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SUMMARY & CONCLUSIONS 
 

A software product spends more than 65% of its lifecycle 
in maintenance. Software systems with good maintainability 
can be easily modified to fix faults or to adapt to changing 
environment. We define maintainability-based risk as a 
product of two factors: the probability of performing 
maintenance tasks and the impact of performing these tasks. In 
this paper, we present a methodology for assessing 
maintainability-based risk to account for changes in the 
system requirements. The proposed methodology depends on 
the architectural artifacts and their evolution through the life 
cycle of the system. We illustrate the methodology on a case 
study using UML models. 

 
1.  INTRODUCTION 

 
The cost of software maintenance accounts for 60% - 

80% of the overall software system cost [1]. Software 
maintenance is categorized as corrective, dealing with error 
corrections, perfective, trying to improve the quality of the 
system, and adaptive maintenance concerned with system 
changes as requirements and environment change. Software 
maintainers usually are not involved in the original software 
development cycle. They must learn how a program functions 
before they can change it. They often interact with complex 
and difficult to comprehend systems. The status of system 
documentation, programmer skill, and experience and the 
attributes of the system itself are some of the variables that 
affect the maintenance process.  

Good maintainability of the system facilitates easy 
modifications when adapting to changes in the environment. 
Maintainability-based risk assessment should guide the 
management during the software maintenance process. In this 
paper, we address the problem of maintainability risk 
assessment using architecture metrics. In accordance with 
NASA-STD-8719 standard [2], we define maintainability-
based risk assessment of a component as the product of the 
probability of changing the component and the maintenance 
impact of changing the component [3]. Maintainability-based 
risk can be used to achieve the following: 
o Improve the maintainability of the system architecture.  
o Identify risky components in terms of maintainability and 

assign them to the most experienced maintainers. 
o Use maintainability risk to manage system maintenance 

process. 

Many types of risk are ushered when software systems 
undergo maintenance. They are similar to those we face when 
developing new software systems, but with different level of 
risk. These types of risk are [4]: 
o Project risk — Maintenance project cannot be carried out 

within the budget or on time due to   ineffective 
maintenance process or lack of personnel and 
maintenance capabilities.  

o Usability risk — Systems will cause problems and 
failures after the maintenance is conducted. Usability risk 
includes functionality, performance, financial and 
software failure risk.  

o Maintainability risk —It will be difficult to maintain the 
system in the future because of the way we conducted this 
maintenance. 
In this paper, we propose a methodology for estimating 

the maintainability-based risk of system components due to 
changes in system requirements. This study is a part of a wider 
effort that considers other architectural level risks such as 
reliability-based risk [5] and performance-based risk [6]. 

The paper is organized as follows. In Section 2, we briefly 
discuss the literature background of our study. In Section 3, 
we present the estimation methodology for maintainability-
based risk due to changes in requirements. In Section 4, we 
illustrate how to estimate maintainability-based risk on a case 
study. 

 
2.  BACKGROUND 

 
Several studies addressed the quantification of hardware 

maintainability but only few attempted to quantify software 
maintainability. One of the famous studies [7] introduced the 
Maintainability Index (MI) measure. The MI is calculated 
using a polynomial of widely used code level measures such 
as Halstead measures and McCabe’s cyclomatic complexity. 
In [8], Muthanna et al. conducted a similar study, which used 
design level metrics to statistically estimate the maintainability 
of software systems. They constructed a linear model based on 
a minimal set of design level software metrics to predict 
Software Maintainability Index.  

The estimation procedure of maintainability-based risk 
presented in this paper builds on our previous work on change 
propagation probabilities [9] and size of change. To estimate 
these metrics, we first analyze the architecture of the system 
under investigation using a structural diagram or a class 
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diagram.  From these artifacts, we identify the components 
and the connectors of the component-based system 
architecture. Then, we need to analyze message protocols 
between every pair of components in the system to identify 
messages exchanged between components Ci and Cj. With the 
help of case tools, we get message sets for any pair of 
components in the system. This information can also be 
obtained from static analysis tools of the source code. 

In the following, we briefly present the fundamentals of 
estimating the change propagation probabilities. Let us 
consider a software architecture modeled by components and 
connectors. We are interested in the maintainability of the 
products instantiated from it. Each element of the Change 
propagation probability CP= [cpij] for an architecture is the 
conditional probability that a change originating in component 
Ci requires changes to be made to component Cj [9]. An 
architecture can be seen as a collection of components Ci, 
i=1,…,N. With every component Ci, we associate the set Vi of 
the interface elements of the provided functions of Ci. We 
determine the usage coefficient value ij

vπ  for every interface 
element ν∈Vi and every other component Cj, j≠i. They take 
binary values: 
• ij

vπ  =1, if the interface element ν provided by Ci is 
required by Cj. This means that any signature change in 
component Ci associated with interface element ν will 
propagate to component Cj. 

• ij
vπ  =0, otherwise. 

For every pair of components Ci and Cj, i≠j, the change 
propagation probability cpij can be estimated based on the 
values of the usage coefficients ij

vπ  by [9]: 

cpij = 1
| |

i

ij
v

ViV ν
π

∈
∑     (1) 

where Viis the cardinality of interface elements set provided 

by Ci. 
 

3.  THE PROPOSED METHODOLOGY  
 

Our methodology for estimating maintainability-based 
risk depends on architectural artifacts such as system 
requirements and system design and their evolution through 
the life cycle of the system, as shown in Figure 1. First, we 
estimate the requirement maturity and map it into components 
stability. Then, we estimate initial change probabilities of the 
components. Using the initial change probabilities of the 
components and change propagation probabilities between 
them, we get the unconditional probability of change of the 
components of the system. To get the impact of the 
maintenance tasks, we use the size of change between the 
components of the system. Finally, the maintainability-based 
component risk factor is the product of unconditional change 
probability and the maintenance impact. We present the 
detailed steps of the proposed methodology in the following 
subsections using UML models [10]. 
 
3.1  Estimating requirements maturity index  
 

We estimate the requirements maturity by analyzing their 
evolution across the releases of the system. A software system 
is developed according to a set of requirements  

RQ = {rq1, rq2,… ,rqp}    (2) 
where rqi is a functional requirement. In UML, requirements 
are mapped into a set of use cases : 

RQ(UML) = {uc1, uc2, …, ucp}  (3) 
Use cases describe the functional behavior of the system. 

Each use case is realized through one or more sequence 
diagrams. Sequence diagrams describe the interactions among 
components to fulfill certain requirements.  
 Since it is not possible to account for all possible 

 

Figure 1 Maintainability-based risk estimation methodology 
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maintenance tasks, we only consider a maintenance profile 
MP [11] which consists of likely change scenarios  

MP = {cs1, cs2, …, css}  (4) 
A change scenario is defined by a set of requirement 

changes  
csi = {rq1c, rq2c, …, rqtc}  (5) 

where rqic is an addition, deletion or modification of use case 
uci.. 

The IEEE 982 standard [12] suggests Software Maturity 
Index to quantify properties of requirements evolution. In 
[13], the Software Maturity Index is adapted to Requirements 
Maturity Index (RMI) to measure the requirements stability. 
We adapt the metric to Use Case Maturity Index (UCMI) and 
use function points as a size measure for the use cases [14]. 
Thus, the UCMI of the use case uci is given by 

T C

T

U U
UCMI

U
−

=    (6) 

where UT is the function point size of the use case uci in the 
current release; UC is the function point size of the change in 
the use case uci in the next release from the current due to 
requirement change rqic of change scenario csm. 
 
3.2  Estimating components initial change probabilities  
 

In order estimate the probability of change due to a 
maintenance task, we use the sequence diagrams to identify 
the set of components that contribute to each use case. Then, 
we map the use case stability into components stability, 
which reflects the likelihood of making changes to 
components due to changes in the requirements. 
Consequently, we estimate Initial Change Probabilities ICP 
of the system components. For components that are part of 
multiple scenarios, we consider the maximum ICP, that is, 
we accounts for the worst-case scenario. 

 
3.3  Estimating unconditional change probabilities  
 

To account for the dependency among the components of 
the system, we multiply the initial change probabilities vector 
ICP of the components by the conditional change 
propagation probabilities matrix CP obtained from the system 
architecture. Hence, we calculate the unconditional 
probability UPC of change of each component of the system: 

CPICPUCP *=    (7) 
 
3.4  Estimating size of change  

 
To get the impact of the maintenance task, we estimate 

the size of change SC between pairs of the components of the 
system based on the architecture artifacts. Each element of 
the Size of Change SC=[scij] matrix is defined as the ratio 
between the number of affected methods of the receiving 
component caused by the changes in the interface elements of 
the providing components and the total number of methods in 
the receiving component. For every component Cj, we 
associate the set Mj of the methods of component Cj. We 
determine the effect coefficient value ij

mµ  for every method m 

in component Cj, j≠i. They take binary values: 
• ij

mµ  =1, if the method m is affected by any interface 
element ν∈Vi provided by Ci 

• ij
mµ  =0, otherwise. 

The size of change scij can be estimated:  

scij = 1
| |

j

ij
m

m MjM
µ

∈
∑    (8) 

where Mjis the cardinality of the methods set of 
component Cj.  

Thus, the Maintenance Impact MI= [mii] is estimated by:  
i ij

j
mi sc=∑ .    (9) 

where mii is the maintenance impact of component Ci  on the 
rest of the components of the system. 
 
3.5  Estimating components maintainability-based risk  

 
Finally, the components maintainability-based risk MR is 

given by  
MR= [mri] =[ upci . mii.]   (10) 

where mri is maintainability-based risk of a component Ci due 
to requirement changes. 

Hence, the methodology provides the maintainer with an 
estimate of the maintainability-based risk of the components 
for different change scenarios of the maintenance profile. 
Therefore, the maintainer can identify the risky components 
and the risky change scenarios. Furthermore, the maintainer 
can manage the maintenance process by making a trade of 
between the risk associated with maintenance tasks estimated 
by the methodology and the added value anticipated from the 
planned requirements changes.  

 
4.  CASE STUDY 

 
The maintainability-based risk assessment methodology 

is illustrated on CM1 case study from the Metrics Data 
Program [15]. CM1 is a software component of a data 
processing unit used in an instrument, which exploits data to 
probe the early universe. A UML-RT model for CM1 is 
constructed from the artifacts provided. The functional 
requirements of CM1 are captured in the use case model, as 
shown in Figure2.  

From the use case model, we identify the set of 
functional requirement RQ as:  
RQ(CM1) = {Transfer, RecvCmd, ChBound, CalcOrbitDrift, 

HeartBeat, HouseKeeping, TimeSync}      (11) 
We estimate the requirement maturity by analyzing their 

evolution across the releases of the system. As, it is not 
possible to account for all possible maintenance tasks we only 
consider a maintenance profile MP. For simplicity, we 
consider a maintenance profile that has only one change 
scenario: 

MP = {cs1}    (12) 
Assume that the change scenario that consists of adding a 
new transfer sequence, shown in Figure3, to the Transfer use 
case: 
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Figure 2 Use case diagram for CM1 

cs1 = { Transferc  }   (13) 
We measure the function point size of the Transfer use 

case in the current release, and the function point size of the 
changes in the use case Transfer in the next release from the 
current due to Transferc of change scenario cs1. We follow 
the rules presented in [14] to estimate the function point size 
of the Transfer use case and the change in it. Then, we 
estimate the use case maturity index, according to equation 
(8). We find UCMI(Transfer)=0.702. 

We map the use case maturity index into components 
stability using the sequence diagram Transferc. We determine 
how the stability of each component is affected according to 
the amount of contribution in the added sequence diagram 
Transferc. As component’s stability and probability of change 
are inversely proportional, we make an estimate of initial 
change probabilities of the components, as shown in Figure 4. 

The structure diagram of CM1 is shown in Figure 5. 
Using the software architecture artifacts of CM1, we estimate 
the change propagation probabilities and size of change, as 
shown in Figure 6 and Figure 7. 

Substituting initial change probabilities of the 
components and change propagation probabilities between 
them in equation (8), we estimate the unconditional 
probability of change of the CM1 components. Then, we use 
the size of change between the components to account for the 
maintenance impact, based on equation (9). Using equation 
(10), the maintainability-based component risk factor for 
each CM1 component is estimated. The results are shown in 
Figure 8. 

The most risky component is CCM even though it is not 
in the set of components of the initial change. This is due to 
the fact that CCM is coupled to all of the components of the 
initial change set, so it is likely to be affected by the 

changes introduced in these components. Furthermore, 
CMM has a high maintenance impact on the rest of CM1 
components. As it is coupled to other components in the 
system other than the components of the initial change set, 
the change is likely to propagate further. On the other hand, 
component DPA has the highest initial change probability 
value, but it is coupled to a limited number of components in 

 
Figure 3 Sequence diagram Transferc of added to transfer use 

case 

 
Figure 4 Initial change probabilities resulted from Transferc 

for CM1 components 

 
Figure 5 Structure diagram for CM1 

CM1. Therefore, it has a limited maintenance impact and it is 
less risky in terms of maintainability. 
 Among our venues of future research, we consider 
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Figure 6 Change propagation probabilities for CM1 

 
Figure 7 Size of change for CM1 

 
Figure 8 Components maintainability- based risk resulted 

from Transferc for CM1 components 

automating the steps of the maintainability-based risk 
methodology by extending Software Architectures Change 
Propagation Tool (SACPT) [16]. We also plan to apply the 
methodology on other case studies and compare the estimated 
risk with actual maintenance records. 
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