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Abstract

Experimenting with large, realistic applications allows
existing theoretical results to be tested and new domains to
be explored, which over time will enable evolution of the
knowledge and increase the prediction ability in software
reliability engineering. One important fact should not be
overlooked in this process - the quality of the reliability pre-
dictions depends not only on the methods used, but also on
the quality of the failure data. One reason for low data qual-
ity is due to the fact that in most cases problem and change
tracking repositories used today were not designed with fail-
ure analysis in mind. Thus, currently collected data should
be augmented with empirical observations of other explana-
tory factors such as for example testing effort, code cov-
erage, and operational usage which will allow more com-
plete prediction models. Another major reason of low data
quality is the lack of consistency and discipline in the pro-
cess of recording the data. For example, studies of both
open source and commercial applications have faced dif-
ficulties in distinguishing changes made to fix faults from
other changes such as enhancements and adding new re-
quirements. We believe that (1) improving the process of
collecting and recording the failure data, (2) making real
failure data from variety of sources publicly available, and
(3) coupling the academic research with practical problems
of interest to industry will contribute towards closing the
gap in failure analysis.

1. Some open issues and conflicting results

Although there is a positive trend of publishing empiri-
cal software reliability studies of open source and commer-
cial operating systems and other large applications, many
myths, open issues, and conflicting results require further
exploration. One myth explored widely is thatsize met-
rics (such as LOC) are good predictors of a module’s
fault density. More than 20 years ago Basili and Pericone
[1] reported that fault density decreases with module size,
which was supported by more recent study by Ostrand and
Weyuker [8]. On the other side, Fenton and Ohlsson did not
find evidence that module size has a significant impact on
fault density [3]. Even more, they claimed that the strong
results presented in [1] may be due to inappropriate analy-
sis. The same myth was recently revisited by Murphy [7]

and was found not to hold true.
Another controversial issue worth mentioning is

whether at the module levela higher incidence of faults
in prerelease testing implies higher incidence of faults in
operation. Based on analysis of four releases of a large,
mature application with thousands of modules Biyani and
Santhanam [2] concluded that the higher number of prere-
lease faults in modules predicts a higher number of faults
in field usage. This finding may mean that modules are
fault prone from some fundamental reason and remain fault
prone through the life cycle. A subsequent study of a few
hundred modules from two releases of a large telecommuni-
cation software conducted by Fenton and Ohlsson [3] led to
an opposite result “Those modules which are the most fault
prone prerelease are among least fault prone postrelease,
while conversely, the modules which are most fault prone
postrelease are among the least fault prone prerelease”. One
possible explanation of this counter–intuitive finding pro-
vided by the authors is that a high incidence of faults in a
module prior to release may be due to the fact that such a
module has been well tested and will, therefore, be reliable
in operation. In a study of thirteen successive releases Os-
trand and Weyuker [8] found an indication that the files that
contain prerelease faults are not the most likely place where
postrelease faults will occur. However, in their case no re-
lease contained more than 20 postrelease faults, that is, there
was not enough data to draw strong conclusions about fault
concentration in modules during prerelease and postrelease.
The key explanatory data, such as for example the testing
effort per module, that may shed some light on these con-
flicting results most likely was not available to the authors
of these studies and therefore was not reported.

2. Quality of failure data

While the positive trend of conducting and publishing
empirical studies is encouraging, it should not be over-
looked thatthe quality of the reliability predictions depends
not only on the methods used, but also on the quality of
the failure data. One reason for low data quality is due
to the fact that in most cases problem and change track-
ing repositories used today were not designed with failure
analysis in mind. Thus, currently collected data should be
augmented with empirical observations of other explanatory
factors such as for example testing effort, code coverage,
and operational usage which will allow more complete pre-



diction models.
Another major reason of low data quality is the lack of

consistency and discipline in the process of recording the
data. For example, studies of both open source [4] and
commercial applications [8] have faced difficulties in dis-
tinguishing changes made to fix faults from other changes
such as enhancements and adding new requirements. These
observations are consistent with the results from the survey
of several open source projects presented in [5]. Out of 119
individual responses to the survey only 11.77% claimed that
the defect tracking system was very consistent, that is, no
defect gets fixed without reporting. 45.22% of the respon-
dents answered that the defect tracking system is almost
consistent, while the remaining 37.81% that it is not very
consistent or not consistent.

The problem of missing essential data in [8] was ap-
proached by using a rule of thumb - only changes made to
one or two files are related to fixing faults. Instead of using
some kind of simplifying heuristics, in our earlier work [4]
we developed two automatic and two manual methods for
more accurate identification of changes made to fix faults.
The result of our analysis showed that 30.59% of failures
required fixing more than two files [4]. Similarly to our
results, the analysis of nearly two hundred anomalies from
seven NASA spacecraft systems led to conclusion that some
anomalies have multiple targets, that is, multiple corrections
are made to fix the problem [6].

Obviously, using heuristics that are not justified may
lead to significant errors in the analysis. On the other side,
developing more accurate methods to infer the missing data
is a tedious and time consuming process. The best solu-
tion, of course, is to add a mandatory input field in the
change (i.e. modification) requests with a clear identifica-
tion whether the change was made for fixing faults. The
problems of data quality do not end with missing essential
data. Other data related problems for example include [9]
(1) routinely leaving the default value in place for manda-
tory field, (2) leaving non–mandatory fields blank and (3)
choosing a value from a drop-down list more or less ran-
domly.

3. Concluding remarks

The motivating examples given in this paper clearly
prove the importance of the interaction between theoreti-
cal and experimental research. In order to progress further,
software reliability engineering should go through cycles of
building theories, testing them empirically, learning from
the experiments, and refining the theories to capture the
newly discovered phenomena.

The current state of art and practice in failure analysis
and reliability predictions should be advanced in several di-
rections.

• Improve the process of collecting and recording the
failure data. Accurate and complete information is a
precondition for better predictions and providing in-
sights into many open issues and conflicting results.
Therefore, it is crucial to develop and adopt better for-

mat for keeping track of problem reports and changes
made to the source code.

• Make real failure data from variety of sources publicly
available. Exploring large industrial and open source
software systems from different domains, produced
in different environments, is needed to explain or re-
solve the currently conflicting results and to enhance
the knowledge about complex, mainly unexplored phe-
nomena.

• Couple the academic research with practical problems
of interest to industry.A series of dialogues between
researchers from academia and industry should provide
the answer to the question “Are we solving the right
problems?”.
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