Software Requirement Risk Assessment Using UML'

K. Appukkutty, Hany H. Ammar, Katerina Goseva Popstajanova
Lane Department of Computer Science, West Virginia University
Morgantown WV 26506
{avani, ammar, katerina } @csee.wvu.edu

Abstract

Risk assessment is an integral part of sofiware risk
management. There are several methods for risk
assessment during various phases of software
development and at different levels of abstraction.
However, there are very few techniques available for
assessing risk at the requirements level and those that are
available are highly subjective and are not based on any
formal design models. Such techniques are human-
intensive and highly error prone. This paper presents a
methodology that assesses sofiware risk at the
requirements level using Unified Modeling Language
(UML) specifications of the software at the early
development stages. Each requirement is mapped to a
specific operational scenario in UML. We determine the
possible failure modes of the scenario and find out the
complexity of the scenario in each failure mode. The risk
factor of a scenario in a failure mode is obtained by
combining the complexity of the failure mode in that
scenario and the severity of the failure. The result of
applying the methodology on a Cardiac Pacemaker case
study is presented.

1. Introduction

Risk is defined as a combination of two factors:
probability of malfunctioning (failure) and the
consequence of malfunctioning (severity) [1]. There is
much ongoing research in the field of reliability, security,
and safety-based risk assessment. Most of the current risk
assessment methodologies can only be used to estimate
risk in the later stages of the software life cycle, typically
from design models or code. As a result these
methodologies can identify risks but have limited
capability in preventing these risks from occurring.

! This project is funded by grants to West Virginia University Research
Corp. from the NASA Office of Safety and Mission Assurance (OSMA)
Software Assurance Research Program (SARP) managed through the
NASA Independent Verification and Validation (IV&V) Facility,
Fairmont, West Virginia.

0-7803-8735-X/05/$20.00©2005 IEEE

Software requirement risk addresses the possibility of
suffering a loss of any functional or non-functional
requirement of the software system. It is a well known
fact that it is more feasible to make changes to the
software system under development in the early stages of
the software development cycle. A more efficient risk
analysis would be to follow a proactive approach, where
the potential risks are identified early and preventive
measures are taken to avoid the risks from occurring.
Identifying requirement risk at this stage usually is
subjective and needs a panel of domain experts to analyze
the requirements. Currently available techniques for
assessing requirement-based risk are ad hoc in nature and
are not based on any popular modeling techniques. They
are usually performed in an informal and subjective way
by a “risk team”. But in reality, not all the software
projects have the luxury of having a group of domain
experts to carry out this analysis and such an assessment
is completely dependant on the opinion of the risk
assessment team. To overcome the above mentioned
problems our research focused on a method that is less
dependent on domain experts and more systematic. This
paper introduces a formal methodology that we have
developed for requirement based risk assessment at the
early design phase, using UML [4] models .Our method
relies less heavily on domain experts than the currently
used methodologies [6] [7]. The output of our method
consists of the risk factors associated with each
requirement.

This paper is organized as follows: In Section 2 we
present the related work and our contributions. In Section
3 we introduce the methodology and describe in detail,
each step involved. In Section 4, we discuss the results
obtained by applying the methodology on an example and
conclude with discussion of our results and future work.

2. Related Work and Our Contributions

Software risk assessment provides a means for
identifying risky components and scenarios of a software
product [2]. Risk assessment is done at different levels of
software architecture and different stages of software
development.

Several formal methodologies have been introduced in
the recent years to assess and deal with different kinds of
risks associated with software. Gilliam et al introduced a
method to reduce software security risk by identifying the
vulnerabilities of the software using Vmatrix
(vulnerability matrix) and by performing Property-Based
Testing (PBT) [10].

A methodology to estimate risk at the architectural
level using UML models was introduced in [1]. Risk
factors of components and connectors were estimated by
combining dynamic complexity and severity ranking of a
failure. Then, a Component Dependency Graph (CDG) is
developed to assess the risk of the systems. In [2] a
similar approach was followed to obtain component and
connector risk factors and a Markov model was used to
estimate the scenario level risk factors. This approach also
identified critical components and connectors in the
system. Both these techniques are based on UML models
and provide a formal method to assess risk. These
approaches require the details of components and
connectors involved which are not available until the later
stages of the design phase. Moreover, the approaches do
not relate the risks to the requirements that will be
affected, and because of this it would be difficult to
communicate the risk assessment results to the client.

Risk mitigation based on the impact of failures on
requirements has been previously addressed by Feather et
al [6] [7] in the form of defect detection and prevention.
The detection of defects involves identifying failure
modes for each requirement and estimating the impact of
these failures on the corresponding requirements. This is
done at the requirement analysis stage and is not based on
any formal design models. The estimation of impact or
risk is completely subjective and is based on the opinions
of the members of the domain-expert team, who in most
cases are not involved in the design of the software.

The above discussed limitations are addressed by our
methodology, which is motivated by the need to:

e Assess requirement-based risk of software during the
early design phases. It is important to identify the
requirements that are at high risk earlier in the
software development since preventive measures can
be taken prior to the development of the software in
order to reduce the occurrence of the failure modes
that contribute to requirement-risks.

e Develop a formal methodology for requirement-
based risk assessment based on UML. Earlier
requirement-based risk assessment techniques were
based on analyzing the requirement documents. UML
provides a semi-formal method for modeling object
oriented software. UML also provides several
extensibility features in the form of UML profiles for
aid in building models in certain domains, as well as
addressing certain modeling problems.

e Make the requirement-risk assessment methodology
less dependent on domain experts since, the methods

that are solely based on input from domain experts
are highly subjective and error prone.
The contributions of this paper are briefly described as
follows:

e We present a systematic methodology to
estimate requirement-based risk using UML design
specifications. The UML specifications are obtained in
the early phases of the software development. Our
methodology relies less heavily on domain experts and
therefore is less subjective and less error-prone.

e We introduce a technique to estimate risk at the
requirement level based on previously established
formal metrics for estimating error proneness by
Fenton et al [5] and severity analysis techniques based
on Function Failure Analysis (FFA), which has
previously been used in techniques for risk assessment
at the architectural level [2].

3. Methodology for estimating requirements
risk factors

A UML use case model is defined in the UML
specifications [4] as a model that describes a system’s
functional requirements in terms of use-cases. The use
cases are realized by scenarios. Each scenario is modeled
by a sequence diagram, which shows the interaction of
various components in that scenario. According to
pervious risk related work [1], Risk is a “Combination of
two factors: probability of malfunctioning (failure) and
the consequence of malfunctioning (severity).” The
probability of malfunctioning of a system is proportional
to its complexity. The more complex a system is, the
more prone it is, to faults and failures [5]. Therefore, the
complexity of a system is measured in order to estimate
the probability of its failure. Since the low level details of
the components and connectors of the system are not
available during the early design phase, the complexity is
calculated at the scenario level, using UML sequence
diagrams.

Requirements are mapped to UML use cases. Each
requirement contains one or more scenarios, each of
which is represented as a sequence diagram. A sequence
diagram is defined as a diagram that shows the object
interactions arranged in a time sequence [4].

The steps of our requirement-risk assessment
methodology are presented in Figure 1. In STEP 1, we
identify the use cases and the corresponding scenario and
sequence diagrams. In STEP 2, we construct a control
flow graph from the sequence diagram. This is fairly
straightforward since the sequence diagrams themselves
can be viewed as a control flow diagram where the
control flows from one component to another in the form
of messages and triggers an action or event in the
destination component. The control flow graph of the
scenario captures all this information in the form of nodes

and arcs. It shows the flow of control with the nodes
representing different states of components and the arcs
representing the flow of control.

STEP 1: Map the requirements to UML
sequence diagrams
For each Sequence diagram
STEP 2: Construct the control flow
graph of the scenario from the
sequence diagram
STEP 3: Identify the different failure
modes on the sequence diagram and the
control flow graph
For each failure mode
STEP 4: Assess the severity class
of the failure mode using Function
Failure Analysis (FFA)
STEP 5: Determine the cyclomatic
complexity of the sub-control flow
graph
STEP 6: Measure the number of
messages exchanged between the
components in the sequence diagram
STEP 7: Calculate the complexity of
the scenario for the failure mode
as Cyclomatic complexity * Number
of messages
STEP 8: Calculate the risk of the
scenario for the failure mode as
Complexity * Severity
End For each failure mode
End for each sequence diagram

Figure 1. Requirement risk assessment methodology

A failure mode is based on how the scenario fails
during execution. Failure Mode Effects and Criticality
Analysis (FMECA) [12] defines a failure mode as the
way in which a product or process could fail to perform
its desired function. A scenario could fail at several places
but we only consider the failure modes based on the
scenario inputs or outputs and not on the failure of
individual components or connectors involved. In STEP
3, the failure modes of a scenario are captured and
marked on the sequence diagram and the control flow
graph. The severity (consequences) of each failure mode
is assessed in STEP 4 using Functional Failure Analysis,
where domain experts come up with the effects of that
failure mode. The failure mode is then categorized into
one of the four classes, based on its severity: Minor,
Marginal, Critical and Catastrophic. Severity indices
assigned for each category of failure are 0.25, 0.50, 0.75
and 0.95 respectively. Our previous work in reliability-
risk assessment also wuses this type of severity
classification [2].

In STEP 5, we measure McCabe’s cyclomatic
complexity (CC) of the sub control flow graph that gives
the flow of the scenario to the point where the relevant
failure mode occurs.

CC is calculated as:
CC=E-N+2

where E is the number of edges and N is the number of
nodes in the graph considered. In STEP 6, we count the
number of messages (Msg) exchanged between the
components from the start to the point where the
considered failure mode occurs. Earlier work in metrics
by Fenton et al [5] showed that the product of the two
metrics, McCabe’s cyclomatic complexity and sigFF, is a
good predictor of fault proneness. sigFF is the count of
new and modified signals exchanged between the various
modules. The metric sigFF is analogous to Msg, the
number of messages that are exchanged between various
components in the system. The complexity of the scenario
for a specific failure mode is calculated as the product of
CC and Msg for that specific failure mode. By combining
these two metrics, we combine the complexity of the
control flow of the scenario and also, the number of
interactions that take place between the different
components. Note that, while calculating the complexity,
we do not go into the details of each component but we
take into account only the interactions between the
various components involved.

In STEP 8, the risk value of a scenario in a specific
failure mode is calculated as a product of the normalized
complexity of the scenario in that failure mode and the
corresponding severity value. The process is repeated for
each failure mode and for each scenario. The results are
tabulated in the requirement-risk matrix.

4. Results and Conclusion

We have applied the requirement risk assessment
methodology on the Pacemaker case study used in [1],
[2]. The details of the application of the methodology on
the case study are presented in [3]. In this paper only the
results are presented. Table 1 shows the requirement risk
matrix of the pacemaker case study for 3 different
requirements.

Table 1. Requirement risk matrix for the Pacemaker

Failure Modes

FM1| FM2 |FM3|FM4| FM5

Requirements
Scenarios

R1 |AVI|0.11]| 037 (0475
R2 | AAI [0.151] 0.283 [0.566
R3 | Prg 0.017| 0.233

The first row in the matrix shows requirement R1 and
the corresponding risk values for the various failure
modes FM1, FM?2 and FM3 associated with it. The failure
modes FM4 and FMS5 are not relevant for the
requirements R/ and R2. Therefore the corresponding
cells are left blank.

The requirement risk matrix gives the risk factor of
each requirement in specific failure modes. It is evident
from the risk values that the requirements R/ and R2 are
at higher risk when compared to the requirement R3, for
the identified failure modes. Using this information, the
components that contribute in satisfying the requirements
RI and R2 should be given more attention during
development and tested more rigorously.

The results are shown using a 3-D bar chart in Figure
2. Note that the bars are colored according to their
severity category. The results are shown for the scenarios
corresponding to the requirements R/, R2 and R3.

T \\\\ - e

Requirement Risk \\\\\\\\\\\\iii\\\\\l\\E\\\i §§ \\\\\\%

. -

o

L o

- Programmming eona o
Failure Mode

Fhtt

Figure 2. Requirement risk values for the Pacemaker

We have presented a methodology for requirements
based risk assessment using the requirements models in
UML. This method provides a systematic way to deal
with requirements based risk assessment with less input
from the domain experts. It fills the gap between
completely domain-expert dependant methods that are
applied at the requirement analysis stage and formal
analytical methods that do not assess risk at the
requirements level and require low level implementation
details of the components involved. The methodology can
be applied during the early phase of software
development based on high level design specifications.
We have illustrated our methodology using UML but the
method can be easily extended to other design paradigms
with minor modifications. Future work will focus on
developing tool support to assist the analyst with the steps
of this methodology. We also intend to apply the
methodology and develop supporting tools on large scale
applications.

5. References

[1] S. M. Yacoub, H. H. Ammar, “A Methodology for
Architecture-Level Reliability Risk Analysis”, [EEE
Transactions on Software Engineering, Vol. 28, No. 6,
June 2002, pp. 529-547.

[2] K.Goseva-Popstojanova, A.Hassan, A.Guedem,
W.Abdelmoez, D.Nassar, H.Ammar & A.Milli,
“Architectural-level Risk Analysis Using UML”, [EEE
Transactions on Software Engineering, Vol. 29, No. 10,
Oct 2003, pp. 946-960.

[3] K.Appukkutty, H. H. Ammar, K. Goseva-Popstajanova,
“Early Risk Assessment of Software Systems”, Submitted
to The 3rd International Conference on Computer Science,
Software Engineering, Information Technology, e-Business,
and Applications, Dec 2004.

[4] OMG Unified Modeling Language Specification, Mar
2003, Version 1.5

[5] Norman E. Fenton, Niclas Ohlsson “Quantitative analysis
of faults and failures in a complex software system” /EEE
Transactions on Software Engineering, Vol. 26, No. 8, Aug
2000, pp. 797-814.

[6] M.S. Feather, S.L. Cornford, J. Dunphy & K. Hicks, “A
Quantitative Risk Model for Early Lifecycle Decision
Making”, in Proceedings of the Conference on Integrated
Design and Process Technology, Pasadena, California,
June 2002.

[71 S.L.Cornford, M.S. Feather & K.A. Hicks, "DDP - A tool
for life-cycle risk management", in Proceedings of the
IEEE Aerospace Conference, Big Sky, Montana, Mar 2001,
pp. 441-451

[8] A. Hassan, W. Abdelmoez , A. Guedem, K. Apputkutty,
K. Goseva-Popstojanova, H. Ammar, “Severity Analysis at
Architectural Level Based on UML Diagrams’, The 21st
International conference System Safety conference, Ottawa,
Canada, August 2003,pp. 571-580.

[91 A. Hassan, K. Goseva-Popstojanova, H. Ammar,
“Methodology for Architecture Level Hazard Analysis, A
Survey”, ACS/IEEE International Conference on Computer
Systems and Applications (AICCSA'03), Tunis, Tunisia,
July 2003, pp. 68-70.

[10] D.P. Gilliam, J.D. Powell, J.C. Kelly, M. Bishop,
“Reducing Software Security Risk through an Integrated
Approach”, The 26th Annual NASA Goddard Software
Engineering Workshop, November 2001, pp. 36-42.

[11] UML Profile for Schedulability, Performance, and Time
Specification, Version 1.0, September 2003.

[12] Failure Mode, Effects and Criticality Analysis (FMECA)
web site, http://www.fmeca.com

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

