

Methodology for Maintainability-Based Risk Assessment

Walid M. Abdelmoez, West Virginia University
Katerina Goseva-Popstojanova, Ph. D., West Virginia University
Hany H. Ammar, Ph. D., West Virginia University

Key Words: Maintainability-based risk, software maintenance, software architectures, change propagation probability.

SUMMARY & CONCLUSIONS

A software product spends more than 65% of its lifecycle
in maintenance. Software systems with good maintainability
can be easily modified to fix faults or to adapt to changing
environment. We define maintainability-based risk as a
product of two factors: the probability of performing
maintenance tasks and the impact of performing these tasks. In
this paper, we present a methodology for assessing
maintainability-based risk to account for changes in the
system requirements. The proposed methodology depends on
the architectural artifacts and their evolution through the life
cycle of the system. We illustrate the methodology on a case
study using UML models.

1. INTRODUCTION

The cost of software maintenance accounts for 60% -

80% of the overall software system cost [1]. Software
maintenance is categorized as corrective, dealing with error
corrections, perfective, trying to improve the quality of the
system, and adaptive maintenance concerned with system
changes as requirements and environment change. Software
maintainers usually are not involved in the original software
development cycle. They must learn how a program functions
before they can change it. They often interact with complex
and difficult to comprehend systems. The status of system
documentation, programmer skill, and experience and the
attributes of the system itself are some of the variables that
affect the maintenance process.

Good maintainability of the system facilitates easy
modifications when adapting to changes in the environment.
Maintainability-based risk assessment should guide the
management during the software maintenance process. In this
paper, we address the problem of maintainability risk
assessment using architecture metrics. In accordance with
NASA-STD-8719 standard [2], we define maintainability-
based risk assessment of a component as the product of the
probability of changing the component and the maintenance
impact of changing the component [3]. Maintainability-based
risk can be used to achieve the following:
o Improve the maintainability of the system architecture.
o Identify risky components in terms of maintainability and

assign them to the most experienced maintainers.
o Use maintainability risk to manage system maintenance

process.

Many types of risk are ushered when software systems
undergo maintenance. They are similar to those we face when
developing new software systems, but with different level of
risk. These types of risk are [4]:
o Project risk — Maintenance project cannot be carried out

within the budget or on time due to ineffective
maintenance process or lack of personnel and
maintenance capabilities.

o Usability risk — Systems will cause problems and
failures after the maintenance is conducted. Usability risk
includes functionality, performance, financial and
software failure risk.

o Maintainability risk —It will be difficult to maintain the
system in the future because of the way we conducted this
maintenance.
In this paper, we propose a methodology for estimating

the maintainability-based risk of system components due to
changes in system requirements. This study is a part of a wider
effort that considers other architectural level risks such as
reliability-based risk [5] and performance-based risk [6].

The paper is organized as follows. In Section 2, we briefly
discuss the literature background of our study. In Section 3,
we present the estimation methodology for maintainability-
based risk due to changes in requirements. In Section 4, we
illustrate how to estimate maintainability-based risk on a case
study.

2. BACKGROUND

Several studies addressed the quantification of hardware

maintainability but only few attempted to quantify software
maintainability. One of the famous studies [7] introduced the
Maintainability Index (MI) measure. The MI is calculated
using a polynomial of widely used code level measures such
as Halstead measures and McCabe’s cyclomatic complexity.
In [8], Muthanna et al. conducted a similar study, which used
design level metrics to statistically estimate the maintainability
of software systems. They constructed a linear model based on
a minimal set of design level software metrics to predict
Software Maintainability Index.

The estimation procedure of maintainability-based risk
presented in this paper builds on our previous work on change
propagation probabilities [9] and size of change. To estimate
these metrics, we first analyze the architecture of the system
under investigation using a structural diagram or a class

1-4244-0008-2/06/$20.00 (C) 2006 IEEE

337

diagram. From these artifacts, we identify the components
and the connectors of the component-based system
architecture. Then, we need to analyze message protocols
between every pair of components in the system to identify
messages exchanged between components Ci and Cj. With the
help of case tools, we get message sets for any pair of
components in the system. This information can also be
obtained from static analysis tools of the source code.

In the following, we briefly present the fundamentals of
estimating the change propagation probabilities. Let us
consider a software architecture modeled by components and
connectors. We are interested in the maintainability of the
products instantiated from it. Each element of the Change
propagation probability CP= [cpij] for an architecture is the
conditional probability that a change originating in component
Ci requires changes to be made to component Cj [9]. An
architecture can be seen as a collection of components Ci,
i=1,…,N. With every component Ci, we associate the set Vi of
the interface elements of the provided functions of Ci. We
determine the usage coefficient value ij

vπ for every interface
element ν∈Vi and every other component Cj, j≠i. They take
binary values:
• ij

vπ =1, if the interface element ν provided by Ci is
required by Cj. This means that any signature change in
component Ci associated with interface element ν will
propagate to component Cj.

• ij
vπ =0, otherwise.

For every pair of components Ci and Cj, i≠j, the change
propagation probability cpij can be estimated based on the
values of the usage coefficients ij

vπ by [9]:

cpij = 1
| |

i

ij
v

ViV ν
π

∈
∑ (1)

where Viis the cardinality of interface elements set provided

by Ci.

3. THE PROPOSED METHODOLOGY

Our methodology for estimating maintainability-based
risk depends on architectural artifacts such as system
requirements and system design and their evolution through
the life cycle of the system, as shown in Figure 1. First, we
estimate the requirement maturity and map it into components
stability. Then, we estimate initial change probabilities of the
components. Using the initial change probabilities of the
components and change propagation probabilities between
them, we get the unconditional probability of change of the
components of the system. To get the impact of the
maintenance tasks, we use the size of change between the
components of the system. Finally, the maintainability-based
component risk factor is the product of unconditional change
probability and the maintenance impact. We present the
detailed steps of the proposed methodology in the following
subsections using UML models [10].

3.1 Estimating requirements maturity index

We estimate the requirements maturity by analyzing their
evolution across the releases of the system. A software system
is developed according to a set of requirements

RQ = {rq1, rq2,… ,rqp} (2)
where rqi is a functional requirement. In UML, requirements
are mapped into a set of use cases :

RQ(UML) = {uc1, uc2, …, ucp} (3)
Use cases describe the functional behavior of the system.

Each use case is realized through one or more sequence
diagrams. Sequence diagrams describe the interactions among
components to fulfill certain requirements.
 Since it is not possible to account for all possible

Figure 1 Maintainability-based risk estimation methodology

338

maintenance tasks, we only consider a maintenance profile
MP [11] which consists of likely change scenarios

MP = {cs1, cs2, …, css} (4)
A change scenario is defined by a set of requirement

changes
csi = {rq1c, rq2c, …, rqtc} (5)

where rqic is an addition, deletion or modification of use case
uci..

The IEEE 982 standard [12] suggests Software Maturity
Index to quantify properties of requirements evolution. In
[13], the Software Maturity Index is adapted to Requirements
Maturity Index (RMI) to measure the requirements stability.
We adapt the metric to Use Case Maturity Index (UCMI) and
use function points as a size measure for the use cases [14].
Thus, the UCMI of the use case uci is given by

T C

T

U U
UCMI

U
−

= (6)

where UT is the function point size of the use case uci in the
current release; UC is the function point size of the change in
the use case uci in the next release from the current due to
requirement change rqic of change scenario csm.

3.2 Estimating components initial change probabilities

In order estimate the probability of change due to a
maintenance task, we use the sequence diagrams to identify
the set of components that contribute to each use case. Then,
we map the use case stability into components stability,
which reflects the likelihood of making changes to
components due to changes in the requirements.
Consequently, we estimate Initial Change Probabilities ICP
of the system components. For components that are part of
multiple scenarios, we consider the maximum ICP, that is,
we accounts for the worst-case scenario.

3.3 Estimating unconditional change probabilities

To account for the dependency among the components of
the system, we multiply the initial change probabilities vector
ICP of the components by the conditional change
propagation probabilities matrix CP obtained from the system
architecture. Hence, we calculate the unconditional
probability UPC of change of each component of the system:

CPICPUCP *= (7)

3.4 Estimating size of change

To get the impact of the maintenance task, we estimate

the size of change SC between pairs of the components of the
system based on the architecture artifacts. Each element of
the Size of Change SC=[scij] matrix is defined as the ratio
between the number of affected methods of the receiving
component caused by the changes in the interface elements of
the providing components and the total number of methods in
the receiving component. For every component Cj, we
associate the set Mj of the methods of component Cj. We
determine the effect coefficient value ij

mµ for every method m

in component Cj, j≠i. They take binary values:
• ij

mµ =1, if the method m is affected by any interface
element ν∈Vi provided by Ci

• ij
mµ =0, otherwise.

The size of change scij can be estimated:

scij = 1
| |

j

ij
m

m MjM
µ

∈
∑ (8)

where Mjis the cardinality of the methods set of
component Cj.

Thus, the Maintenance Impact MI= [mii] is estimated by:
i ij

j
mi sc=∑ . (9)

where mii is the maintenance impact of component Ci on the
rest of the components of the system.

3.5 Estimating components maintainability-based risk

Finally, the components maintainability-based risk MR is

given by
MR= [mri] =[upci . mii.] (10)

where mri is maintainability-based risk of a component Ci due
to requirement changes.

Hence, the methodology provides the maintainer with an
estimate of the maintainability-based risk of the components
for different change scenarios of the maintenance profile.
Therefore, the maintainer can identify the risky components
and the risky change scenarios. Furthermore, the maintainer
can manage the maintenance process by making a trade of
between the risk associated with maintenance tasks estimated
by the methodology and the added value anticipated from the
planned requirements changes.

4. CASE STUDY

The maintainability-based risk assessment methodology

is illustrated on CM1 case study from the Metrics Data
Program [15]. CM1 is a software component of a data
processing unit used in an instrument, which exploits data to
probe the early universe. A UML-RT model for CM1 is
constructed from the artifacts provided. The functional
requirements of CM1 are captured in the use case model, as
shown in Figure2.

From the use case model, we identify the set of
functional requirement RQ as:
RQ(CM1) = {Transfer, RecvCmd, ChBound, CalcOrbitDrift,

HeartBeat, HouseKeeping, TimeSync} (11)
We estimate the requirement maturity by analyzing their

evolution across the releases of the system. As, it is not
possible to account for all possible maintenance tasks we only
consider a maintenance profile MP. For simplicity, we
consider a maintenance profile that has only one change
scenario:

MP = {cs1} (12)
Assume that the change scenario that consists of adding a
new transfer sequence, shown in Figure3, to the Transfer use
case:

339

Figure 2 Use case diagram for CM1

cs1 = { Transferc } (13)
We measure the function point size of the Transfer use

case in the current release, and the function point size of the
changes in the use case Transfer in the next release from the
current due to Transferc of change scenario cs1. We follow
the rules presented in [14] to estimate the function point size
of the Transfer use case and the change in it. Then, we
estimate the use case maturity index, according to equation
(8). We find UCMI(Transfer)=0.702.

We map the use case maturity index into components
stability using the sequence diagram Transferc. We determine
how the stability of each component is affected according to
the amount of contribution in the added sequence diagram
Transferc. As component’s stability and probability of change
are inversely proportional, we make an estimate of initial
change probabilities of the components, as shown in Figure 4.

The structure diagram of CM1 is shown in Figure 5.
Using the software architecture artifacts of CM1, we estimate
the change propagation probabilities and size of change, as
shown in Figure 6 and Figure 7.

Substituting initial change probabilities of the
components and change propagation probabilities between
them in equation (8), we estimate the unconditional
probability of change of the CM1 components. Then, we use
the size of change between the components to account for the
maintenance impact, based on equation (9). Using equation
(10), the maintainability-based component risk factor for
each CM1 component is estimated. The results are shown in
Figure 8.

The most risky component is CCM even though it is not
in the set of components of the initial change. This is due to
the fact that CCM is coupled to all of the components of the
initial change set, so it is likely to be affected by the

changes introduced in these components. Furthermore,
CMM has a high maintenance impact on the rest of CM1
components. As it is coupled to other components in the
system other than the components of the initial change set,
the change is likely to propagate further. On the other hand,
component DPA has the highest initial change probability
value, but it is coupled to a limited number of components in

Figure 3 Sequence diagram Transferc of added to transfer use

case

Figure 4 Initial change probabilities resulted from Transferc

for CM1 components

Figure 5 Structure diagram for CM1

CM1. Therefore, it has a limited maintenance impact and it is
less risky in terms of maintainability.
 Among our venues of future research, we consider

340

Figure 6 Change propagation probabilities for CM1

Figure 7 Size of change for CM1

Figure 8 Components maintainability- based risk resulted

from Transferc for CM1 components

automating the steps of the maintainability-based risk
methodology by extending Software Architectures Change
Propagation Tool (SACPT) [16]. We also plan to apply the
methodology on other case studies and compare the estimated
risk with actual maintenance records.

ACKNOWLGEMENT

This work is supported by the National Science Foundation
through ITR program grant No CCR 0296082, and by NASA

through a grant from the NASA Office of Safety and Mission
Assurance (OSMA) Software Assurance Research Program
(SARP) managed through the NASA Independent
Verification and Validation (IV&V) Facility, Fairmont, West
Virginia.

REFERENCES

1. T.M. Pigoski, Practical Software Maintenance: Best

Practices for Managing Your Software Investment, John
Wiley & Sons, 1996.

2. NASA-STD-8719.13A,“Software Safety NASA
Technical Standard”, 1997.

3. W. AbdelMoez, I. Shaik, R. Gunnalan, M. Shereshevsky,
K. Goseva-Popstojanova, H.H. Ammar, A. Mili, C.
Fuhrman, “Architectural Level Maintainability Based
Risk Assessment”, IEEE International Conference on
Software Maintenance poster proceedings (ICSM 2005),
September 25-30,2005, Budapest, Hungray.

4. Sherer S., “ Using Risk Analysis to Manage Software
Maintenance,” Software Maintenance: Research and
Practice, Vol. 9, 345-364, 1997.

5. K Goseva-Popstojanova., A. Hassan, A. Guedem, W.
Abdelmoez, D. Nassar, H. Ammar, A. Mili,
“Architectural-Level Risk Analysis using UML”, IEEE
transaction on software engineering, Vol.29, No.10,
October 2003, pp. 946-960.

6. V. Cortellessa, K. Goseva-Popstojanova, K. Appukkutty,
A. Guedem, A. Hassan, R. Elnaggar, W. Abdelmoez,
and H. Ammar, “Model-Based Performance Risk
Analysis”, IEEE Transaction on Software Engineering,
Vol.31, No.1, January 2005, pp.3-20.

7. P. Oman, J. Hagemeister, "Constructing and Testing of
Polynomials Predicting Software Maintainability",
Journal of Systems and Software 24, 3 (March 1994), pp.
251-266.

8. S. Muthanna, K. Ponnambalam, K. Kontogiannis and B.
Stacey, “A Maintainability Model for Industrial Software
Systems Using Design Level Metrics”, Seventh Working
Conference on Reverse Engineering (WCRE'00),
Brisbane, Australia, November 23 - 25, 2000.

9. W. AbdelMoez, M. Shereshevsky, R. Gunnalan, H.H.
Ammar, Bo Yu, S. Bogazzi, M. Korkmaz, A. Mili ,
“Quantifying Software Architectures: An Analysis of
Change Propagation Probabilties”, ACS/IEEE
International Conference on Computer Systems and
Applications (AICCSA 05), Cairo, Egypt, January 3-6,
2005.

10. Unified Modeling Language OMG Resource Page
http://www.uml.org/

11. J. Bosch and P. Bengtsson, “Assessing Optimal Software
Architecture Maintainability”, Proc. of fifth European
Conference on Software Maintenance and
Reengineering, Lisbon, Portugal, March 2001.

12. IEEE Std 982.1- IEEE Standard Dictionary of Measures
to Produce Reliable Software.

13. S. Anderson, M. Felici, “Quantitative Aspects of
Requirements Evolution”. In Proceedings of the 26th
Annual International Conference on Computer Software

341

and Applications Conference, COMPSAC 2002, Oxford,
England, 26-29th August 2002, IEEE Computer Society,
pp. 27-32.

14. G. Cantone, D. Pace, G. Calavaro, “Applying Function
Point to Unified Modeling Language: Conversion Model
and Pilot Study” , Proc. of 10th International Symposium
on (METRICS'04), September 11 - 17, 2004,Chicago,
Illinois, pp.280-291.

15. Metrics Data Program, NASA IV&V Facility
http://mdp.ivv.nasa.gov/

16. W. Abdelmoez, R. Gunnalan, M. Shereshevsky, H.H.
Ammar, Bo Yu, M. Korkmaz, A. Mili, “Software
Architectures Change Propagation Tool (SACPT)”,
Proc. 20th IEEE International Conference on Software
Maintenance (ICSM 2004), Chicago, IL, September
2004.

BIOGRAPHIES

Walid M. Abdelmoez
Lane Dept of Computer Science and Electrical Engineering
West Virginia University
Morgantown, WV26506-6109 USA

rabie@csee.wvu.edu

Walid Abdelmoez received the BSc degree in electrical
engineering at Alexandria University, Egypt in 1995 and the
MSc degree in electrical engineering at Arab Academy for
Science and Technology, Alexandria, Egypt, in 2000. He is a
PhD student in computer engineering program at West
Virginia University and a graduate research assistant in the
LDCSEE. His research interests are software metrics and
software risk assessment. He is student member of the IEEE.

Katerina Goseva-Popstojanova, PhD
Lane Dept of Computer Science and Electrical Engineering
West Virginia University
Morgantown, WV26506-6109 USA

katerina@csee.wvu.edu

Katerina Goseva-Popstojanova is an assistant professor in the
Lane Department of Computer Science and Electrical

Engineering at West Virginia University, Morgantown. Prior
to joining West Virginia University, she was a postdoctoral
research associate in the Department of Electrical and
Computer Engineering at Duke University, Durham, North
Carolina. Her research interests include software reliability
engineering, dependability, performance and performability
assessment of software and systems, and computer security
and survivability. She has published more than 50 journal and
conference articles on these topics. Dr. Goseva-Popstojanova
is a principal investigator on several projects funded by the
NASA Office of Safety and Mission Assurance (OSMA),
Software Assurance Research Program (SARP) managed
through the NASA IV&V Facility in Fairmont, WV. She is
also a recipient of the National Science Foundation CAREER
award. She served and is currently serving on program and
organizing committees of several prestigious conferences in
her research areas. She is a senior member of the IEEE and
member of the ACM.

Hany H. Ammar, PhD
Lane Dept of Computer Science and Electrical Engineering
West Virginia University
Morgantown, WV26506-6109 USA

ammar@csee.wvu.edu

Hany H. Ammar is a professor of computer engineering in the
Department of Computer Science and Electrical Engineering
at West Virginia University. His research interests are in
software engineering, software architectures, software
metrics, and identification technology. He is the director of
the Software Architectures and High Performance Computing
Lab at WVU. He is leading several projects funded by the US
National Science Foundation under the Digital Government
and ITR programs and NASA Office of Safety and Mission
Assurance (OSMA) Software Assurance Research Program
(SARP) managed through the NASA Independent
Verification and Validation (IV&V) Facility, Fairmont, West
Virginia. He has published more than 100 articles in
prestigious journals and conference proceedings. He served
and is currently serving in the program and steering
committees of several professional conferences and
workshops. Dr. Ammar is a member of the IEEE Computer
Society and the ACM.

342

