
ule or during the control transfer between two modules. The failure behavior
of the modules and of the interfaces between the modules can be specified in
terms of their reliabilities or failure rates (constant or time—-dependent).

Combining the architecture with the failure behavior

Depending on the method used to combine the architecture of the software
with the failure behavior, the literature contains three essentially different ap-
proaches: state—based approach, path—based approach, and additive approach.
In the following sections the key models in each of the above classes are de-
scribed in detail. The order of listed models is temporal based on when the
paper was published.

3 State—based models

This class of models uses the control flow graph to represent the architecture
of the system. It is assumed that the transfer of control between modules has
a Markov property which means that given the knowledge of the module in
control at any given time, the future behavior of the system is conditionally
independent of the past behavior. The architecture of software has been mod-
eled as a discrete time Markov chain (DTMC), continuous time Markov chain
(CTMC), or semi Markov process (SMP). These can be further classified into
absorbing and irreducible. The former represents applications that operate
on demand for which software runs that correspond to terminating execution
can be clearly identified. The latter is well suited for continuously operating
software applications, such that in real time control systems, where it is ei-
ther difficult to determine what constitutes a run or there may be very large
number of such runs if it is assumed that each cycle consists a run.

As suggested in [15], state—based models can be classified as either composite
or hierarchical. The composite method combines the architecture of the soft-



ware with the failure behavior into a composite model which is then solved
to predict reliability of the application. The other possibility is to take the
hierarchical approach, that is, to solve first the architectural model and then
to superimpose the failure behavior on the solution of the architectural model
in order to predict reliability.

Littlewood model [35]
This is one of the earliest, yet a fairly general architecture-based software
reliability model.

Architecture. It is assumed that software architecture of continuously run-
ning application can be described by an irreducible semi Markov process, thus
extending and generalizing the previous work [34] which describes software ar-
chitecture with continuous time Markov chain. The program comprises a finite
number of modules and the transfer of control between modules is described by
the probability p;; = Pr{program transits from module 7 to module j}. The
time spent in each module has a general distribution F;;(¢t) which depends
upon ¢ and j, with finite mean m;;.

Failure behavior. When module i is executed, failures occur according to a
Poisson process with parameter \;. The transfer of control between modules
(interfaces) are themselves subject to failure; when module i calls module j
there is a probability v;; of a failure occurring.

Solution method. The interest of the composite model is focused on the total
number of failures of the integrated software system in time interval (0, ],
denoted by N(t), which is the sum of the failures in different modules during
their sojourn times, together with the interface failures. It is possible to obtain
the complete description of this failure point process, but since the exact result
is very complex, it is unlikely to be of practical use. The asymptotic Poisson
process approximation for N () is obtained under the assumption that failures
are very infrequent. Thus, the times between failures will tend to be much
larger than the times between exchanges of control, that is, many exchanges
of control would take place between successive program failures. The failure
rate of this Poisson process is given by

)\5 = Z ai)\i + Z bijl/ij
i %,

where

g = T 2.5 Pijmij
.=
220 i 224 DigMiij




represents the proportion of time spent in module 7, and
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is the frequency of transfer of control between 7 and j. These terms depend
only on parameters that characterize software architecture: transition prob-
abilities p;;, mean execution times m;;, and steady-state probabilities of the
embedded Markov chain ;.

Cheung model [4]
This model considers the software reliability with respect to the module’s
utilization and their reliabilities.

Architecture. It is assumed that the program flow graph of a terminating
application has a single entry and a single exit node, and that the transfer
of control among modules can be described by an absorbing discrete time
Markov chain with a transition probability matrix P = [p;;].

Failure behavior. Modules fail independently and the reliability of the module
1 is the probability R; that the module performs its function correctly, i.e., the
module produces the correct output and transfers control to the next module
correctly.

Solution method. Two absorbing states C' and F' are added, representing the
correct output and failure respectively, and the transition probability matrix P
is modified appropriately to P. The original transition probability p;; between
the modules 7 and j is modified into R; p;;, which represents the probability
that the module ¢ produces the correct result and the control is transferred
to module j. From the exit state n, a directed edge to state C is created with
transition probability R, to represent the correct execution. The failure of a
module 7 is considered by creating a directed edge to failure state F' with tran-
sition probability (1 — R;). Thus, DTMC defined with transition probability
matrix P is a composite model of the software system. The reliability of the
program is the probability of reaching the absorbing state C' of the DTMC.
Let @ be the matrix obtained from P by deleting rows and columns corre-
sponding to the absorbing states C and F. Q¥(1, n) represents the probability
of reaching state n from 1 through k transitions. From initial state 1 to final
state n, the number of transitions £ may vary from 0 to infinity. It is not
difficult to show that

S:I+Q+Q2+Q3+...=iQ’E(I—Q)*Ia
k=0



so it follows that the overall system reliability can be computed as

R=S5(1,n) R,.

Cheung’s model is used in [55] to estimate the reliability of various hetero-
geneous software architectures such as batch-sequential/pipeline, call-and-
return, parallel/pipe—filters, and fault tolerance. This model is also integrated
in the Cleanroom Reliability Menager [44] whose aim is planning and certifi-
cation of component—based software system reliability.

Laprie model [29]
This model is a special case of Littlewood model and the result, although
obtained in a different way, agrees with those given in [34].

Architecture. The software system is made up of n components and the transfer
of control between components is described by a continuous time Markov
chain. The parameters are the mean execution time of a component 7 given
by 1/u; and the probability p;; that component j is executed after component
1 given that no failure occurred during the execution of component .

Failure behavior. Each component fails with constant failure rate \;.

Solution method. The model of the system is an n + 1 state CTMC where the
system is up in the states 7,0 < i < n (componet i is executed without failure
in state i) and the (n + 1)th state (absorbing state) being the down state
reached after a failure occurrence. The associated generator matrix between
the up states B = [b;;] is given by

bii = — (i + i)
bij = pijii,  for i j.

The matrix B is seen as the sum of two generator matrices such that

e the execution process is governed by B’ whose diagonal entries are equal to
—p; and its off-diagonal entries to p;;u;

e the failure process is governed by B” whose diagonal entries are equal to
—\; and off-diagonal entries are zero.

It is assumed that the failure rates are much smaller than the execution rates,
and thus many exchanges of control are expected to take place before a failure
occurs, that is, the execution process converges towards steady—state before
a failure is likely to occur. Thus, the consequence of the assumption \; < py;
is the asymptotic behavior relative to the execution process which enables to



adopt the hierarchical solution method. As a consequence, the system failure
rate tends to

As = DA
im1

where the steady-state probability vector m = [r;] is the solution of 7B’ = 0.
This result has a simple physical interpretation keeping in mind that ; is the
proportion of time spent in state ¢ when no failure occurs. The term 7;\; can
therefore be considered as the equivalent failure rate of component ;.

Laprie and Kanoun in [31] considered the problem of modeling system’s relia-
bility and availability that covers both hardware and software. Considering the
system made out of components they propose a variation of the above model
such that the states of the CTMC are defined by more than one component
under execution at a time. The system makes a transition between the states
when there is a start or end of the execution of one or several components.

Kubat model [27]

This model considers the case of a terminating software application composed
of n modules designed for K different tasks. Each task may require several
modules and the same module can be used for different tasks.

Architecture. Transitions between modules follow a discrete time Markov chain
such that with probability ¢;(k) task & will first call module 7 and with proba-
bility p;;(k) task &k will call module j after executing in module i. The sojourn
time during the visit in module ¢ by task & has the pdf g;(k,t). Thus, the
architecture model for each task becomes a semi Markov process.

Failure model. The failure intensity of module 7 is \;.

Solution method. The probability that no failure occurs during the execution
of task £ while in module 7 is

Ri(k) = / e Nt gi(k, 1) dt.
0

The expected number of visits in module i by task &, denoted by V;(k), can
be obtained by solving

The probability that there will be no failure when running for task £ can be



approximated by

R(K) = H [R(k)]®

and the system failure rate is calculated by

As = > gl — R()]

k=1

where 7}, is the arrival rate of task k.

Gokhale et al. model [17]

The novelty of this work lies in the attempt to determine the architecture of
the software and the reliabilities of its components experimentally by testing
the application using the regression test suite.

Architecture. The terminating application is described by an absorbing discrete
time Markov chain. The trace data produced by the coverage analysis tool
called ATAC [20] during the testing is used to determine the the transition
probabilities p;; between modules. The expected time spent in a module % per
visit ¢; is computed as a product of the expected execution time of each block
and the number of blocks in the module.

Failure behavior. The failure behavior of each component is described by the
enhanced non-homogeneous Poisson process model using a time-dependent
failure intensity A;(¢) determined by block coverage measurements during the
testing of the application together with the fault density approach.

Solution method. The expected number of visits to module 7, denoted by V;,
is computed as in [27] by solving the following system of linear equations

Vi=q¢+ > V;pji

i=1

where g denotes the initial state probability vector.

The reliability of module i, given time—dependent failure intensity \;(¢) and the
total expected time V;t; spent in the module per execution of the application,
is given by

R, =¢" OViti Ai(t) dt



Thus, the reliability of the overall application becomes

Ledoux model [32]

This recent work proposes an extension of the Littlewood model [34] to include
the way failure processes affect the execution and to deal with the delays in
recovering an operational state.

Architecture. A software composed of a set of components C is modeled by an
irreducible continuous time Markov chain with transition rates g;;.

Failure behavior. Two types of failures are considered: primary failure and
secondary failure. The primary failure leads to an execution break; the execu-
tion is restarted after some delay. A secondary failure, as in [34,35,29], does
not affect the software because the execution is assumed to be restarted in-
stantaneously when the failure appears. Thus, for an active component ¢;, a
primary failure occurs with constant rate A}, while the secondary failures are
described as Poisson process with rate A. When control is transferred between
two components i and j then a primary (secondary) interface failure occurs
with probability 1/1’-1- (I/Z';)

Solution method. Following the occurrence of a primary failure a recovery
state is occupied, and the delay of the execution break is a random variable
with a phase type distribution. Denoting by R the set of recovery states, the
state space becomes C U R. Thus, the CTMC that defines the architecture is
replaced by a CTMC that models alternation of operational-recovery periods.
The associated generator matrix defines the following transition rates: from c;
to ¢; with no failure, from ¢; to ¢; with a secondary failure, from ¢; to ¢; with
a primary failure, from recovery state i to recovery state j, and from recovery
state ¢ to c;.

Based on the composite model described above the following measures are
evaluated numerically: distribution function of the number of failures in a
fixed mission, time to the first failure, point availability and failure intensity
function.

Gokhale et al. reliability simulation approach [14]

This work demonstrates the flexibility offered by discrete event simulation to
analyze component—based applications. The case study of a terminating appli-
cation considers time—dependent failure rate of each component, finite debug-
ging time, and fault—tolerant configurations for some of the components. Since
the analytical model of such a system is intractable, discrete event simulation
is an attractive alternative to study the influence of different factors on the
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failure behavior of the application.

4 Path-based models

This class of models is based on the same common steps as the state—based
models, except that the approach taken to combine the software architecture
with the failure behavior can be described as a path—based since the system
reliability is computed considering the possible execution paths of the program
either experimentally by testing or algorithmically.

Shooman model [48]

This is one of the earliest models that considers reliability of modular pro-
grams, introducing the path—based approach by using the frequencies with
which different paths are run.

Architecture. The model assumes the knowledge of the different paths and the
frequencies f; with which path ¢ is run.

Failure behavior. The failure probability of the path ¢ on each run, denoted
by ¢;, characterizes the failure behavior.

Method of analysis. The total number of failures ny in IV test runs is given by

ny = Z N fiq;
i=1

where N f; is the total number of traversals of path 7. The system probability
of failure on any test run is given by

ny

m
qo = A}l_lgoﬁ = ;fiqi-

Krishnamurthy and Mathur model [26]

This method for combining the architecture and failure behavior first involves
computing the path reliability estimates based on the sequence of components
executed for each test run, and then averaging them over all test runs to obtain
an estimate of the system reliability.

Architecture. A sequence of components along different paths is observed using
the component traces collected during the testing or simulation of the program
behavior.

Failure behavior. Each component is characterized by its reliability R,,.
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Method of analysis. A sequence of components along a path traversed for test
case tc are considered as a series system. Assuming that individual compo-
nents fail independently of each other it follows that the path reliability is the
product of components reliabilities. The component trace of a program P for
a given test case tc, denoted by M (P, tc), is the sequence of components m
executed when P is executed against tc. Thus, the reliability of a path in P
traversed when P is executed on test case tc € TS is given by

Rt - H Rm-

VYmée M (P,tc)

The reliability estimate of a program with respect to a test set TS is

Lvicers i
R=—7——
TS|

An interesting case occurs when most paths executed have components within
loops and these loops are traversed a sufficiently large number of times. Then
individual path reliabilities are likely to become low resulting in low system
reliability estimates. By execution of a component an arbitrarily large number
of times, it is easy to bring the system reliability estimate much below its
true reliability if intra-component dependency is ignored. In this work intra—
component dependency is modeled by “collapsing” multiple occurrences of
a component on an execution path into k£ occurrences, where £ > 0. k is
referred as the degree of independence (DOI), such that complete dependence
is modeled by setting DOI to 1 and complete independence by setting DOI to
0o. At this point it is not clear how one should determine a suitable value of
DOIL.

An alternative way to resolve the issue of intra—component dependency is
proposed in [16]. The solution of dependency characterization of a component
that is invoked inside a loop n times with a fixed execution time spent in the
component per visit relies on the time-dependent failure intensity of a com-
ponent. However, if the constant failure rate is assumed the solution reduces
to the multiple independent executions of the component.

Yacoub, Cukic and Ammar model [59]

This reliability analysis technique is specific for component-based software
whose analysis is strictly based on execution scenarios. A scenario is a set of
component interactions triggered by specific input stimulus, and it is related
to the concept of operations and run—types used in operational profiles [41].

Architecture. Using scenarios, a probabilistic model named Component Depen-
dency Graph (CDG) is constructed. A node n; of CDG models a component
execution with an average execution time ¢;. The transition probability p;; is
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associated with each directed edge e that models the transition from node n;
to nj. CDG has two additional nodes, s—start node and t-termination node.

Failure behavior. The failure process considers component reliabilities R; and
transition reliabilities (1 —1;;) associated with a node n; and with a transition
from node n; to n;, respectively.

Method of analysis. Based on CDG a tree-traversal algorithm is presented to
estimate the reliability of the application as a function of reliabilities of its
components and interfaces. The algorithm expands all branches of the CDG
starting from the start node. The breadth expansions of the tree represent
logical “OR” paths and are hence translated as the summation of reliabilities
weighted by the transition probability along each path. The depth of each
path represents the sequential execution of components, the logical “AND”,
and is hence translated to multiplication of reliabilities. The depth expansion
of a path terminates when the next node is a terminating node (a natural end
of an application execution) or when the summation of execution time of that
thread sums to the average execution time of a scenario. The latter condition
guaranties that the loops between two or more components don’t lead to a
deadlock.

5 Additive models

This class of models does not consider explicitly the architecture of the soft-
ware. Rather, they are focused on estimating the overall application reliabil-
ity using the component’s failure data. It should be noted that these models
consider software reliability growth. They are called additive models since
under the assumption that component’s reliability can be modeled by non—
homogeneous Poisson process (NHPP) the system failure intensity can be
expressed as the sum of component failure intensities.

Xie and Wohlin model [58]

This model considers a software system composed of n components which may
be developed in parallel and tested independently. Assuming that a compo-
nent failure is a system failure, from the reliability point view, the system can
be considered as a series system. If the component reliabilities are modeled by
NHPP with failure intensity A;(¢) then the system failure intensity is

As(t) = Mi(t) + Xa(t) + ... + Ma(t),
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that is, the expected cumulative number of system failures by time ¢, known
as mean value function, is given by
n 14 n
ps(t) = Yo m(t) = [ Y nlr)dr.

=1 O’Ll

When this additive model is used the most immediate problem is that the
starting time may not be the same for all components, that is, some compo-
nents may be introduced into the system later in the testing process. In that
case, the time of the corresponding mean value function and failure intensity
have to be adjusted appropriately to consider different starting points for dif-
ferent components.

Everett model [10]

This approach considers the software made out of components, and addresses
the problem of estimating individual component’s reliability. Reliability of
each component is analyzed using the Extended Execution Time (EET) model
whose parameters can be determined directly from properties of the software
and from the information on how test cases and operational usage stresses
each component. Properties which affect component reliability are divided
into static properties and dynamic properties. In addition, it must be charac-
terized how usage stresses each component, both during testing periods and
for periods when software is in operational use. For software the stressor of a
component is the amount of processing time spent in a component. Therefore,
this approach requires to keep track of the cumulative processing time per
component.

The combined model for the overall system superimposes components reli-
abilities. When the underlying EET models for the components are non-
homogeneous Poisson process models, the cumulative number of failures and
failure intensity functions for the superposition of such models is just the sum
of the corresponding functions for each component.

6 Models relation and unification

In published papers on architecture-based approach to software reliability a
large number of variants have been proposed, mostly by ad hoc methods. These
have frequently tended to obscure the unifying structural properties common
to many such variants. The mathematical treatment of these models becomes
evident once their common structure is exhibited. In this section we discuss
the relation and uniformization of the existing architecture—based software
reliability models.

14



6.1 State—based models

Architecture-based software reliability models assume that components fail
independently and that a component failure will ultimately lead to a system
failure. In hardware system reliability it is generally considered that all com-
ponents are continuously active which corresponds to the usual equation for
the reliability of a series system

The key question in software system reliability is how to account for compo-
nent’s utilization, that is, for the stress imposed on each component during
execution.

First, consider a terminating application whose architecture is described with
DTMC. The absorbing DTMC can provide the average number of times each
component is executed, denoted by V;, as a measure of utilization of a compo-
nent. Then RZV" can be considered as the equivalent reliability of component 7
that takes into account the component utilization. Thus, the system reliability
becomes

R=][R}

=1

which is the hierarchical approach to reliability estimation of the Cheung
model [4].

Basically, this is the solution approach taken in [27]. The components reli-
abilities are estimated as the probability that no failure occurs during the
execution time of component 7

Ri = /e_)‘it gz(t) dt
0

and the embedded DTMC of the SMP that describes the software architecture
provides the average number of times V; each component is executed. Thus,
the hierarchical treatment of this model reduces to the hierarchical treatment
of the Cheung model.

The hierarchical approach in [17] estimates the component reliabilities consid-
ering time—dependent failure rates \;(¢) and the utilization of the components

15



through the cumulative expected time spent in the component per execution
Vit

R, =e” ovm Ait) dt

The system reliability then becomes R =[], R;.

As noted before, the common feature of the above models is that a software
runs that correspond to terminating executions of software application can be
clearly identified. Thus, the relevant measure is the reliability R of the single
execution of software application, that is, so called probability of failure per
demand 1 — R.

Now, consider the continuously running applications. In [34] the moment gen-
erating function of number of failures N(¢) is derived from the composite model
and it is concluded that the analytically tractable results can not be obtained.
However, the asymptotic analysis of the model led to Poisson process with
parameter

i+ Qisz'j:|

J#i

)\5 = ZWZ‘

where 7 = [m;] is the equilibrium vector of the irreducible CTMC with tran-
sition rate matrix Q = [g;], i.e. 7@ = 0. The term in the parentheses
A= M\ + > j#i QijVij can be interpreted as a failure rate of component ¢
that includes the internal component failure rate A; and the failure rate due
to the failures that occur during interaction with other components. Thus,
gi;jvij gives the interface failure rates characterizing the failures occurring dur-
ing interaction of components 7 and j. Summing over j, therefore, gives the
the total interface failure rate from state 7. Since, the steady—state probability
m; represents the average proportion of time spent in state ¢ in the absence
of failure, the term 7;A; can therefore be considered as the equivalent failure
rate of component 7 that takes into account the component utilization.

The model presented in [29] is the special case of [34] which considers only
component failures. In this case the equivalent failure rate

)\S = Z?TZ)\Z

is obtained using the hierarchical method based on probabilistic arguments.
It is obvious that this is a special case of A\g obtained in [34] for v;; = 0.
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These results deserve a few comments. First, the asymptotic Poisson process
can be seen as a superposition of Poisson processes with parameters m;A;,
which is closely related to the approach taken in additive models.

Further, consider the probability that there will be no failure up to time ¢,
that is, the system reliability

R(t) — e—/\st — e~ E?:l il t — l_n[ e—Ai it ]
i=1

m; represents the proportion of time spent in state ¢ in the absence of failure;
thus m;t represents the cumulative execution time spent in a component i
up to time £. For hardware systems it is considered that all components are
continuously active which corresponds to making all the ;’s equal to 1 [31].
From the reliability point of view, this leads to the usual equation for a series
system with a number of subsystems with exponentially distributed time to
failure.

Basically, the above models are the special cases of the versatile Markov point
process introduced by Neuts in [43] which was recently shown to be equiv-
alent to Batch Markovian Arrival Process [37]. Since this is a rich class of
point processes for which many relevant probability distributions, moment
and correlation formulas can be obtained in forms which are computation-
ally tractable, they have been used extensively to model arrival processes in
queuing theory.

The construction of the versatile Markov point process is as follows. Consider
an n + 1 state CTMC with n transient states and one absorbing state. The
infinitesimal generator Q* obtained after deletion of the absorbing state is
irreducible and describes the CTMC obtained by resetting the original CTMC
instantaneously using the same initial probabilities, whenever an absorption
into state n+ 1 occurs. The times of absorption (and resetting) form a renewal
process with the underlying phase-type distribution.

The point process is constructed by starting with this phase-type renewal
process as a substratum. Three types of arrival epochs which are related to
the evolution of the phase—type renewal process are considered. There are
Poisson arrivals with arbitrary batch size distributions during sojourns in the
states of the CTMC governing the renewal process. The arrival rates of the
Poisson process and the batch size distributions may depend on the state of
the CTMC. The underlying CTMC can change states either with or without a
corresponding renewal. Each time the process changes states there is a batch
arrival (the batch size may be 0) where the batch size can depend on the states
before and after the change as well as whether or not a renewal occurred.
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Let N(t) and X(¢) denote respectively the number of arrivals in (0,%] and
the state of the irreducible CTMC defined by Q* at time ¢. The process
{N(t), X (t),t > 0} is a CTMC with state space {k > 0} x {1,...n}. The
close relation of the BMAP with the finite CTMC results in the matrix—
analytic approach that substantially reduces the computational complexity of
the algorithmic solution.

It is obvious that [34,29,32] are the special cases of the BMAP. Thus, in [34,32]
only the arrivals with batch size 1 are considered which leads to the special
case of BMAP, so called Markovian Arrival Process (MAP) [37]. The model
presented in [29] that considers only the Poisson arrivals during sojourn times
in the states of the Markov process is doubly stochastic Poisson process known

as Markov modulated Poisson process (MMPP) [37].

Ledoux model [32], which generalizes [34,29], is a composite model. The so-
lution method used in this paper is based on the the matrix—analytical ap-
proach that was pioneered by Neuts [43]. Thus, many relevant quantities con-
nected with the failure point process are derived in forms which are com-
putationally tractable. These include the distribution function of the num-
ber of failures N(¢) in (0,¢], waiting time the to first failure, i.e reliability
R(t) = Pr{T > t} = Pr{N(t) = 0}, expected number of failures E[N(¢)] in
(0,t], and failure intensity function A(t).

It is well known that interarrival times of BMAP are phase-type, and that
a phase—type distribution with an irreducible matrix is asymptotically expo-
nential with the eigenvalue of maximal real part Ag of matrix as parameter.
The scalar g, known as fundamental arrival rate for the point process [37],
can be interpreted as the asymptotic failure rate of the system when ¢t — oc.
In other words, when ¢ — oo the failure intensity function h(t) becomes a
constant value h(oco) = Ag. Using this approach in [32] the Poisson approx-
imation is compared with the transient solution for the point process of the
composite model. If only secondary failures are considered the asymptotic fail-
ure rate reduces to the one obtained in [34], i.e. [29] which is the parameter
of the Poisson distribution that approximates the distribution for the number
of failures N(t) in (0, ¢].

Let us now consider Littlewood model [35] which assumes that software archi-
tecture can be described with SMP. The exact non-asymptotic analysis of the
composite model becomes very difficult. However, under the assumption that
many exchanges of control will take place between successive program fail-
ures the failure point process is asymptotically the Poisson process, as stated
in [35]. The equivalent failure rate of the asymptotic Poisson process can be
derived using the hierarchical method based on probabilistic arguments as fol-
lows. The solution of the architecture model can be obtained using the well
known limiting behavior of semi Markov processes [28]. Thus, architecture
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model provides the limiting proportion of time spent in each module 7 and
limiting number of ¢ to j transfers of control per unit of time, denoted by «;
and b;; respectively, as the measures of components and interfaces utilization.
Then, the failure behavior is superimposed onto the solution from architecture
model to obtain the equivalent failure rate

)\5 = Z a,-/\i + Z bijllij.
i 1,5

6.2 Path-based models

Similar to state—based models, path—based models consider the software archi-
tecture explicitly and assume that components fail independently. However,
the method of combining software architecture with components and interfaces
failure behavior is not analytical. First, the sequence of components executed
along each path is obtained either experimentally by testing [26] or algorith-
mically [59] and the path reliability is obtained by multiplying the reliabilities
of the components along that path. Then, the system reliability is estimated
by averaging path reliabilities over all paths. Thus, these models account for
each component utilization along each path, as well as among different paths.

The difference between the state—based approach and path—based approach
becomes evident when the control flow graph of the application contains loops.
State-based models analytically account for the infinite number of paths due
to the loops that might exist; in the case of path—based models either the
number of paths is restricted to ones observed experimentally during the test-
ing [26] or the depth traversal of each path is terminated using the average
execution time of the application [59].

6.3 Additive models

Additive models [58,10] consider software testing phase and assume that each
component reliability can be modeled by non-homogeneous Poisson process.
They can be seen as a superposition of non-homogeneous Poisson processes.
It is well known that if the component failure processes are modeled by a
NHPP, then system failure process is also NHPP with the cumulative number
of failures and failure intensity function that are the sums of the corresponding
functions for each component. However, the models differ in the following.

In [58] the time of the corresponding functions is adjusted appropriately to
consider the time when different components are incorporated into the sys-
tem. This model does not consider the software architecture, that is, different
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utilization of the components.

The model used for capturing component’s reliability growth in [10] includes
the information about the relative usage stress imposed on each component as
a parameter of the model. Also, the cumulative execution time spent in each
component obtained during the testing is used to compute the cumulative
number of failures and failure intensity function for the individual components.
Therefore, this model considers the utilization of software components, that
is, the software architecture implicitly. In other words, this approach is closely
related to the approach for estimating components reliabilities presented in
[17] that explicitly takes into account the software architecture.

7 Models assumptions, limitations and applicability

The benefit of the architecture-based approach is evident in the context of
software system that is developed as a heterogeneous mixture of newly de-
veloped, reused and COTS components. However, this approach appears to
add complexity to the models and to data collection as well. Many questions
related to the architecture—based approach to quantitative assessment of soft-
ware systems are still unanswered, and more research in this area is needed,
in particular when it comes to the issues indicated below.

Level of decomposition

There is a trade off in defining the components. Too many small components
could lead to a large state space which may pose difficulties in measurements,
parametrization, and of the model. On the other hand, too few components
may cause the distinction of how different components contribute to the sys-
tem failures to be lost. The level of decomposition clearly depends on the
tradeoff between the number of components, their complexity and the avail-
able information about each component.

Numerous papers deal with the architecture-based reliability modeling, but
just a few experimental studies has been published so far. The choices made in
these experiments for the level of decomposition are very diverse. For example,
two decompositions of the telephone switching software system were consid-
ered in [22]: decomposition into four groups according to the main functions
of the system, and decomposition into four classes according to the failure
consequences. The experiment reported in [26] uses the decomposition based
on the standard components of the Unix utility grep. In [17] the decomposition
of SHARPE, a tool used to solve stochastic models of reliability, performance
and performability [46], is based on the file level; each of the 30 files is regarded
as a single component. The case study presented in [59] uses the application
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that simulates the behavior of waiting queues which is composed of six reused
components.

Estimation of indiwidual component reliabilities

Most of the papers on architecture—based reliability estimation assume that
component reliabilities are available, that is, ignore the issue of how they
can be determined. Assessing the reliability of individual components clearly
depends on the factors such as whether or not component code is available,
how well the component has been tested, and whether it is a reused or a new
component.

Of course, one might argue that the reliability growth models can be applied
to each software component exploiting component’s failure data. For example,
Kanoun et al. [22] applied the model based on nonhomogeneous Poisson pro-
cess, the hyperexponential model, in order to estimate the stationary failure
rates of components. This study has been conducted on the information con-
cerning the failures of a telephone switching system which were observed over
three years including the validation and operational phases. Gokhale et al. [17]
used the enhanced NHPP model, proposing a method for determining compo-
nent’s time—dependent failure intensity based on block coverage measurement,
during the testing. Everett [10] identified guidelines for estimating reliability
of the newly developed components based on the Extended Execution Time
model whose parameters are related to the component’s static and dynamic
properties and the usage of each component.

However, it is not always possible to use software reliability growth models for
estimating the individual component’s reliability. A difficulty could arise due
to the scarcity of failure data. Predictions based on failure data are of interest
only if enough data are available in order to be statistically representative.
Further difficulties are due to the fact that the underling assumptions of soft-
ware reliability growth models such as random testing performed accordingly
to the operational profile and the independence of successive testing runs can
be seriously violated during the unit testing phase [18].

Another class of models estimate reliability from explicit consideration of non—
failed executions, possibly together with failures [42,38,44,36]. Such models
can be used to make reliability estimations of the software based on the re-
sults of testing performed in its validation phase. In this phase no changes are
made to the software, and these models can be termed as stable reliability
models. In this context, testing is not a development activity for discovering
faults, but an independent assessment of the software execution in represen-
tative operational environment. The problem which arises with these models
is the number of executions necessary for estimating reliability levels which
are commensurate with reasonable expectations. The probabilistic assessment
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of software reliability to levels required in the safety—critical applications, e.g.
failure rate 107°/h or 1075 failure probability per demand, is currently out
of reach [3], since random testing would require decades of testing before it
could establish a reasonable statistical confidence in the reliability estimate. It
is generally agreed that a practical current limit in the assessment of a failure
rate before operational use lies in the range 1072/h - 107*/h [30].

Several other techniques for estimating component’s reliability have been pro-
posed. Krishnamurthy et al. [26] used the method of seeding faults. Voas
[53] examined a method to determine the quality of COTS components us-
ing black-box component testing and system-level fault injection. However, a
difficulty with fault—based techniques is that they are only as powerful as the
range of fault classes that they simulate [52].

Estimation of interface reliabilities

There seems to be little information available about interface failures, apart
from general agreement that they exist separately from component failures
which are revealed during the unit testing. The interface between two compo-
nents could be another component, a collection of global variables, a collection
of parameters, a set of files, or any combination of these. In practice, one needs
to estimate the reliability of each interface. When an interface is a program,
any of the methods mentioned above can be used to estimate their reliabilities.
However, when an interface consists of items such as global variables, param-
eters, and files, it is not clear how to estimate reliability. Some explanation
and analysis about the interfaces between components has been performed by
Voas et al. [51]. Also, method for integration testing proposed by Delamaro et
al. [7] seems promising for estimating interface reliabilities.

Validity of Markov assumption

All state—space models assume that the next component to be executed will
depend probabilistically on the present component only and is independent of
the past history, that is, they assume that the embedded Markov chain is a
first—order chain. However, this needs to be justified which is common to all
situations where a Markov assumption is made. For example, the hypothesis
that the chain is of a given order is tested in [19] for the stochastic model that
characterizes the interactive workload.

If the probability to find the system in given state (executing a specified
component) does not depend only on the last executed component but on a
given number of components which were executed before the specified state
was entered then the system can be described by a model of higher order.
It is well known that a higher order Markov chain can be represented as a
first order chain by redefining the state space appropriately [6]. Consider a
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second order Markov chain and let the pair of successive states ¢ and j define
a composite state (7,7). Then the transition probability to composite state
(4, k) given the composite state (¢, j) is pijx. The composite states are easily
seen to form a chain with n? states with certain transition probabilities 0. This
representation is useful because the results for the first order Markov chain
can be carried over. Higher order Markov chain can be handled in a similar
way. If the system can be described by a model of order r the state space is
defined by a set of all possible r-tuples and the number of elements in the
state space becomes n'.

The higher order Markov chain enables us to consider the situations when the
execution time of a component and its failure behavior are dependent on the
number of components along the path from which the control was transferred.
This fact was recognized in [32]. However, the size of the state space grows fast
with the number of components which makes model specification and analysis
difficult and error—prone process, requires considerable amount of data, and
imposes difficulties in both measurements and parametrization.

Estimation of transition probabilities

In architecture—based approach, one must model the interaction of all compo-
nents. In well designed system, interaction among components is limited. In
most cases many interactions among components will be impossible, that is,
transition probability matrix will be sparse. During the early phases of soft-
ware life cycle, each component could be examined to find with which compo-
nents it cannot interact. The remaining, non-zero transition probabilities may
be available by analyzing program structure and using known operational pro-
files. More likely it will be necessary to estimate the transition probabilities.
During the design phase, before actual development and integration phases, it
can be done by simulation. During the integration phase, as new data become
available, the estimates have to be updated thereby improving the predictions.
Fortunately, good estimates can be obtained very early due to the high speed
of control exchanges. The estimation of transition probabilities must be as
accurate as possible since the error in this process will definitely affect system
reliability and components sensitivities.

The following two papers demonstrate two different approaches for estimat-
ing transition probabilities. In [59] first the estimates of the probabilities of
execution of different scenarios are obtained based on the operational profile.
Then, using the analysis scenarios the transitions probabilities are calculated.
In [17] the transition probabilities are computed based on the execution counts
extracted from the ATAC trace files obtained during coverage testing.

Operational profile
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Software reliability models assume that random test selection is guided ac-
cordingly to the user’s operational profile [41]. Test selection aimed at finding
faults, increasing various structure coverages or demonstrating different func-
tional requirements are not representative of the user’s operational profile and
might lead to reliability estimate different from one perceived by the user of
the system. Further, upgrades to software might invalidate any existing esti-
mate of operational profile because new features can change the ways in which
the software is used. Therefore, it will be necessary to revise the architecture
that describes component interaction. The most radical change is to remove or
add states and associated transitions, which corresponds to a major architec-
tural change. A less radical change is to remove or add transitions or change
the transition probabilities without changing the components themselves.

Also, care must be taken to ensure that the change of operational profile is
considered in assessing component’s reliability. In [56] it is suggested that a re-
liability measure of a component developed for reuse is attached to the actual
operational profile used during certification. Then, it is necessary to compare
the certified operational profile with the environment in which the component
is to be reused. If the component has not been certified for the operational
profile of the new system, a new certification must be performed.

Considering failure dependencies among components and interfaces

Without exception the existing models assume that the failure processes as-
sociated across different components are mutually independent. When con-
sidered, the interface failures are also assumed to be mutually independent
and independent of the component’s failure processes. However, if the failure
behavior of a component is affected in any way by the previous component
being executed, or by the interface between them, these assumptions are no
longer acceptable. This dependence can be referred as inter-component de-
pendence [26]. One way to encounter for inter-component dependence in the
case of state space models would be to consider Markov chain of higher order
as discussed above. Intra—component dependence can arise, for example, when
a component is invoked more than once in a loop by another component. An
attempt to address intra—component dependence was made in [26,16].

Extracting software architecture

The architecture of an application may not always be readily available. In
such cases, it has to be extracted from the source code or the object code
of the application. Techniques and tools for extraction of static architectural
information can be either parser—based or lexically-based [39], while the sys-
tem’s dynamic behavior can be captured using profilers or test coverage tools.
Recently, a workbench for architectural extraction, called Dali, that fuses dif-
ferent architectural views was developed [23].
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Next a brief description of the tools that are currently used at Duke University
to extract the dynamic view of the software architecture is presented.

e The GNU profiler gprof [60] for C and C++ programs can be used to obtain
a flat profile and a call graph for the program. The flat profile shows the time
spent in each function and the number of times the function was visited.
The call graph shows for each function which functions called it, which
functions it calls, how many times, and an estimate of the time spent in the
subroutines of each function. From the call graph, the architecture of the
application can be specified in terms of a control flow graph. Information
on the number of times each function calls other functions can be used
to obtain the transition probabilities from one function to another. Some
architecture-based models also need information on the time spent in each
module which can be obtained from the flat profile.

e xYATAC [20] is a coverage testing tool that is part of the Software Visual-
ization and Analysis Toolsuite (xSuds) [61] developed by Telcordia Tech-
nologies. It can report various code coverage measures that help evaluate
the quality of a test suite. It also provides a command interface that can be
used to query the log files produced in the process of obtaining code cov-
erage information, thus providing information on visit counts at a level as
low as a block of code. Information on the number of times each block calls
other blocks can also be obtained. From the knowledge of visit counts and
sequence of transitions, the architecture of the software can be extracted at
different levels of granularity. YATAC is especially useful when the coverage
information from testing is used to estimate component reliabilities, as both
coverage and architecture information can be obtained using the same tool
[17].

e The ATOM toolkit is part of the Compaq Tru64 Unix (formerly Digital
Unix) [62] operating system. It consists of a programmable instrumentation
tool and several packaged tools. Prepackaged tools that are available and
useful for extracting the architecture of an application include: obtaining a
flat profile of an application that shows the execution time for a procedure;
counting the number of times each basic block is executed, number of times
each procedure is called, and the number of instructions executed by each
procedure; printing the name of each procedure as it is called. These tools
can be used to specify the architecture of an application by means of a call
graph, the transition probabilities from one component of the software to
another, or time spent in each component.

ATOM has the following favorable features. It does not need the source
code of the application, but rather operates on object modules. Therefore,
the use of ATOM is independent of any compiler and language. Also, the
instrumentation and analysis routines that form the ATOM toolkit can be
user—defined which can be useful in obtaining data required to parameter-
ize a wider range of architecture-based models. However, ATOM is only
available as part of the Compaq Tru64 UNIX operating system.
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Sensitivity analysis

Since the architecture—based approach allows insight into the contribution
made by each component to the unreliability of the whole system, it can be
used to perform sensitivity analysis. Although this advantage is recognized
by many researchers [26,17,59], the method for computing the sensitivity of
system reliability with respect to a given component reliability is developed
only for the model presented in [4]. This approach to sensitivity analysis is
used in [44] for reliability allocation to each component which is based on the
target reliability for the entire system and the sensitivity of the system to the
component.

The sensitivity analysis can help to identify the critical components which
have the greatest impact on system reliability and performance. This infor-
mation can be used for planning and certification activities during different
phases of software life cycle.

Considering multiple software quality attributes

Architecture—based approach for quantitative assessment of software systems
is mainly focused on reliability evaluation. However, it has a potential for
performance evaluation since most of the existing architecture-based models
consider component execution times. For example, the average execution time
of each component is considered in [17,48,59], the exponentially distributed
execution time is considered in [34,29,32|, and the execution time with general
distribution in [35,27]. Although these models recognize the importance of
component utilization from the reliability point of view, none of them considers
the formal analysis of software performance.

Performance as a software quality attribute refers to the timeliness aspects of
how software system behaves, that is, characterizes the timeliness of the service
delivered. First, consider a terminating application. A possible measure of
software performance is the expected execution time of the application which
can be computed as [50]

> Vit

where the expected number of visits to state 7 is already computed for the
purpose of reliability estimation while the expected time spent in a component
per visit t; is obtained experimentally in [17] or can be computed as t; =
Jo° tgi(t) dt in [27].

Next, consider a continuously running application whose architecture is de-

scribed with SMP as in Littlewood model [35]. If the SMP starts in state j,
then one cycle is completed every time the SMP returns to j. The measure of
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performance could be the expected time of one cycle given by [28]

1 1
_Zﬂ'imi = —ZmZszmij
T T j

where m; = 37, p;jm;; is the mean time spent in state ¢ during each visit.

The relative importance of performance and reliability requirements will differ
depending on the system requirements and typical usage. Sometimes perfor-
mance and reliability issues can be addressed separately, but sometimes their
interactions and corresponding tradeoffs need to be considered in order to
arrive at a better overall system.

Depending on the quaility attributes of interest different qualitative and quan-
titative techniques can be used to conduct the analysis. These techniques have
evolved in separate communities, each of its own vernacular and point of view.
Thus, this paper presents an overview from the perspective of Software re-
liability engineering community, while Smith and Williams in [49] describe
the analysis framework called Software performance engineering that provides
techniques to the management of performance concerns in the development of
software based systems. These communities are focused on different quality
attributes in isolation, without considering the impact on other attributes and
tradeoffs between multiple conflicting attributes.

The analysis of multiple software quality attributes and their tradeoffs is an
important area where much work needs to be done. The first step in that
direction was made by Barbacci et al. [1]. They introduce a generic taxonomy
of different attributes, including an attempt of developing unifying approach
for reasoning about multiple software quality attributes. This work led to the
Architecture Tradeoff Analysis Method (ATAM), developed at the Software
Engineering Institute [2,24], which addresses the problem of architecture anal-
ysis based on multiple quality attributes such as performance, availability and
security.

Considering different architectural styles

Today’s software applications are far more complex, frequently run on two
or more processors, under different operating systems, and on geographically
distributed machines. As a result, there is a proliferation of research activ-
ities focused on software architecture!. Ground-work for studying software
architecture was laid by Garlan and Show [47]. They identified a useful set
of software architectural styles. An architectural style is determined by a set

1 See, for example, the April 1995 issue of IEEE Transaction on Software Engi-
neering, November 1995 and January/February 1997 issues of IEEE Software.
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of component types, a topological layout of these components indicating their
interrelationships, and a set of interaction mechanisms that determine how
they coordinate. For example, some systems have a pipe and filter style (e.g.
Unix like) while others are object oriented, data centered (e.g. transactional
database systems) or event systems (e.g. objects broadcast events through a
request broker). These styles differ both in the kinds of components they use
and in the way those components interact with each other. Components define
the application level computations and data stores of a system. Examples in-
clude clients, servers, filters, databases, and objects. Interaction between those
components can be as simple as procedure calls, pipes, and event broadcast,
or much more complex, including client—server protocols, database accessing
protocols, etc.

Because architectural decisions are usually made early in the life-cycle, they
are the hardest to change and hence the most critical and far-reaching. There-
fore software architecture plays a major role in determining system quality and
maintainability. If software engineering is to mature as an engineering disci-
pline, standardized architectural styles will have to be developed, along with
the methods for their quantitative assessment. This will help the designers to
select the architectural style that is most appropriate for the system in hand.

Modeling and evaluation that encompasses both hardware and software

The users of computing systems are interested in obtaining results from mod-
eling and evaluation of systems, composed of both hardware and software.
Even though reliability evaluation of combined hardware and software sys-
tems is not yet common practice, some relevant papers have been published.
Thus, the work presented in [31] is aimed at extending the classical reliability
theory in order to be interpreted from both hardware and software viewpoints.
Further, modeling and evaluation of the fault-tolerant systems that account
for the hardware and software components’ behavior and consider their inter-
actions explicitly have been presented in [8,9,12,21].

The models of nonredundant sequential software systems considered through-
out this paper only consider the software part of the system assuming that it
is possible to separate the software system from its hardware platform. This
distinction helps to separately define software and hardware models and then
to solve their combination. It also improves the portability of the models. For
software applications that run in a distributed environment emphasis should
be placed on clear definition of the interactions between the software and hard-
ware components. Additional challenges posed by distributed systems include
concurrent execution of components, non—instantaneous transfer of control,
failures associated with deadline violations due to the communication over-
heads, communication errors, node failures, etc.
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Deriving the model from specification

The task of reliability and performance modeling requires insight and skill.
However, implementing the mappings from specification languages into ap-
propriate reliability and performance modeling formalisms should minimize
the effort and the cost. One of the first approaches in this direction is the
work presented in [54] which proposes a procedure of transforming a speci-
fication written in the formal specification language Estelle into a stochastic
model which then can be used to carry out the reliability and performance
analysis.

More recently there has been growing interest to close the gap between com-
mercial design tools and quantitative evaluation of software systems. These
efforts are mainly focussed on the Unified Modeling Language (UML) that
has emerged as a widely accepted standard notation for software design in the
last two years. UML provides system architects working on object oriented
analysis and design with one consistent language for specifying, visualizing,
constructing, and documenting the artifacts of software systems. A number of
recent papers consider the transformation of the UML specification (enhanced
by timing constraints) into the stochastic performance models [25,33,5]. We
believe that the further advances of the methodological approaches for sys-
tematic and automatic generation of reliability and performance models from
software specifications will bring reliability and performance evaluation into
the software design process.

8 Conclusion

In this paper, the overview of the architecture—based approach to quantitative
assessment of component—based software systems is presented. Based on the
methods used to describe the architecture of the software and to combine it
with the failure behavior of the components and interfaces, three classes of
models are identified. The state-based models describe the software architec-
ture as a discrete time Markov chain, continuous time Markov chain, or semi
Markov process, and estimate the software reliability analytically by combin-
ing the architecture with failure behavior. The models from the class called
path—based compute the software reliability considering the possible execu-
tion paths of the program either experimentally by testing or algorithmically.
The third modeling approach, called additive, does not consider the architec-
ture explicitly. Rather, it is focused on estimating the time—dependent failure
intensity of the application using the component’s failure data.

Further, the paper presents an attempt to relate and unify the existing architecture—
based models. Finally, the underlying assumptions of the architecture-based
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models are discussed in order to provide an insight into the usefulness and
limitations of such models that would be helpful in determining the directions
for future research.

Our goal in this paper was to present the state of the research and prac-
tice in the architecture—based approach to quantitative assessment of software
reliability and to point out that the knowledge that already exists in the var-
ious research communities need to be drawn on to enhance current software
engineering practices.
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