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Abstract—Multiobjective Evolutionary Algorithms are 
increasingly used to solve optimization problems in software 
engineering. The choice of parameters for those algorithms 
usually follows the "default" settings, often accepted as "rule of 
thumb" or common wisdom. The fact is that each algorithms 
needs to be tuned for the problem at hand. Previous work 
[Arcuri and Fraser, 2011] has shown that variations in 
parameter values had large effects on the performance of the 
algorithms. This project seeks to partially replicate the statistical 
analysis performed by Arcuri and Fraser. We seek to investigate 
the effects of parameter tuning on the performance of the two 
algorithms: Indicator-Based Evolutionary Algorithm (IBEA), 
and Nondominated Sorting Genetic Algorithm (NSGA-II) when 
applied to the problem of configuring Software Product Lines 
(SPLs) in the presence of stakeholder preferences such as cost 
and reliability. The results of this study confirm and strengthen 
the findings in the original study by Arcuri and Fraser. 

Keywords—Parameter Tuning; Search Based Software 
Engineering; Software Product Lines.   

I. INTRODUCTION 
Evolutionary algorithms (EAs) are popular for solving 

problems that are otherwise intractable; i.e. problems that 
become impossible to solve as their dimensions increase. EAs 
are able to perform this task because they navigate the solution 
space guided by heuristics, without having to check every 
possible solution. When arguing about the performance of 
EAs, it is essential to account for the randomness in their 
behavior, hence the need for repeated experiments and 
statistical analysis to assess the strength of conclusions.  

This paper is concerned with the performance assessment 
of EAs when different values are assigned for the different 
parameters involved. A study was performed by Arcuri and 
Fraser [1], [2], that performed the same experiment to the 
problem of generating test vectors for object-oriented software, 
and comparing the performance according to test coverage. 
This experiment seeks to emulate the work of Arcuri and 
Fraser in different domain. We investigate the effects of 
parameter tuning on the performance of two multiobjective 
evolutionary optimization algorithms (MEOAs), namely 
Indicator-Based Evolutionary Algorithm (IBEA), and 
Nondominated Sorting Genetic Algorithm (NSGA-II) when 
applied to the problem of configuring Software Product Lines 
(SPLs). Previous work by Sayyad et al [10] has shown the 
superiority of IBEA when optimizing up to 5 objectives related 
to cost and reliability. That work was performed with a fixed 

set of “default” parameters, which cast a little doubt as to the 
ability of NSGA-II to perform better under a different set of 
parameter values. This work confirms statistically that IBEA 
remains the algorithm of choice for this problem, and also 
confirms the findings by Arcuri and Fraser that parameter 
choice has a large effect on the performance of EAs. 

The rest of this paper is organized as follows: Section II 
introduces background material on feature models and 
MEOAs. Section III presents the research questions. Section 
IV explains the experimental setup. Section V mentions the 
statistical analysis method, and section VI presents the results. 
In section VII we discuss potential threats to validity, and then 
in section VIII we offer our conclusions and directions for 
future work. 

II. BACKGROUND 
This section is adapted from [10] to provide background 

about Software Product Lines (SPLs), feature models, and 
multiobjective evolutionary optimization algorithms (MEOAs). 

A. Software Product Line Engineering (SPLE) 
Software product line engineering is a paradigm to develop 

software applications using platforms and mass customization. 
Benefits of SPLE include reduction of development costs, 
enhancement of quality, reduction of time to market, reduction 
of maintenance effort, coping with evolution and complexity 
[9], and automating the creation of family members [4]. 

B. Feature Models 
A feature is an end-user-visible behavior of a software 

product that is of interest to some stakeholder. A feature model 
represents the information of all possible products of a 
software product line in terms of features and relationships 
among them. Feature models are a special type of information 
model widely used in software product line engineering. A 
feature model is represented as a hierarchically arranged set of 
features composed by: 

� Relationships between a parent feature and its child 
features (or subfeatures).  

� Cross-tree constraints (CTCs), which describe 
relationships between features from different branches 
in the tree. CTCs are typically inclusion or exclusion 
statements in the form: if feature F is included, then 
features A and B must also be included (or excluded).  
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Fig. 1. Feature model for mobile phone product line, adopted from [3] 

Fig. 1, adapted from [3], depicts a simplified feature model 
inspired by the mobile phone industry. 

The full set of rules in a feature model includes: 
� The root feature is mandatory. 
� Every child requires its own parent. 
� If the child is mandatory then the parent requires it. 
� Every group adds a rule about how many members can 

be chosen. 
� Every cross-tree constraint (CTC) is a rule. 
 The total number of rules will be used as the “full 

correctness” score in this experiment, thus making 
“correctness” one of the optimization objectives. 

C. Genetic Algorithms 
Both IBEA and NSGA-II algorithms have Genetic 

Algorithm at their core. The original Genetic Algorithm (GA) 
was developed with a single fitness value in mind, i.e. a single 
optimization objective. Fig. 2 lists an outline of the Genetic 
Algorithm, adapted from [7]. 

 
D.  
E.  
F.  
G.  
H.  
I.  
J.  
K.  
L.  
M.  
N.  

 

Fig. 2. Genetic Algorithm, adapted from [7] 

 
Fig. 3. Example of a Single-Point Crossover, from [7] 

The SelectWithReplacement() function selects individuals 
from the population with a probability proportionate with their 
fitness. An individual may, by chance, be chosen for breeding 
multiple times. 

The individual solutions are of the Boolean string type. The 
Crossover() function performs a single-point crossover, where 
a point is chosen randomly, and the bits are swapped between 
the two parents as shown in Fig. 3 [7]. Crossover between two 
parents is performed with a predetermined probability. 

The Mutate() function performs bit-flip mutation, where 
each bit in the string may be flipped at a predetermined 
probability. 

D. Multiobjective Optimization 
Many real-world problems involve simultaneous 

optimization of several incommensurable and often competing 
objectives. Often, there is no single optimal solution, but rather 
a set of alternative solutions. These solutions are optimal in the 
wider sense that no other solutions in the search space are 
superior to them when all objectives are considered [15].  

Formally, a vector � =  {��, . . . , ��}  is said to be 
dominated by a vector � =  {��, . . . , ��} if and only if u is 
partially less than v, i.e. 

∀� ∈ {1, … , 	}, �
 ≤ �
 �
� ∃ � ∈ {1, … , 	} ∶  �
 < �
    (1) 

The set of all points in the objective space that are not 
dominated by any other points is called the Pareto Front. 

E. Multiobjective Evolutionary Optimization Algorithms 
(MEOAs) 

Many real-world problems involve simultaneous 
optimization of several incommensurable and often competing 
objectives. Often, there is no single optimal solution, but rather 
a set of alternative solutions. These solutions are optimal in the 
wider sense that no other solutions in the search space are 
superior to them when all objectives are considered [15].  

Many algorithms have been suggested over the past two 
decades for multiobjective optimization based on evolutionary 
algorithms that were designed primarily for single-objective 
optimization, such as Genetic Algorithms, Evolutionary 
Strategies, Particle Swarm Optimization, and Differential 
Evolution.  

The algorithms we used in this study were already 
implemented in the jMetal framework [6]. They are: 

1. IBEA: Indicator-Based Evolutionary Algorithm [14]. 
2. NSGA-II: Nondominated Sorting Genetic Algorithm, 

version 2 [5]. 

Initialization   
popsize ← desired population size  
P ← {}  
for popsize times do 

           P ← P ∪ {new random individual} 
Best ← null 

Repeat until Termination 
        for each individual Pi ∈ P do 
 AssignFitness(Pi) 

if Best = null or Fitness(Pi) > Fitness(Best) then 
        Best ← Pi 

        Q←{} 
        for popsize/2 times do 

Parent Pa ← MatingSelection(P) 
Parent Pb ← MatingSelection (P) 
Children Ca,Cb ← Crossover(Copy(Pa),Copy(Pb)) 
Q ← Q ∪{Mutate(Ca),Mutate(Cb)} 

        P ← Q  
Termination Best is ideal solution or we’ve run out of time 
return Best 

85



F. Quality Indicators 
To assess the performance of the two algorithms, we use 

two quality indicators: 

1. The primary indicator is %Correct: i.e. the percentage 
of fully-correct solutions, which is an indicator 
particular to this problem. Since correctness is an 
optimization objective that evolves over time, there 
maybe points in the final Pareto front that have rule 
violations. Such points are not likely to be useful to the 
user. We are interested in percentage of points within 
the Pareto front that have zero violations, and thus a 
full-correctness score. 

2. The secondary indicator is Hypervolume (HV), which is 
an indicator of how close to optimality the solutions is. 
HV is implemented in jMetal [6]. 

In the results section, we list the values for %Correct. We 
use HV to rank solutions that have the same %Correct, but we 
don’t show HV values for brevity. 

III. RESEARCH QUESTIONS 
In this paper, we consider 4 research questions. RQ1, RQ2, 

and RQ4 are considered by Arcuri and Fraser [1]. We added 
RQ3 since we’re interested in comparing IBEA to NSGA-II. 

RQ1: How Large is the Potential Impact of a Wrong 
Choice of Parameter Settings? 

RQ2: How Does a “Default” Setting Compare to the Best 
and Worst Achievable Performance? 

RQ3: How does the performance of IBEA’s best tuning 
compare to NSGA-II’s best tuning? 

RQ4: If we Tune a Search Algorithm Based on a Set of 
Feature Models, How Will Its Performance Be On Other 
New Feature Models? 

IV. EXPERIMENTAL SETUP 
In this section, we explain the experimental setup and the 

value choices for the different parameters. Where possible, we 
used the same parameter levels that were used by Arcuri and 
Fraser. In some cases, we used fixed values because the value 
levels were not available in jMetal. Table 1 shows the 
similarities and differences between Arcuri and Fraser and this 
study. 

Each feature model (FM) was operated on for 10 seconds. 
The overall time to execute our experiment was = 250 configs 
x 15 runs x 20 FMs x 10 sec = 12500 minutes = 208.3 hours = 
~8.7 days. 

A. Default Values 
The default parameter values according to jMetal are: 

Population = 100, Crossover rate = 0.8, and Mutation rate = 
1/FEATURES. 

B. Feature Models Used in this Study  
20 non-trivial feature models were chosen from the SPLOT 

online repository [8]. Table 2 shows the 20 feature models that 
were used in this study. 

The feature models were augmented with 3 attributes for 
each feature: COST, USED_BEFORE, and DEFECTS. The 
values were selected stochastically according to distributions 
that emulate software projects. COST takes real values 
distributed normally between 5.0 and 15.0, USED_BEFORE 
takes Boolean values distributed uniformly, and DEFECTS 
takes integer values distributed normally between 0 and 10. 

C. Problem Representation 

The feature models were represented as binary strings, 
where the number of bits is equal to the number of features. If 
the bit value is TRUE then the feature is selected, otherwise 
the feature is removed (i.e. deselected). 

TABLE 1: EXPERIMENTAL SETUP 

Parameter Arcuri and Fraser [1] This paper 

Algorithm Genetic Algorithm NSGA-II, IBEA 

Mutation rate 0.1 {0, 0.5, 1, 1.5, 2}/Features 

Crossover rate {0 , .2 , .5 , .8 , 1} {0 , .2 , .5 , .8 , 1} 

Population size {4 , 10, 50 , 100 , 200} {10, 50 , 100 , 150, 200} 

Elitism rate {0 , 1, 10% , 50%} or steady state Elitism rate does not apply to either NSGA-II or IBEA. 
Steady state is implemented in jMetal for NSGA-II but 
not IBEA. Thus no variation will be considered here. 

Selection 
 

roulette wheel, tournament with size either 2 or 7, and 
rank selection 

with bias either 1.2 or 1.7 

Binary tournament only. 

Parent replacement 
check 

activated or not No. 

Repeats 15 15 

Test bed 20 classes 20 feature models 

Number of 
configurations 

5 x 5 x 5 x 5 x 2 = 1250 2 x 5 x 5 x 5 = 250 
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TABLE 2: FEATURE MODELS USED IN THIS STUDY 

ID Feature model Features CTCs Total rules ID Feature model Features CTCs Total rules 
FM-43 Web portal 43 6 63 FM-66 bCMS system 66 2 109 

FM-43B Mobile Media 2 43 3 65 FM-67 HIS 67 4 121 

FM-44 Documentation 
Generation 44 8 68 FM-70 DATABASE 

TOOLS 70 2 82 

FM-45 Android SPL 45 5 74 FM-72 Car Selection 72 18 123 

FM-46 DELL Notebook 
Computers 46 110 171 FM-72B Reuso - UFRJ - 

Eclipse1 72 1 97 

FM-52 Linea de Experimentos 52 4 87 FM-88 Billing 88 59 160 

FM-53 Video Player 53 2 78 FM-94 Coche ecologico 94 2 151 

FM-60 Smart Home v2.2 60 2 82 FM-97 UP structural 97 1 138 

FM-61 Arcade Game PL 61 34 122 FM-137 xtext 137 1 179 

FM-63 OW2-FraSCAti-1.4 63 46 129 FM-290 E-Shop 290 21 426 

 

D. Defining the Optimization Objectives 
In this work we optimize the following objectives: 

1- Correctness; i.e. compliance to the relationships and 
constraints defined in the feature model. Since jMetal 
treats all optimization objectives as minimization 
objectives, we seek to minimize rule violations. 

2- Richness of features; we seek to minimize the number 
of deselected features. 

3- Features that were used before; we seek to minimize 
the number of features that weren’t used before. 

4- Known defects; which we seek to minimize. 
5- Cost; which we seek to minimize. 

E. Run Time as Stopping Criterion 
In this experiment, we specify run time as the stopping 

criterion, rather than the commonly used approach of stopping 
after a given number of fitness evaluations.  The number of 
evaluations is proportional to the total run time and the 
required CPU power. Yet, the total run time is affected by 
many other algorithm-dependent operations, including the 
fitness ranking of individuals in each generation. This leads to 
varying runtimes with the same number of evaluations. For 
instance, we noticed that IBEA took five times longer than 
NSGA-II to perform the same number of evaluations, which 
meant that IBEA spent far more time in fitness ranking than 
NSGA-II. We are of the opinion that each algorithm should be 
given a fixed amount of time to calculate its best 
approximation of the Pareto front. A better algorithm should 
score better on the quality indicators (HV, %correct) within 
that duration of time. Going back to the comparison between 
IBEA and NSGA-II, if both are given the same duration of 
time, then NSGA-II would perform far more evaluations than 
IBEA, and thus would be given a better chance to improve its 
results. As we will see in the coming section, providing 
NSGA-II with the chance to evolve more generations did not 
help it to overcome IBEA at producing more correct solutions 
or better HV. 

V. STATISTICAL ANALYSIS METHOD 
We performed the same analysis done by Arcuri and Fraser 

[1], in which they performed two-way comparisons composed 
of two parts: effect size and statistical significance. 

For effect size, the Vargha-Delaney A measure [12] was 
used, as implemented in R by Thomas et al [11]. It tells us how 
often, on average, one technique outperforms the other. When 

applied to two populations such as the results of two 
techniques, the A measure is a value between 0 and 1: when 
the A measure is exactly 0.5, then the two techniques achieve 
equal performance; when A is less than 0.5, the first technique 
is worse; and when A is more than 0.5, the second technique is 
worse. The closer to 0.5, the smaller the difference between the 
techniques; the farther from 0.5, the larger the difference. [11] 

For statistical significance, the Mann-Whitney U-test was 
used as implemented in R. 

VI. RESULTS 
This section has two parts, the main results, and the 

parameter training results. 

A. Main Results 
Table 3 shows a summary of the main results. For each 

feature model (FM), we show the average over 15 runs of the 
percentage of correct configurations (%correct) found by best 
parameter setting and the default parameter setting for both 
IBEA and NSGA-II. Then we calculate three effect size values: 

1. ÂBDI: Vargha-Delaney effect size of best compared to 
default for IBEA. 

2. ÂBDN: Vargha-Delaney effect size of best compared to 
default for NSGA-II. 

3. ÂBIN: Vargha-Delaney effect size of best IBEA 
compared to best NSGA-II. 

We also calculate the Mann-Whitney statistical significance 
measure, and we highlight the A-measure in bold when the 
Mann-Whitney p-value is less than 5%. 
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It is worth mentioning here that we don’t list the worst 
performance values for IBEA and NSGA-II (as Arcuri and 
Fraser [1] do in their study) since those values were always 0% 
for all experimental runs. 

The results in table 3 show the following: 

1. For both IBEA and NSGA-II, the best parameter tuning 
beats the default parameter values by a large and 
significant amount in 15 out of 20 models. For the other 
5 models there is improvement, but it is neither large 
nor statistically significant. 

2. The best IBEA results beat the best NSGA-II results in 
19 out of 20 models. The improvement was large and 
significant in 17 out of 19 models. In the one case 
where NSGA-II results beat IBEA results, the 
improvement was neither large nor significant. 

Thus we are able to answer the first 3 research questions: 

RQ1: How Large is the Potential Impact of a Wrong 
Choice of Parameter Settings? 

We confirm Arcuri and Fraser’s [1] conclusion: Different 
parameter settings cause very large variance in the 
performance. 

RQ2: How Does a “Default” Setting Compare to the Best 
and Worst Achievable Performance? 

Arcuri and Fraser [1] concluded that: Default parameter 
settings perform relatively well, but are far from optimal on 
individual problem instances. 

With our results from table 3, we are able to make a 
stronger conclusion: Default parameter settings perform 
generally poorly, but might perform relatively well on 
individual problem instances. 

RQ3: How does the performance of IBEA’s best tuning 
compare to NSGA-II’s best tuning? 

Our results show that IBEA’s best tuning performs 
generally much better than NSGA-II’s best tuning. This RQ is 
of no concern to Arcuri and Fraser [1], but it confirms previous 
findings by the authors [10]. Specifically, we verify here that 
no parameter settings enable NSGA-II to achieve acceptable 
levels of correctness and optimality for the leaned 
configurations. This results was expected since we have 
identified the core fitness assignment method as the reason for 
IBEA’s advantage over NSGA-II and other Pareto-based 
algorithms. IBEA is able to exploit the user preferences in 
ranking the solutions for selection to generate new solutions 
and to survive through the evolutionary process; whereas 
NSGA-II depends on absolute dominance as the deciding 
criterion, coupled with crowd pruning as a mechanism to force 
solution diversity, which ignores rich details from the user 
preferences. [10] 

TABLE 3: SUMMARY OF MAIN RESULTS 

FM Best IBEA Default IBEA Best NSGA-II Default NSGA-II ÂBDI ÂBDN ÂBIN 

FM-43 98% 91% 20% 7% 0.63 1 1 

FM-43B 48% 43% 14% 1.3% 0.58 1 1 

FM-44 60% 51% 13% 1.4% 0.76 1 1 

FM-45 27% 11% 9% 0.8% 0.88 1 1 

FM-46 5% 0% 0.3% 0% 0.8 0.80 0.68 

FM-52 22% 2% 23% 7% 0.95 1 0.55 

FM-53 79% 71% 27% 16% 0.53 1 1 

FM-60 85% 62% 14% 11% 0.61 0.86 1 

FM-61 39% 9% 21% 5% 0.90 1 0.86 

FM-63 54% 19% 11% 1.0% 0.98 1 1 

FM-66 14% 0% 5% 0.3% 0.9 0.66 0.85 

FM-67 14% 0% 5% 0.6% 0.93 0.59 0.86 

FM-70 100% 100% 10% 2% 0.5 1 1 

FM-72 27% 13% 0.7% 0.2% 0.82 0.47 1 

FM-72B 97% 66% 10% 1.0% 0.64 1 1 

FM-88 27% 0% 12% 0.3% 0.90 1 0.80 

FM-94 14% 0% 0.7% 0% 0.97 0.53 0.95 

FM-97 67% 22% 3% 0.1% 0.82 0.61 0.96 

FM-137 96% 23% 23% 0.3% 0.86 1 1 

FM-290 37% 0% 22% 0% 0.73 1 0.45 
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B. Parameter Training Results 
Next, we examine the possibility of finding the best 

parameter values for a feature model by training on the 19 
other feature models. To achieve this, we computed the overall 
average for the %correct indicator achieved by each 
configuration across all feature models. 

We found that the best configuration overall, and also the 
best whenever an individual FM is removed, was {IBEA, 
Population = 50, Crossover rate = 0, Mutation rate = 
0.5/FEATURES}. 

The performance under this set of values is compared to the 
best performance achieved for each FM and also to the 
performance under default values, and the results are shown in 
table 4. We calculate ÂTD, the Vargha-Delaney effect size for 
the “trained” tuning compared to the default tuning; and ÂTB, 
the effect size for the “trained” tuning compared to the best 
tuning. We highlight the result in bold if the Mann-Whitney 
test shows statistical significance. 

The results in table 4 show the following: 
1. In general, the trained parameter settings achieve better 

results than the default settings. This is true for 16 out 
of 20 feature models, and significant in 10 out of 16. 

2. For 12 FMs, the best tuning was better than the trained 
tuning by a large and significant margin. The remaining 
8 FMs had small and insignificant differences. 

Thus we provide the following answer to RQ4. 
RQ4: If we Tune a Search Algorithm Based on a Set of 
Feature Models, How Will Its Performance Be On Other 
Feature Models? 

We answer by: Tuning on a sample of problem instances 
does not, in general, result in the best parameter values for a 
new problem instance, but the obtained setting are generally 
better than the defaults settings. 

On this RQ, Arcuri and Fraser [1] find that: Tuning should 
be done on a very large sample of problem instances. 
Otherwise, the obtained parameter settings are likely to be 
worse than arbitrary default values. This is because they 
obtained mixed, and generally poor, parameter settings with 
the training technique. In our experiment, the result of training 
was uniform, i.e. the same settings were obtained for all feature 
models, and the performance compared well with the best and 
default settings. This again points to the difference in the 
problem domains and model structure, which affects the way 
the algorithms need to be tuned in order to best explore the 
search space at hand. 

TABLE 4: TRAINED TUNING COMPARED TO BEST AND DEFAULT TUNING 

FM Best Trained Default 
(IBEA) 

ÂTD ÂTB 

FM-43 98% 88% 91% 0.26 0 

FM-43B 48% 46% 43% 0.58 0.52 

FM-44 60% 57% 51% 0.65 0.28 

FM-45 27% 26% 11% 0.84 0.53 

FM-46 5% 2% 0% 0.67 0.33 

FM-52 23% 21% 2% 0.85 0.59 

FM-53 79% 67% 71% 0.28 0.21 

FM-60 85% 77% 62% 0.49 0.24 

FM-61 39% 43% 9% 0.96 0.56 

FM-63 54% 51% 19% 0.95 0.43 

FM-66 14% 6% 0% 0.67 0.30 

FM-67 14% 3% 0% 0.60 0.16 

FM-70 100% 81% 100% 0.07 0.07 

FM-72 27% 17% 13% 0.56 0.12 

FM-72B 97% 95% 66% 0.56 0.29 

FM-88 27% 25% 0% 0.9 0.39 

FM-94 14% 7% 0% 0.7 0.29 

FM-97 67% 52% 22% 0.79 0.26 

FM-137 96% 90% 23% 0.87 0.5 

FM-290 37% 3% 0% 0.53 0.29 
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VII. THREATS TO VALIDITY 

A. Threats to Construct Validity 
Threats to construct validity are the confounding factors 

that are not considered in the study. One such factor is the 
search budget, i.e. the amount of time that is allocated for 
optimizing each configuration. As the search budget increases, 
the differences in performance among different parameter 
settings start to disappear. Still, restricting the run time to 10 
seconds puts the algorithms under stress to achieve interactive-
grade response, i.e. response within time to keep the attention 
of a live user working to interactively configure the software 
package. Arcuri and Fraser address the search budget as a 
factor in their study [1], but we leave it to future work.  

Another possible factor is the use of synthetic data as 
attributes of features, i.e. COST, DEFECTS, and 
USED_BEFORE. The use of synthetic data is common in 
software engineering literature. The difficulty of obtaining real 
data comes from the fact that such numbers are usually 
associated with software components, not features. When 
available, such data is often proprietary and not published. 
Nevertheless, the results we obtained have such a large margin 
of superiority achieved by IBEA over other algorithms which 
couldn’t possibly be biased by the synthetic data. Future work 
should attempt to collect real data for use with other MEOAs to 
optimize product configuration. 

B. Threats to Internal Validity 
A possible threat to internal validity is the fact that the 

MEAOs are implemented in Java with its garbage collection 
utility, which lies outside of any programmer’s control. 
Nevertheless, the use of statistical testing should alleviate this 
threat and assure the strength of conclusions. 

C. Threats to Conclusion Validity 
In comparing the performance of MEOAs, we performed 

statistical significance testing (Mann-Whitney U test) on 15 
different runs of each MEOA. The goal was to remove the 
randomized nature of the algorithms as a confounding factor. It 
may be argued that 15 runs are not enough for a strong 
conclusion, but we achieved high significance (low p-values) 
for most of the comparisons, which supports our conclusions. 

D. Threats to External Validity 
A threat to external validity is that we are unable to 

generalize our findings to other evolutionary algorithms, or 
other software engineering problems. Nevertheless, when 
combining the results of this work with the original study, 
which used Genetic Algorithms applied to test case generation 
for OO software, we can make a strong case for the 
conclusions and encourage further empirical investigations. 

VIII. CONCLUSIONS AND FUTURE WORK 
The results of this replication confirm the findings in in the 

original study by Arcuri and Fraser [1], and even make a 
stronger case for parameter tuning as opposed to default 
values, as in our answer to RQ2. This confirms what is 
generally known as the “no-free-lunch” theorems for 
optimization [13], which deny the existence of “one-size-fits-
all” algorithm or configuration of an algorithm. We also 

confirm the findings by Sayyad et al [10] on the superiority of 
IBEA over NSGA-II, by proving that the best parameter tuning 
for NSGA-II still can not outperform the best parameter tuning 
for IBEA. 

One research question considered by Arcuri and Fraser [1] 
was not considered here, which relates to the dependency of 
our result on the search budget, i.e. the time allocated for 
finding an optimum solution. We have used a fixed search 
duration (10 seconds), and we do expect that parameter tuning 
would lose significance when the algorithm is given an 
extended time to run, as asserted by Arcuri and Fraser [1]. 
Such experiment, however, would consume a much longer 
time than the experiment performed here, and thus was not 
done in this paper. We may also consider other methods for 
parameter tuning such as those in the extended work by Arcuri 
and Fraser [2]. 
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