
On Parameter Tuning in Search Based Software
Engineering: A Replicated Empirical Study

Abdel Salam Sayyad Katerina Goseva-Popstojanova Tim Menzies Hany Ammar
Lane Department of Computer Science and Electrical Engineering

West Virginia University
Morgantown, WV, USA

asayyad@mix.wvu.edu katerin.goseva@mail.wvu.edu tim@menzies.us hany.ammar@mail.wvu.edu
Abstract—Multiobjective Evolutionary Algorithms are
increasingly used to solve optimization problems in software
engineering. The choice of parameters for those algorithms
usually follows the "default" settings, often accepted as "rule of
thumb" or common wisdom. The fact is that each algorithms
needs to be tuned for the problem at hand. Previous work
[Arcuri and Fraser, 2011] has shown that variations in
parameter values had large effects on the performance of the
algorithms. This project seeks to partially replicate the statistical
analysis performed by Arcuri and Fraser. We seek to investigate
the effects of parameter tuning on the performance of the two
algorithms: Indicator-Based Evolutionary Algorithm (IBEA),
and Nondominated Sorting Genetic Algorithm (NSGA-II) when
applied to the problem of configuring Software Product Lines
(SPLs) in the presence of stakeholder preferences such as cost
and reliability. The results of this study confirm and strengthen
the findings in the original study by Arcuri and Fraser.

Keywords—Parameter Tuning; Search Based Software
Engineering; Software Product Lines.

I. INTRODUCTION
Evolutionary algorithms (EAs) are popular for solving

problems that are otherwise intractable; i.e. problems that
become impossible to solve as their dimensions increase. EAs
are able to perform this task because they navigate the solution
space guided by heuristics, without having to check every
possible solution. When arguing about the performance of
EAs, it is essential to account for the randomness in their
behavior, hence the need for repeated experiments and
statistical analysis to assess the strength of conclusions.

This paper is concerned with the performance assessment
of EAs when different values are assigned for the different
parameters involved. A study was performed by Arcuri and
Fraser [1], [2], that performed the same experiment to the
problem of generating test vectors for object-oriented software,
and comparing the performance according to test coverage.
This experiment seeks to emulate the work of Arcuri and
Fraser in different domain. We investigate the effects of
parameter tuning on the performance of two multiobjective
evolutionary optimization algorithms (MEOAs), namely
Indicator-Based Evolutionary Algorithm (IBEA), and
Nondominated Sorting Genetic Algorithm (NSGA-II) when
applied to the problem of configuring Software Product Lines
(SPLs). Previous work by Sayyad et al [10] has shown the
superiority of IBEA when optimizing up to 5 objectives related
to cost and reliability. That work was performed with a fixed

set of “default” parameters, which cast a little doubt as to the
ability of NSGA-II to perform better under a different set of
parameter values. This work confirms statistically that IBEA
remains the algorithm of choice for this problem, and also
confirms the findings by Arcuri and Fraser that parameter
choice has a large effect on the performance of EAs.

The rest of this paper is organized as follows: Section II
introduces background material on feature models and
MEOAs. Section III presents the research questions. Section
IV explains the experimental setup. Section V mentions the
statistical analysis method, and section VI presents the results.
In section VII we discuss potential threats to validity, and then
in section VIII we offer our conclusions and directions for
future work.

II. BACKGROUND
This section is adapted from [10] to provide background

about Software Product Lines (SPLs), feature models, and
multiobjective evolutionary optimization algorithms (MEOAs).

A. Software Product Line Engineering (SPLE)
Software product line engineering is a paradigm to develop

software applications using platforms and mass customization.
Benefits of SPLE include reduction of development costs,
enhancement of quality, reduction of time to market, reduction
of maintenance effort, coping with evolution and complexity
[9], and automating the creation of family members [4].

B. Feature Models
A feature is an end-user-visible behavior of a software

product that is of interest to some stakeholder. A feature model
represents the information of all possible products of a
software product line in terms of features and relationships
among them. Feature models are a special type of information
model widely used in software product line engineering. A
feature model is represented as a hierarchically arranged set of
features composed by:

� Relationships between a parent feature and its child
features (or subfeatures).

� Cross-tree constraints (CTCs), which describe
relationships between features from different branches
in the tree. CTCs are typically inclusion or exclusion
statements in the form: if feature F is included, then
features A and B must also be included (or excluded).

This research work was funded by the Qatar National Research Fund

(QNRF) under the National Priorities Research Program (NPRP) Grant No.:
09-1205-2-470.

2013 Third International Workshop on Replication in Empirical Software Engineering Research

978-0-7695-5121-0/13 $26.00 © 2013 IEEE

DOI 10.1109/RESER.2013.6

84

Fig. 1. Feature model for mobile phone product line, adopted from [3]

Fig. 1, adapted from [3], depicts a simplified feature model
inspired by the mobile phone industry.

The full set of rules in a feature model includes:
� The root feature is mandatory.
� Every child requires its own parent.
� If the child is mandatory then the parent requires it.
� Every group adds a rule about how many members can

be chosen.
� Every cross-tree constraint (CTC) is a rule.
 The total number of rules will be used as the “full

correctness” score in this experiment, thus making
“correctness” one of the optimization objectives.

C. Genetic Algorithms
Both IBEA and NSGA-II algorithms have Genetic

Algorithm at their core. The original Genetic Algorithm (GA)
was developed with a single fitness value in mind, i.e. a single
optimization objective. Fig. 2 lists an outline of the Genetic
Algorithm, adapted from [7].

D.
E.
F.
G.
H.
I.
J.
K.
L.
M.
N.

Fig. 2. Genetic Algorithm, adapted from [7]

Fig. 3. Example of a Single-Point Crossover, from [7]

The SelectWithReplacement() function selects individuals
from the population with a probability proportionate with their
fitness. An individual may, by chance, be chosen for breeding
multiple times.

The individual solutions are of the Boolean string type. The
Crossover() function performs a single-point crossover, where
a point is chosen randomly, and the bits are swapped between
the two parents as shown in Fig. 3 [7]. Crossover between two
parents is performed with a predetermined probability.

The Mutate() function performs bit-flip mutation, where
each bit in the string may be flipped at a predetermined
probability.

D. Multiobjective Optimization
Many real-world problems involve simultaneous

optimization of several incommensurable and often competing
objectives. Often, there is no single optimal solution, but rather
a set of alternative solutions. These solutions are optimal in the
wider sense that no other solutions in the search space are
superior to them when all objectives are considered [15].

Formally, a vector � = {��, . . . , ��} is said to be
dominated by a vector � = {��, . . . , ��} if and only if u is
partially less than v, i.e.

∀� ∈ {1, … , 	}, �
 ≤ �
 �
� ∃ � ∈ {1, … , 	} ∶ �
 < �
 (1)

The set of all points in the objective space that are not
dominated by any other points is called the Pareto Front.

E. Multiobjective Evolutionary Optimization Algorithms
(MEOAs)

Many real-world problems involve simultaneous
optimization of several incommensurable and often competing
objectives. Often, there is no single optimal solution, but rather
a set of alternative solutions. These solutions are optimal in the
wider sense that no other solutions in the search space are
superior to them when all objectives are considered [15].

Many algorithms have been suggested over the past two
decades for multiobjective optimization based on evolutionary
algorithms that were designed primarily for single-objective
optimization, such as Genetic Algorithms, Evolutionary
Strategies, Particle Swarm Optimization, and Differential
Evolution.

The algorithms we used in this study were already
implemented in the jMetal framework [6]. They are:

1. IBEA: Indicator-Based Evolutionary Algorithm [14].
2. NSGA-II: Nondominated Sorting Genetic Algorithm,

version 2 [5].

Initialization
popsize ← desired population size
P ← {}
for popsize times do

 P ← P ∪ {new random individual}
Best ← null

Repeat until Termination
 for each individual Pi ∈ P do
 AssignFitness(Pi)

if Best = null or Fitness(Pi) > Fitness(Best) then
 Best ← Pi

 Q←{}
 for popsize/2 times do

Parent Pa ← MatingSelection(P)
Parent Pb ← MatingSelection (P)
Children Ca,Cb ← Crossover(Copy(Pa),Copy(Pb))
Q ← Q ∪{Mutate(Ca),Mutate(Cb)}

 P ← Q
Termination Best is ideal solution or we’ve run out of time
return Best

85

F. Quality Indicators
To assess the performance of the two algorithms, we use

two quality indicators:

1. The primary indicator is %Correct: i.e. the percentage
of fully-correct solutions, which is an indicator
particular to this problem. Since correctness is an
optimization objective that evolves over time, there
maybe points in the final Pareto front that have rule
violations. Such points are not likely to be useful to the
user. We are interested in percentage of points within
the Pareto front that have zero violations, and thus a
full-correctness score.

2. The secondary indicator is Hypervolume (HV), which is
an indicator of how close to optimality the solutions is.
HV is implemented in jMetal [6].

In the results section, we list the values for %Correct. We
use HV to rank solutions that have the same %Correct, but we
don’t show HV values for brevity.

III. RESEARCH QUESTIONS
In this paper, we consider 4 research questions. RQ1, RQ2,

and RQ4 are considered by Arcuri and Fraser [1]. We added
RQ3 since we’re interested in comparing IBEA to NSGA-II.

RQ1: How Large is the Potential Impact of a Wrong
Choice of Parameter Settings?

RQ2: How Does a “Default” Setting Compare to the Best
and Worst Achievable Performance?

RQ3: How does the performance of IBEA’s best tuning
compare to NSGA-II’s best tuning?

RQ4: If we Tune a Search Algorithm Based on a Set of
Feature Models, How Will Its Performance Be On Other
New Feature Models?

IV. EXPERIMENTAL SETUP
In this section, we explain the experimental setup and the

value choices for the different parameters. Where possible, we
used the same parameter levels that were used by Arcuri and
Fraser. In some cases, we used fixed values because the value
levels were not available in jMetal. Table 1 shows the
similarities and differences between Arcuri and Fraser and this
study.

Each feature model (FM) was operated on for 10 seconds.
The overall time to execute our experiment was = 250 configs
x 15 runs x 20 FMs x 10 sec = 12500 minutes = 208.3 hours =
~8.7 days.

A. Default Values
The default parameter values according to jMetal are:

Population = 100, Crossover rate = 0.8, and Mutation rate =
1/FEATURES.

B. Feature Models Used in this Study
20 non-trivial feature models were chosen from the SPLOT

online repository [8]. Table 2 shows the 20 feature models that
were used in this study.

The feature models were augmented with 3 attributes for
each feature: COST, USED_BEFORE, and DEFECTS. The
values were selected stochastically according to distributions
that emulate software projects. COST takes real values
distributed normally between 5.0 and 15.0, USED_BEFORE
takes Boolean values distributed uniformly, and DEFECTS
takes integer values distributed normally between 0 and 10.

C. Problem Representation

The feature models were represented as binary strings,
where the number of bits is equal to the number of features. If
the bit value is TRUE then the feature is selected, otherwise
the feature is removed (i.e. deselected).

TABLE 1: EXPERIMENTAL SETUP

Parameter Arcuri and Fraser [1] This paper

Algorithm Genetic Algorithm NSGA-II, IBEA

Mutation rate 0.1 {0, 0.5, 1, 1.5, 2}/Features

Crossover rate {0 , .2 , .5 , .8 , 1} {0 , .2 , .5 , .8 , 1}

Population size {4 , 10, 50 , 100 , 200} {10, 50 , 100 , 150, 200}

Elitism rate {0 , 1, 10% , 50%} or steady state Elitism rate does not apply to either NSGA-II or IBEA.
Steady state is implemented in jMetal for NSGA-II but
not IBEA. Thus no variation will be considered here.

Selection

roulette wheel, tournament with size either 2 or 7, and
rank selection

with bias either 1.2 or 1.7

Binary tournament only.

Parent replacement
check

activated or not No.

Repeats 15 15

Test bed 20 classes 20 feature models

Number of
configurations

5 x 5 x 5 x 5 x 2 = 1250 2 x 5 x 5 x 5 = 250

86

TABLE 2: FEATURE MODELS USED IN THIS STUDY

ID Feature model Features CTCs Total rules ID Feature model Features CTCs Total rules
FM-43 Web portal 43 6 63 FM-66 bCMS system 66 2 109

FM-43B Mobile Media 2 43 3 65 FM-67 HIS 67 4 121

FM-44 Documentation
Generation 44 8 68 FM-70 DATABASE

TOOLS 70 2 82

FM-45 Android SPL 45 5 74 FM-72 Car Selection 72 18 123

FM-46 DELL Notebook
Computers 46 110 171 FM-72B Reuso - UFRJ -

Eclipse1 72 1 97

FM-52 Linea de Experimentos 52 4 87 FM-88 Billing 88 59 160

FM-53 Video Player 53 2 78 FM-94 Coche ecologico 94 2 151

FM-60 Smart Home v2.2 60 2 82 FM-97 UP structural 97 1 138

FM-61 Arcade Game PL 61 34 122 FM-137 xtext 137 1 179

FM-63 OW2-FraSCAti-1.4 63 46 129 FM-290 E-Shop 290 21 426

D. Defining the Optimization Objectives
In this work we optimize the following objectives:

1- Correctness; i.e. compliance to the relationships and
constraints defined in the feature model. Since jMetal
treats all optimization objectives as minimization
objectives, we seek to minimize rule violations.

2- Richness of features; we seek to minimize the number
of deselected features.

3- Features that were used before; we seek to minimize
the number of features that weren’t used before.

4- Known defects; which we seek to minimize.
5- Cost; which we seek to minimize.

E. Run Time as Stopping Criterion
In this experiment, we specify run time as the stopping

criterion, rather than the commonly used approach of stopping
after a given number of fitness evaluations. The number of
evaluations is proportional to the total run time and the
required CPU power. Yet, the total run time is affected by
many other algorithm-dependent operations, including the
fitness ranking of individuals in each generation. This leads to
varying runtimes with the same number of evaluations. For
instance, we noticed that IBEA took five times longer than
NSGA-II to perform the same number of evaluations, which
meant that IBEA spent far more time in fitness ranking than
NSGA-II. We are of the opinion that each algorithm should be
given a fixed amount of time to calculate its best
approximation of the Pareto front. A better algorithm should
score better on the quality indicators (HV, %correct) within
that duration of time. Going back to the comparison between
IBEA and NSGA-II, if both are given the same duration of
time, then NSGA-II would perform far more evaluations than
IBEA, and thus would be given a better chance to improve its
results. As we will see in the coming section, providing
NSGA-II with the chance to evolve more generations did not
help it to overcome IBEA at producing more correct solutions
or better HV.

V. STATISTICAL ANALYSIS METHOD
We performed the same analysis done by Arcuri and Fraser

[1], in which they performed two-way comparisons composed
of two parts: effect size and statistical significance.

For effect size, the Vargha-Delaney A measure [12] was
used, as implemented in R by Thomas et al [11]. It tells us how
often, on average, one technique outperforms the other. When

applied to two populations such as the results of two
techniques, the A measure is a value between 0 and 1: when
the A measure is exactly 0.5, then the two techniques achieve
equal performance; when A is less than 0.5, the first technique
is worse; and when A is more than 0.5, the second technique is
worse. The closer to 0.5, the smaller the difference between the
techniques; the farther from 0.5, the larger the difference. [11]

For statistical significance, the Mann-Whitney U-test was
used as implemented in R.

VI. RESULTS
This section has two parts, the main results, and the

parameter training results.

A. Main Results
Table 3 shows a summary of the main results. For each

feature model (FM), we show the average over 15 runs of the
percentage of correct configurations (%correct) found by best
parameter setting and the default parameter setting for both
IBEA and NSGA-II. Then we calculate three effect size values:

1. ÂBDI: Vargha-Delaney effect size of best compared to
default for IBEA.

2. ÂBDN: Vargha-Delaney effect size of best compared to
default for NSGA-II.

3. ÂBIN: Vargha-Delaney effect size of best IBEA
compared to best NSGA-II.

We also calculate the Mann-Whitney statistical significance
measure, and we highlight the A-measure in bold when the
Mann-Whitney p-value is less than 5%.

87

It is worth mentioning here that we don’t list the worst
performance values for IBEA and NSGA-II (as Arcuri and
Fraser [1] do in their study) since those values were always 0%
for all experimental runs.

The results in table 3 show the following:

1. For both IBEA and NSGA-II, the best parameter tuning
beats the default parameter values by a large and
significant amount in 15 out of 20 models. For the other
5 models there is improvement, but it is neither large
nor statistically significant.

2. The best IBEA results beat the best NSGA-II results in
19 out of 20 models. The improvement was large and
significant in 17 out of 19 models. In the one case
where NSGA-II results beat IBEA results, the
improvement was neither large nor significant.

Thus we are able to answer the first 3 research questions:

RQ1: How Large is the Potential Impact of a Wrong
Choice of Parameter Settings?

We confirm Arcuri and Fraser’s [1] conclusion: Different
parameter settings cause very large variance in the
performance.

RQ2: How Does a “Default” Setting Compare to the Best
and Worst Achievable Performance?

Arcuri and Fraser [1] concluded that: Default parameter
settings perform relatively well, but are far from optimal on
individual problem instances.

With our results from table 3, we are able to make a
stronger conclusion: Default parameter settings perform
generally poorly, but might perform relatively well on
individual problem instances.

RQ3: How does the performance of IBEA’s best tuning
compare to NSGA-II’s best tuning?

Our results show that IBEA’s best tuning performs
generally much better than NSGA-II’s best tuning. This RQ is
of no concern to Arcuri and Fraser [1], but it confirms previous
findings by the authors [10]. Specifically, we verify here that
no parameter settings enable NSGA-II to achieve acceptable
levels of correctness and optimality for the leaned
configurations. This results was expected since we have
identified the core fitness assignment method as the reason for
IBEA’s advantage over NSGA-II and other Pareto-based
algorithms. IBEA is able to exploit the user preferences in
ranking the solutions for selection to generate new solutions
and to survive through the evolutionary process; whereas
NSGA-II depends on absolute dominance as the deciding
criterion, coupled with crowd pruning as a mechanism to force
solution diversity, which ignores rich details from the user
preferences. [10]

TABLE 3: SUMMARY OF MAIN RESULTS

FM Best IBEA Default IBEA Best NSGA-II Default NSGA-II ÂBDI ÂBDN ÂBIN

FM-43 98% 91% 20% 7% 0.63 1 1

FM-43B 48% 43% 14% 1.3% 0.58 1 1

FM-44 60% 51% 13% 1.4% 0.76 1 1

FM-45 27% 11% 9% 0.8% 0.88 1 1

FM-46 5% 0% 0.3% 0% 0.8 0.80 0.68

FM-52 22% 2% 23% 7% 0.95 1 0.55

FM-53 79% 71% 27% 16% 0.53 1 1

FM-60 85% 62% 14% 11% 0.61 0.86 1

FM-61 39% 9% 21% 5% 0.90 1 0.86

FM-63 54% 19% 11% 1.0% 0.98 1 1

FM-66 14% 0% 5% 0.3% 0.9 0.66 0.85

FM-67 14% 0% 5% 0.6% 0.93 0.59 0.86

FM-70 100% 100% 10% 2% 0.5 1 1

FM-72 27% 13% 0.7% 0.2% 0.82 0.47 1

FM-72B 97% 66% 10% 1.0% 0.64 1 1

FM-88 27% 0% 12% 0.3% 0.90 1 0.80

FM-94 14% 0% 0.7% 0% 0.97 0.53 0.95

FM-97 67% 22% 3% 0.1% 0.82 0.61 0.96

FM-137 96% 23% 23% 0.3% 0.86 1 1

FM-290 37% 0% 22% 0% 0.73 1 0.45

88

B. Parameter Training Results
Next, we examine the possibility of finding the best

parameter values for a feature model by training on the 19
other feature models. To achieve this, we computed the overall
average for the %correct indicator achieved by each
configuration across all feature models.

We found that the best configuration overall, and also the
best whenever an individual FM is removed, was {IBEA,
Population = 50, Crossover rate = 0, Mutation rate =
0.5/FEATURES}.

The performance under this set of values is compared to the
best performance achieved for each FM and also to the
performance under default values, and the results are shown in
table 4. We calculate ÂTD, the Vargha-Delaney effect size for
the “trained” tuning compared to the default tuning; and ÂTB,
the effect size for the “trained” tuning compared to the best
tuning. We highlight the result in bold if the Mann-Whitney
test shows statistical significance.

The results in table 4 show the following:
1. In general, the trained parameter settings achieve better

results than the default settings. This is true for 16 out
of 20 feature models, and significant in 10 out of 16.

2. For 12 FMs, the best tuning was better than the trained
tuning by a large and significant margin. The remaining
8 FMs had small and insignificant differences.

Thus we provide the following answer to RQ4.
RQ4: If we Tune a Search Algorithm Based on a Set of
Feature Models, How Will Its Performance Be On Other
Feature Models?

We answer by: Tuning on a sample of problem instances
does not, in general, result in the best parameter values for a
new problem instance, but the obtained setting are generally
better than the defaults settings.

On this RQ, Arcuri and Fraser [1] find that: Tuning should
be done on a very large sample of problem instances.
Otherwise, the obtained parameter settings are likely to be
worse than arbitrary default values. This is because they
obtained mixed, and generally poor, parameter settings with
the training technique. In our experiment, the result of training
was uniform, i.e. the same settings were obtained for all feature
models, and the performance compared well with the best and
default settings. This again points to the difference in the
problem domains and model structure, which affects the way
the algorithms need to be tuned in order to best explore the
search space at hand.

TABLE 4: TRAINED TUNING COMPARED TO BEST AND DEFAULT TUNING

FM Best Trained Default
(IBEA)

ÂTD ÂTB

FM-43 98% 88% 91% 0.26 0

FM-43B 48% 46% 43% 0.58 0.52

FM-44 60% 57% 51% 0.65 0.28

FM-45 27% 26% 11% 0.84 0.53

FM-46 5% 2% 0% 0.67 0.33

FM-52 23% 21% 2% 0.85 0.59

FM-53 79% 67% 71% 0.28 0.21

FM-60 85% 77% 62% 0.49 0.24

FM-61 39% 43% 9% 0.96 0.56

FM-63 54% 51% 19% 0.95 0.43

FM-66 14% 6% 0% 0.67 0.30

FM-67 14% 3% 0% 0.60 0.16

FM-70 100% 81% 100% 0.07 0.07

FM-72 27% 17% 13% 0.56 0.12

FM-72B 97% 95% 66% 0.56 0.29

FM-88 27% 25% 0% 0.9 0.39

FM-94 14% 7% 0% 0.7 0.29

FM-97 67% 52% 22% 0.79 0.26

FM-137 96% 90% 23% 0.87 0.5

FM-290 37% 3% 0% 0.53 0.29

89

VII. THREATS TO VALIDITY

A. Threats to Construct Validity
Threats to construct validity are the confounding factors

that are not considered in the study. One such factor is the
search budget, i.e. the amount of time that is allocated for
optimizing each configuration. As the search budget increases,
the differences in performance among different parameter
settings start to disappear. Still, restricting the run time to 10
seconds puts the algorithms under stress to achieve interactive-
grade response, i.e. response within time to keep the attention
of a live user working to interactively configure the software
package. Arcuri and Fraser address the search budget as a
factor in their study [1], but we leave it to future work.

Another possible factor is the use of synthetic data as
attributes of features, i.e. COST, DEFECTS, and
USED_BEFORE. The use of synthetic data is common in
software engineering literature. The difficulty of obtaining real
data comes from the fact that such numbers are usually
associated with software components, not features. When
available, such data is often proprietary and not published.
Nevertheless, the results we obtained have such a large margin
of superiority achieved by IBEA over other algorithms which
couldn’t possibly be biased by the synthetic data. Future work
should attempt to collect real data for use with other MEOAs to
optimize product configuration.

B. Threats to Internal Validity
A possible threat to internal validity is the fact that the

MEAOs are implemented in Java with its garbage collection
utility, which lies outside of any programmer’s control.
Nevertheless, the use of statistical testing should alleviate this
threat and assure the strength of conclusions.

C. Threats to Conclusion Validity
In comparing the performance of MEOAs, we performed

statistical significance testing (Mann-Whitney U test) on 15
different runs of each MEOA. The goal was to remove the
randomized nature of the algorithms as a confounding factor. It
may be argued that 15 runs are not enough for a strong
conclusion, but we achieved high significance (low p-values)
for most of the comparisons, which supports our conclusions.

D. Threats to External Validity
A threat to external validity is that we are unable to

generalize our findings to other evolutionary algorithms, or
other software engineering problems. Nevertheless, when
combining the results of this work with the original study,
which used Genetic Algorithms applied to test case generation
for OO software, we can make a strong case for the
conclusions and encourage further empirical investigations.

VIII. CONCLUSIONS AND FUTURE WORK
The results of this replication confirm the findings in in the

original study by Arcuri and Fraser [1], and even make a
stronger case for parameter tuning as opposed to default
values, as in our answer to RQ2. This confirms what is
generally known as the “no-free-lunch” theorems for
optimization [13], which deny the existence of “one-size-fits-
all” algorithm or configuration of an algorithm. We also

confirm the findings by Sayyad et al [10] on the superiority of
IBEA over NSGA-II, by proving that the best parameter tuning
for NSGA-II still can not outperform the best parameter tuning
for IBEA.

One research question considered by Arcuri and Fraser [1]
was not considered here, which relates to the dependency of
our result on the search budget, i.e. the time allocated for
finding an optimum solution. We have used a fixed search
duration (10 seconds), and we do expect that parameter tuning
would lose significance when the algorithm is given an
extended time to run, as asserted by Arcuri and Fraser [1].
Such experiment, however, would consume a much longer
time than the experiment performed here, and thus was not
done in this paper. We may also consider other methods for
parameter tuning such as those in the extended work by Arcuri
and Fraser [2].

REFERENCES
[1] A. Arcuri and G. Fraser, "On Parameter Tuning in Search Based

Software Engineering," in Proc. SSBSE, 2011, pp. 33-47.
[2] A. Arcuri and G. Fraser, "Parameter Tuning or Default Values? An

Empirical Investigation in Search-Based Software Engineering," Empir
Software Eng, Feb 2013.

[3] D. Benavides, S. Segura, and A. Ruiz-Cortes, "Automated Analysis of
Feature Models 20 Years Later: A Literature Review," Information
Systems, vol. 35, no. 6, pp. 615-636, 2010.

[4] J. Coplien, D. Hoffman, and D. Weiss, "Commonality and Variability in
Software Engineering," IEEE Software, vol. 15, no. 6, pp. 37-45, 1998.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II," IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

[6] J.J. Durillo and A.J. Nebro, "jMetal: A Java Framework for Multi-
Objective Optimization," Advances in Engineering Software, vol. 42, pp.
760-771, 2011.

[7] S. Luke, Essentials of Metaheuristics. 2009: Lulu. [Online].
http://cs.gmu.edu/~sean/book/metaheuristics/

[8] M. Mendonca, M. Branco, and D. Cowan, "S.P.L.O.T. - Software
Product Lines Online Tools," in Proc. OOPSLA, Orlando, USA, 2009.

[9] K. Pohl, G. Böckle, and F.J. van der Linden, Software Product Line
Engineering. New York: Springer-Verlag, 2005.

[10] A.S. Sayyad, T. Menzies, and H. Ammar, "On the Value of User
Preferences in Search-Based Software Engineering: A Case Study in
Software Product Lines," in Proc. ICSE, San Francisco, USA, 2013, pp.
492-501.

[11] S.W. Thomas, H. Hemmati, A.E. Hassan, and D. Blostein, "Static test
case prioritization using topic models," Empirical Software Engineering,
July 2012.

[12] A. Vargha and H.D. Delaney, "A Critique and Improvement of the "CL"
Common Language Effect Size Statistics of McGraw and Wong,"
Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101-
132, 2000.

[13] D.H. Wolpert and W.G. Macready, "No Free Lunch Theorems for
Optimization," IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67-82, 1997.

[14] E. Zitzler and S. Kunzli, "Indicator-Based Selection in Multiobjective
Search," in Parallel Problem Solving from Nature. Berlin, Germany:
Springer-Verlag, 2004, pp. 832–842.

[15] E. Zitzler and L. Thiele, "Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach," IEEE
Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271,
1999.

90

