
IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 1, MARCH 2000 37

Failure Correlation in Software Reliability Models
Katerina Gǒseva-Popstojanova, Member, IEEE,and Kishor S. Trivedi, Fellow, IEEE

Abstract—Perhaps the most stringent restriction in most soft-
ware reliability models is the assumption of statistical indepen-
dence among successive software failures. Our research was mo-
tivated by the fact that although there are practical situations in
which this assumption could be easily violated, much of the pub-
lished literature on software reliability modeling does not seriously
address this issue.

The research work in this paper is devoted to developing the soft-
ware reliability modeling framework that can consider the phe-
nomena of failure correlation and to study its effects on the soft-
ware reliability measures. The important property of the developed
Markov renewal modeling approach is its flexibility. It allows con-
struction of the software reliability model in both discrete time and
continuous time, and (depending on the goals) to base the analysis
either on Markov chain theory or on renewal process theory. Thus,
our modeling approach is an important step toward more consis-
tent and realistic modeling of software reliability. It can be related
to existing software reliability growth models. Many input-domain
and time-domain models can be derived as special cases under the
assumption of failure -independence.

This paper aims at showing that the classical software reliability
theory can be extended to consider a sequence of possibly-depen-
dent software runs,viz,failure correlation. It does not deal with in-
ference nor with predictions,per se.For the model to be fully speci-
fied and applied to estimations and predictions in real software de-
velopment projects, we need to address many research issues, e.g.,
the

• detailed assumptions about the nature of the overall relia-
bility growth,

• way modeling-parameters change as a result of the fault-re-
moval attempts.

Index Terms—Failure correlation, Markov renewal process, se-
quence of dependent software runs, software reliability.

I. INTRODUCTION

Acronyms1

SRM software reliability model
SRGM software reliability growth model
TBF time between failures
FC failure count
NHPP nonhomogeneous Poisson process
DTMC discrete-time Markov chain
SMP semi-Markov process

Manuscript received August 31, 1998; revised October 1, 1999. This research
was supported in part by the US National Science Foundation under an IUCRC
TIE project between Purdue SERC and CACC-Duke Grant EEC-9714965, Bell-
core (now Telcordia), U.S. Department of Defense Grant EEC-9418765, and the
Lord Foundation, as a core project in the Center for Advanced Computing and
Communication at Duke University.

The authors are with the Department of Electrical and Computer Engi-
neering; Duke University; Durham, NC 27708-0291 USA (e-mail: {katerina,
kst}@ee.duke.edu).

Responsible editor: M.A. Vouk.
Publisher Item Identifier S 0018-9529(00)06201-1.

1The singular and plural of an acronym are always spelled the same

MRP Markov renewal process
LST Laplace–Stieltjes transform
CB -confidence bound
r.v. random variable

Software reliability is widely recognized as one of the most
important aspects of software quality, and it spawns much re-
search effort into developing methods of quantifying it. De-
spite the progress in software-reliability modeling, the use of
the models is restricted by

• often unrealistic assumptions made to obtain mathemati-
cally tractable models,

• the lack of enough experimental data.

Among the basic assumptions made by various SRM, one which
appears to be the weakest point is the-independence among
successive software runs.

Most existing SRGM assume that the testing is performed
homogeneously and randomly, i.e., the test data are chosen from
the input space by some random mechanism and the software
is tested using these data-assuming homogeneous conditions.
In practical situations this is usually not true. During the testing
phase, various test scenarios are usually grouped according to
high-level functionalities, which means that a series of related
test runs are conducted. In addition, input data are usually
chosen in order to increase the testing effectiveness, i.e., to
detect as many faults as possible. As a result, once a failure is
observed, usually a series of related test runs are conducted to
help isolate the cause of failure. Overall, testing of software
systems uses a mixture of [32]

• structured (centered around scenarios),
• clustered (focused on fault localization),
• random testing.

The -dependence of successive software runs also depends
on the extent to which internal state of a software has been af-
fected and on the nature of operations undertaken for execution
resumption, i.e., whether or not they involve state cleaning [16].

Assuming the -independence among successive software
runs does not seem to be appropriate in many operational
usages of software either. For instance, in many applications,
such as real-time control systems, the sequence of input values
to the software tends to change slowly: successive inputs are
very close to each other. For these reasons, given a failure of a
software for a particular input, there is a greater likelihood of
it failing for successive inputs. In applications that operate on
demand, similar types of demands made on the software tend
to occur close to each other which can result in a succession of
failures.

In summary, there can be-dependencies among successive
software runs, i.e., the assumption of the-independence of soft-
ware failures could be easily violated. Thus if a software failure
occurs, there would be an increased chance that another failure

0018–9529/00$10.00 © 2000 IEEE

38 IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 1, MARCH 2000

will occur in the near term. Software failures occur in clusters
if failures have tendency to occur in groups, i.e., the times be-
tween successive failures are short for some periods of time and
long for other periods of time.

Prevalent SRGM fall into two categories:

• TBF models which treat the inter-failure interval as a r.v.,
• FC models which treat the number of failures in a given

period as a r.v.

For TBF models, the parameters of the inter-failure distribution
change as testing proceeds; while the software reliability evolu-
tion in FC models is described by letting the parameters of dis-
tribution, such as mean value function, be suitable functions of
time. The two approaches here are strictly related. “Failure time
intervals” description and “failure counting process” descrip-
tion are essentially two different ways of looking at the same
phenomenon. To some extent, it is possible to switch between
them. In this paper, the analysis of the existing models and the
correspondence between the two classes is not pursued any fur-
ther. For surveys on existing SRGM see [13], [23], [25], [29],
[35].

One of the basic assumptions common to both classes of
models is that the failures, when the faults are detected, are
-independent. For example, in [6] this assumption is included

in the Standard Assumptions that apply for each presented
model. In other words, neither TBF nor FC models statistically
satisfy the requirements of addressing the issue of-depen-
dencies among successive software runs which usually result
in failure clustering. One of the reasons “Why conventional
reliability theory fails” for software [11] is that the program
runs are not always-independent.

To the best of our knowledge, there are only a few published
papers that consider failure-correlation. The empirically
developed Fourier series model [5] can be used for analyzing
clustered failure data, especially those with cyclic behavior.
The Compound-Poisson SRM [27] considers multiple failures
that occur simultaneously in bunches within the specified CPU
second or time unit. The work [33] considers the problem of
modeling correlation between successive executions of the
software fault-tolerance technique based on recovery blocks.

This paper proposes a software reliability modeling frame-
work, based on Markov renewal processes, which can incorpo-
rate the possible-dependence among successive software runs,
viz, the effect of clustering. Markov renewal model formulation
has several advantages, both theoretical and practical, such as:

• Flexible and more consistent modeling of software relia-
bility: The model is constructed in 2 stages: 1) Consider
the outcomes of successive software runs to construct the
model in discrete time. 2) Considering the execution times
of the software runs, we build a model in continuous time.

• Adaptability of the model to both -dependent and
-independent sequences of software runs:The model in-

troduces -dependence among successive software runs,
viz, failure -correlation. Considering the-independence
among software runs is a special case of the proposed
modeling framework.

• Applicability to different phases of the software life cycle:
The proposed modeling approach applies to the testing

(debugging) phase, as well as to the validation phase and
operational phase.

Section II presents a brief overview of Markov renewal pro-
cesses.

Section III presents a software reliability modeling frame-
work based on MRP which is then used to derive SRGM that
incorporates the phenomena of failure correlation and enables
us to study its effects on software reliability. Some ideas about
the way particular assumptions can be removed or relaxed are
introduced.

Section IV presents the application of the model to the vali-
dation and operational phases.

Section V explores the relation of the MRP approach to the
existing SRGM.

Section VI discusses the issues that should be considered
when developing specific models within this framework.

Notation

ordinal number of software run
nonindependent Bernoulli r.v.; success,
failure
Pr

Pr

sum of -dependent over
Cdf of time spent in a transition from stateto state

of SMP
Cdf of the successful run’s execution time

v Cdf of the failed run’s execution time
Cdf of the run’s execution time when

number of runs in
number of failed runs in
number of successful runs in
number of failures experienced

, conditional probabilities of [success, failure] for
testing runs that follow the occurrence of failure

number of runs between failuresand
occurrence time of failure;

: inter-failure time
realization of
Pr : conditional Sf

: conditional Cdf of
conditional pdf of
unconditional probability of failure per run (valida-
tion and operational phase)

Other, standard notation is given in the “Information for
Readers and Authors” at the rear of each issue.

II. M ARKOV RENEWAL PROCESSESBRIEF OVERVIEW

Consider a process constructed as follows:

1) Take an -state DTMC with transition probability matrix
.

GOSEVAPOPSTOJANOVA AND TRIVEDI: FAILURE CORRELATION IN SOFTWARE RELIABILITY MODELS 39

2) Construct a process in continuous time by making the
time spent in a transition from stateto state have Cdf

, such that times are mutually-independent.
This is an SMP, and is a generalization of both continuous

and discrete time Markov processes with countable state spaces.
A descriptive definition of SMP is that it is a stochastic process
which moves from one state to another among a countable
number of states, with the successive states visited forming
a discrete time Markov chain, and that the process stays in
a given state a random length of time, the Cdf of which can
depend on this state as well as on the one to be visited next.

The family of stochastic processes used in this paper, MRP, is
equivalent to the family of SMP [3], [4]. Thus, the SMP records
the state of the process at each time point, while the MRP is
a point (counting) process which records the number of times
each of the possible states has been visited up to time. MRP
are of general interest since they join together the theory of two
different types of processes: the renewal process and the Markov
chain. In studying MRP one can follow the methods used for
renewal processes, or can base the treatment much more heavily
on the theory of Markov chains.

In renewal theory, the basic process is the number of renewals
in the interval . If one regards the MRP

as consisting of -dependent processes ,
where refers to the points of class, viz,number of times
state has been visited, then the observed process of points is
the superposition . Many of the
properties of MRP are derived from those of renewal processes
[3]. For example, the points of particular type form a renewal
process, so that if these points are of interest, then it is necessary
to consider only the distribution of an interval between succes-
sive points of this type and to use the standard results of renewal
theory.

III. SOFTWARE RELIABILITY MODELING FRAMEWORK BASED

ON MRP

We have developed a software reliability modeling frame-
work based on MRP which is intuitive and easily introduces
-dependence among successive software runs. Since each soft-

ware run has 2 possible outcomes (success or failure), the usual
way of looking at the sequence of software runs is to consider it
as a sequence of-independent Bernoulli trials, where each trial
has success-probabilityand failure-probability . The
two Cdf, binomial and geometric, are connected with the-in-
dependent Bernoulli trials:

• the number of runs that have failed amongsuccessive
software runs defines a r.v. with a binomial pmf;

• the number of software runs between two failures has the
geometric pmf.

Since the number of software runsis large and is small, the
well known limiting results for these pmf are usually used as
basic assumptions in SRM [18]:

• the number of failures in the limit has the Poisson distri-
bution,

• the time to failure in the limit is exponentially distributed.

Regarding the validity of the underling assumptions, there are
two questions:

1) Is the probability of failure constant?
2) Are the runs -independent?
Question #1 is addressed by SRGM which consider the

testing phase of the software life cycle. When a failure occurs
in any run, removing the underlying faults will cause the prob-
ability of failure to change. The work in this paper addresses
question #2. Our goal is to show that the classical software
reliability theory can be extended to consider a sequence of
possibly -dependent software runs.

The sequence of successive software runs (successful or
failed) can be viewed as a realization of point events in time: a
point process. Poisson process is the simplest point process. It
considers only the failure points, i.e.,

• disregards the successful runs between 2 failures,
• ignores the information conveyed by them.

This paper views the sequence of-dependent software
runs, when the outcome of each run depends on the outcome
of the previous run, as a sequence of-dependent Bernoulli
trials. Therefore, we consider both failed and successful runs:
both failure and nonfailure stops of software operation. A
convenient way of specifying a point process with more then 1
class of points is a Markov renewal process. It enable intuitive
and separate discussion of the 2 elements of randomness in
software operation:

• uncertainty about the outcome of the software run,
• uncertainty about the time for the run to be executed.

Thus, we build the model in 2 stages:

1) Define a DTMC which considers the outcomes from the
sequence of possibly-dependent software runs in dis-
crete time.

2) Construct the process in continuous time by attaching the
distributions of the runs execution time to the transitions
of the DTMC.

The SMP describes both failure and execution behavior of the
software. Since software reliability theory considers the distri-
bution of the time to the next failure and the number of software
failures in time interval of duration, this paper focuses on the
equivalent point process: the MRP

Assumptions:

1) The probability of success or failure at each run depends
on the outcome of the previous run.

2) A sequence of software runs is defined as a sequence of
-dependent Bernoulli trials.

3) Each software run takes a random amount of time to be
executed.

4) Software execution times are not identically distributed
for successful and failed runs.

A. SRM in Discrete Time

We view the sequence of software runs in discrete time as
a sequence of-dependent Bernoulli trials in which the proba-
bility of success or failure at each trial depends on the outcome
of the previous trial. Associate with the software-runa r.v.

40 IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 1, MARCH 2000

Fig. 1. Markov Interpretation ofs-Dependent Bernoulli Trials

that distinguishes whether the outcome of that particular run re-
sulted in success or failure:

a success on run
a failure on run .

If we focus attention on failures and score 1 each time a failure
occurs and 0 otherwise, then the number of runs that have re-
sulted in a failure among successive software runs is:

(1)

of possibly -dependent r.v.
Suppose that if run results in failure then, at run , the

failure probability is and the success probability is:

Pr

Pr

Similarly, if run results in success thenand are the proba-
bilities of success and failure, respectively, at run :

Pr

Pr

The sequence of-dependent Bernoulli trials
defines a discrete-time Markov chain with 2 states. One of the
states, denoted by 0, is a success; the other denoted by 1 is a
failure. A graphic description of this Markov chain is provided
by its state diagram in Fig. 1. Its transition probability matrix is:

(2)

Since and are probabilities, it follows that

(3)

First consider in some detail the Markov chain. The proba-
bility () is the conditional probability of failure (success) on
a software run given that the previous run has failed (succeeded).
The unconditional probability of failure on run is:

Pr

Pr Pr

Pr Pr

Pr Pr

Pr Pr

Pr Pr

Pr (4)

Fig. 2. DTMC for:p = q = 1

Fig. 3. DTMC for:p = q = 0

If , then the Markov chain describes a sequence of
-independent Bernoulli trials, and (4) reduces to:

Pr

which means that the failure probability does not depend on the
outcome of the previous run. Thus each subsequent run succeeds
or fails independently with probabilities and respec-
tively. In this case, defined by (1) is a sum of mutually
-independent Bernoulli r.v. and has binomial pmf.
If then the DTMC describes the sequence of-de-

pendent Bernoulli trials and enables us to accommodate pos-
sible -dependence among successive runs. In this case the out-
come of the software run (success or failure) depends on the
outcome of the previous run as in (4) and the assumptions of
binomial distribution do not hold. The pmf of , given by the
sum of -dependent r.v., can be derived using the observation
that each visit to a given state of DTMC is a possibly delayed
recurrent event [12].

When , runs are positively correlated: if a software
failure occurs in run , then there is an increased chance that
another failure occurs in the next run. Thus, in this case, failures
occur in clusters. The boundary case arises when equality in (3)
holds: (). This means that if the sequence
of software runs starts with failure, then all successive runs fail;
if it starts with success, then all successive runs succeed. That
is, the Markov chain remains forever in its initial state as shown
in Fig. 2.

Next consider the case when successive software runs are
negatively correlated . In this case if a software failure
occurs in run , then there is an increased chance that a success
occurs in run , i.e., there is a lack of clustering. In the
boundary case, when the equality in (3) holds (, i.e.,

), then the Markov chain alternates deterministically
between the 2 states, as in Fig. 3.

The boundary cases are excluded from further analysis since
they are somewhat trivial, with no practical interest. We impose
the condition on transition probabilities, which
implies that:

• ;
• DTMC in Fig. 1 is irreducible and aperiodic [34].

GOSEVAPOPSTOJANOVA AND TRIVEDI: FAILURE CORRELATION IN SOFTWARE RELIABILITY MODELS 41

Fig. 4. Nonhomogeneous DTMC for SRGM

B. SRM in Continuous Time

The next step in the model construction is to obtain a process
in continuous time, considering the time that takes software runs
to be executed. is a Cdf of the time spent in a transition
from state to state of the DTMC in Fig. 1. It seems realistic
to assume that the runs execution times are not identically dis-
tributed for successful and failed runs. Thus, the depend
only of the type of point at the end of the interval:

With the addition of the to the transitions of DTMC,
we obtain an MRP as the SRM in continuous time. The

is a superposition of 2-dependent renewal
processes and which refer to the number of
times states 0 (success) and 1 (failure) of the DTMC have been
visited in .

C. SRGM Based On MRP

In addition to assumptions #1–#3, this section uses assump-
tions #A1–#A4.

Assumptions:

A1) Whenever a failure occurs, faults are detected and re-
moved instantaneously.

A2) At each such event, the probabilities of success and
failure change.

A3) Software execution times are-identically distributed
for successful and failed runs.

A4) Run’s execution time distribution does not change
during the testing phase.

Assumptions A1, A3, A4 can easily be relaxed or removed as
shown in Section III-D.

During the testing phase, software is subjected to a sequence
of runs, making no changes if there is no failure. When a failure
occurs on any run, then an attempt is made to fix the underlying
fault which causes the conditional probabilities of success and
failure on the next run to change. Thus

(5)

defines the , for the testing runs that follow the occurrence
of failure , up to the occurrence of the next failure, .
The SRGM in discrete time can be described with a sequence

of -dependent Bernoulli trials with step-dependent probabil-
ities. The underlying stochastic process is a nonhomogeneous
DTMC.

The sequence provides an alternate
description of the SRGM considered here. Thus defines
the DTMC presented in Fig. 4. Both states,and , represent
that the failure state has been occupiedtimes. State represents
the first trial for which . State represents all subsequent
trials for which , i.e., all subsequent successful runs
before the occurrence of next failure . Without loss of
generality let the first run be successful which means that 0 is
the initial state.

The SRGM in continuous time is obtained by assigning runs
execution-time distributions to transitions of the DTMC in
Fig. 4. For simplicity, we have chosen the same execution time
distribution regardless of the outcome:

as in assumption #A3.

Thus, of each software run has Cdf

Pr

Considering the situation when software execution times are not
identically distributed for successful and failed runs,

is straightforward, and is discussed in Section III-D-1.
In software reliability modeling we are interested in deriving

the distribution of the time between successive failures. This
means that only the points of particular type (failures) are of in-
terest. Therefore, it is only necessary to consider the distribution
of an interval between successive failures and to use the stan-
dard results of renewal theory. When software reliability growth
is considered, a usual measure of reliability is conditional reli-
ability. Since the system has experiencedfailures, conditional
reliability is the Sf associated with failure .

Derive the distribution of the discrete r.v. , the number
of runs between failures and . From Fig. 4, the r.v.

has the pmf:

Pr
if
if

(6)

Derive the distribution of the continuous r.v. , which is the
interval distribution of the point process that records the
number of failures in .

42 IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 1, MARCH 2000

It follows from (6) that the conditional Cdf of the time to
failure , given that the system has hadfailures, for
is:

(7)

-fold convolution of .
The LST of is the defined for by

The LST of becomes

(8)

The inversion of (8) is, in principle, straightforward, and reason-
ably simple closed-form results can be obtained when
has a rational LST (such as phase-type distributions [4]).

Some general properties of the inter-failure time are devel-
oped without making assumptions about the form of the run’s
execution-time . Due to the well known property of LST,
the moments can be derived easily by a simple differentiation of
(8). Thus, the mean time to failure is:

(9)

the run’s mean execution-time.
On average, there is growth in reliability:

—iff

If , then successive runs are-independent and (9)
becomes:

Thus, rewrite (9) as:

(10)

Next, derive

then substitute it together with (9) in:

Var

Thus,

Var Var

(11)

Besides the mean and variance, an important feature of distri-
butions is the coefficient of variation:

(12)

is a relative measure of the spread of the distribution; the
idea is that a deviation of amount is less important, the
larger is. Substitute (9) and (11) into (12):

(13)

is the coefficient of variation when the successive runs
are -independent.

A very plausible assumption for any software is: .
A program for which this assumption couldn’t be made, would
be enormously unreliable, and it is unlikely that its use would
be ever attempted. It follows that the sign of the second term in
(13) depends only on .

The derived equations for the mean time to failure (10) and
coefficient of variation (13) can show the effects of failure cor-
relation on software reliability. If the successive software runs
are -dependent , then 2 cases are considered:

1) If then successive runs
are positively correlated: the failures occur in clusters. It
follows from (10) that the mean time between failures is
shorter than it would be if the runs were-independent:

The second term in (13) is positive, hence

These results imply that in the presence of failure clus-
tering, the inter-failure time has smaller mean and greater
coefficient of variation compared to the-independent
case. That is, SRGM that assume-independence among
failures result in overly optimistic predictions.

2) If then successive runs are
negatively correlated:

The second term in (13) is negative; hence

It follows that, assuming a lack of clustering leads to
greater mean and smaller coefficient of variation of the
inter-failure times, compared to the-independent case.

GOSEVAPOPSTOJANOVA AND TRIVEDI: FAILURE CORRELATION IN SOFTWARE RELIABILITY MODELS 43

D. Model Generalizations

The model here can be generalized in many ways. Some of
these generalizations are presented, together with brief com-
ments on the nature of new ideas involved.

1) Replace Assumption #A3 With Assumption #4:Consider
nonidentically distributed execution times for successful and
failed runs . Assign

• to transition to state 0 and to all transitions to
states (successful runs),

• to all transitions to state (failed runs) of
the DTMC in Fig. 4.

Make the appropriate changes in (7):

(14)

This leads to LST transform:

(15)

2) Change Assumption A4:We have assumed that
does not change during the whole testing phase. This assump-
tion can be violated for reasons such as important changes in
the code due to the fault-fixing attempts. Thus, consider the sit-
uation when the parameters of change after each failure
occurrence (after each visit to the failure state). Then we need
only to replace with in (7).

3) Remove Assumption A1:A DTMC which describes SRM
in discrete time can be defined so that it considers noninstanta-
neous fault removal, periods of time when the software is idle,
or more than one failure type. For example, DTMC in Fig. 5 can
be used to describe various testing scenarios, such as:

1) : the model reduces to the one considered
previously, i.e., instantaneous fault removal which occurs
immediately after the failure is observed.

2) and : noninstantaneous fault removal which
occurs immediately after the failure is observed.

3) and : delayed and noninstantaneous fault
removal following the failure occurrence.

4) : the program can be changed, due to the fault
removal or other modifications, following successful runs
as well.

As for SRGM in Section III-C, the transition probabilities
change at each visit to fault removal state.

With a few exceptions, such as [8], [9], the existing SRGM
assume that faults that are source of failures are detected and
corrected instantly following the failure occurrence, i.e., ignore
repair times. The model in Fig. 5 allows assumption A1 to be
removed in order to encompass the case when the fault removal
process is noninstantaneous and does not necessarily follow im-
mediately after the failure is observed. Unfortunately, unlike the
run’s execution time distribution which can be easily incorpo-
rated into the model based on measurements, currently there
is a lack of information and little agreement about repair time
distributions.

Fig. 5. DTMC for Non-Instantaneous and Delayed Fault Removal

IV. A PPLICABILITY TO VALIDATION AND OPERATIONAL

PHASES

The MRP can be used to estimate reliability of the software,
based on the results of testing performed in its validation phase.
For safety-critical software it is common to demand that all
known faults are removed. This means that if there is a failure
during the testing, then the fault must be identified and removed.
After the testing (debugging) phase the software enters a vali-
dation phase to show that it has a high reliability prior to actual
use. In this phase, no changes are made to the software. Usually,
the validation testing for safety-critical software takes the form
of a specified:

• number of test cases, or
• period of working,

that must be executed failure-free. While of particular interest
for safety-critical software, the same approach can be applied
to any software that, in its current version, has not failed for
successive runs.

Let be the unconditional probability of a failure per run
(execution). For -independent Bernoulli trials, each run fails
with probability , i.e., succeeds with probability ,
-independently of the previous runs. Thus, the probability that

-independent test runs are conducted without failure is:

(16)

The largest value of such that

(17)

defines the upper CB on [11], [34]. Solving (17) for
gives -confidence that the failure probability per execu-
tion of a software that reveals no failure in -independent runs
is below

(18)

44 IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 1, MARCH 2000

For related recent work on a Bayes estimation approach see [19],
[21].

Now consider a sequence of possibly-dependent software
runs. During the validation phase, the software is not changing:

and do not vary. That is, the sequence of runs can be de-
scribed by the homogeneous DTMC with transition probability
matrix (2). Assume that the DTMC is stationary, i.e., each run
has the same failure-probability:

Pr Pr

Then, from (4) it follows that

(19)

The probability that successive runs succeed is:

Pr

Pr Pr

Pr

(20)

Use (19) to rewrite (20) in terms of and . It follows that in
the case of -dependent Bernoulli trials upper CB on
failure probability per execution becomes:

(21)

If failures occur in clusters () then the CB on failure
probability is approximately higher than the CB ob-
tained under the-independence assumption (18). It follows that
the result obtained under the assumption of-independence is
overly optimistic.

Consider the applicability of the MRP approach in the op-
erational phase. During the operational phase, assume that no
changes are made to the software. Then the sequence of runs
can be described by the homogeneous DTMC. The well devel-
oped theory of MRP [4], [26] and its limiting results can be used
to derive several measures other than the distribution of the time
between failures, such as the:

• mean number of failures and mean
number of successes in the interval

;
• probability of success at time: instantaneous availability;
• limiting probability that the process is in state 0 at time

as : steady-state availability.

The MRP approach can be used for modeling fault-tolerant
software systems. Per-run failure probability and run’s execu-
tion-time distribution for a particular fault-tolerant technique
can be derived using a variety of existing models (see [10], [20],
[30] and references therein). Thus, in addition to the interversion
failure correlation on a single run considered in related work,
our approach can account for the correlation among successive
failures.

V. SOME SPECIAL CASES ANDRELATION TO EXISTING MODELS

The MRP approach in this paper can be related to existing
SRM. The SRM in discrete time is comparable with input-do-
main based models which are static and don’t consider the time;
while the SRM in continuous time is comparable with time-do-
main SRGM. We next examine these relations.

The SRM in discrete time (in this paper) can be related to
input-domain based models which consider the software input
space from which test cases are chosen. For example, the input-
domain model [24] defines:

as a fault-size under operational inputs after changeto the pro-
gram, i.e., given that faults have been detected and corrected.
Then the probability that there are successful runs before
the occurrence of the next failure, , is

(22)

Eq. (22) is a special case of (6) under the assumption that suc-
cessive runs are-independent. In [24], is treated as a r.v.
with a Cdf ; (22) becomes:

The SRM in discrete time is also related to the Compound-
Poisson SRM in [27]. This model is based on the work in [28]
which approximates the sum of-dependent integer-valued r.v.

, given by (1) with a compound Poisson process when these
r.v. are rarely nonzero and given they are nonzero their condi-
tional distributions are nearly identical.

Consider the SRM in continuous time. If is a rational
function of , so too is ; and the inversion of (8) is, in
principle, straightforward. An important special case is when
the distribution of the run’s execution time is exponential so that

, since it relates the MRP approach to the
existing time-domain based SRGM and some of their basic as-
sumptions, such as the-independence of successive runs and
the exponential distribution of the inter-failure times. In other
words, the simplest special case of the model is under the as-
sumptions that the:

• successive software runs are-independent (),
• software execution time is exponentially distributed with

rate .
Inverting (8) leads to the pdf of the inter-failure times:

(23)

i.e., the conditional reliability is

(24)

It follows that the inter-failure time is exponentially distributed
with rate if the software testing is considered as a sequence
of -independent runs with an exponential distribution of the
execution times.

The alternative interpretation of this special case is in [15].
Under the assumption that inputs arrive at the software system
according to a Poisson process with rate, which is interpreted

GOSEVAPOPSTOJANOVA AND TRIVEDI: FAILURE CORRELATION IN SOFTWARE RELIABILITY MODELS 45

as intensity of testing, the probability that the software encoun-
ters no failures in a time interval is:

(25)

is the size of the input data space (number of data items which
can be used as input to the software), is the total number of
these input data which can cause software failure. The first term
inside the summation is the probability thatinputs are received
in time ; the second term is probability that none ofinputs lead
to a failure of software. Eq. (25), when simplified, leads to:

(26)

This means that the time to first failure has an exponential dis-
tribution with failure rate ; is the prob-
ability of failure on a test run.

The conditional reliability (survivor function of the time be-
tween failures and ,) becomes

Pr (27)

Even though the motivations are different and the parameters
have different interpretations, mathematically the model in [15]
is a special case of the SRM based on MRP under the assump-
tions that successive software runs are-independent and the
software execution times are exponentially distributed with rate

. Ref [15]– shows that the JelinskiMoranda model [14] can be
obtained by introducing

and treating and – as unknown parameters. Then by
adopting a Bayes point of view, two other models can be
derived from the JelinskiMoranda model [15]:

1) Goel–Okumoto model [7] is obtained by assuminghas
a known value, and assigning Poisson prior distribution
for ;

2) Littlewood–Verrall model [17] is obtained by assuming
has a known value and thathas a prior gamma dis-

tribution.
Some other time-domain SRGM can easily be obtained as

special cases under the assumption of-independence. For ex-
ample, the Moranda model [22] also assumes-independent ex-
ponentially distributed times between failures with a failure rate
that decreases in geometric progression on the occurrence of
each individual failure:

Due to space limitations and the vast number of SRGM, the
analysis of the relation to the existing models is not pursued
further.

Keep the assumption that the distribution of the run’s exe-
cution time is exponential, but assume-dependence between

successive software runs (). Inverting (8) leads to
the pdf of the inter-failure time:

(28)

This distribution is a mixture (compound) distribution [34] with
pdf of form:

When the inter-failure distribution (28) is hyperex-
ponential: a mixture of two exponential distributions with rates

and

The mixing probabilities are

respectively. The coefficient of variation for the hyperexponen-
tial distribution is greater than 1. Due to the presence of failure
clustering, the inter-failure time has smaller mean and greater
variance, compared to the-independent case, even under the
assumption of exponentially distributed duration of testing runs.

When then (28) becomes a mixture of an exponen-
tial distribution with rate and hypoexponential distribution
with rates and . The mixing proportions are

respectively. The coefficient of variation is less than 1. Thus, the
inter-failure time has greater mean and smaller variance com-
pared to the -independent case.

These results demonstrate the effects of failure correlation on
the software reliability measures. Some of the common assump-
tions made by SRM are inadequate and result in optimistic esti-
mations when failures are clustered.

VI. DISCUSSION ANDFUTURE WORK

The ultimate goal when developing SRGM is development of
good reliability inference and prediction methods which can be
applied to software development. This paper does not deal with
inference or predictionsper se.It is aimed mainly at showing
that the classical software reliability theory can be extended to
consider a sequence of possibly-dependent software runs,viz,
failure correlation. However, there are many research issues that
we want to address in the near future in order for the model
to be fully specified and applied in real software development
projects for estimating and predicting.

Consider in some detail the concept of software runs. The op-
eration of software can be broken into series of runs [23]. Each
software run performs mapping between a set of input variables
and a set of output variables, and consumes execution time. The
input variable for a software run is any data item that exists ex-
ternal to the software run and is used by a software run. There

46 IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 1, MARCH 2000

does not have to be a physical input process. The input variable
can simply be located in memory, waiting to be accessed. Even
for software that operates continuously, it is possible and more
convenient to divide the operation into software runs by sub-
division of time associated with some user-oriented tasks [23].
The information associated with software runs can generally be
grouped into 2 categories:

• Timing: This includes specific time associated with each
software run, such as start time, normal termination time
for successful runs, or failure time for failed runs.

• Input and Outcome:The descriptive information about
each specific software run generally specifies the input
for the program, the testing environment, and the outcome
that has been obtained (success or failure).

Relevant data about the failed software runs, as well as for
successful software runs are routinely captured in many projects
for test tracking, and testing process management purposes [31],
[32]. These data, with possibly minor modifications, provide
common source for SRGM, input-domain analysis, and inte-
grated analysis in this paper. The MRP approach considers all
the knowledge that we have about system: the outcomes and ex-
ecution times of all testing runs, either successful or failed.

The existing time-domain SRGM disregard the successful
runs between two failures and ignore the information conveyed
by them. Successful runs (nonfailure stops of software opera-
tion) are considered in [2] for parameter estimation of some of
the existing SRGM. It is pointed out that ‘disregarding the non-
failure stops’ violates the Maximum Information Principle that
suggests exploiting available software reliability information as
much as possible.

For the MRP approach, the is a r.v. whose distribution
depends on the distribution of the run’s execution time ,
and on the conditional probabilities, . The timing informa-
tion associated with each run can be obtained quite easily in
many computer systems. Therefore, instead of making assump-
tions, the specific Cdf of the run’s execution time can be
determined from measured data.

Consider possible models for the parameter set
.

It is mathematically possible to permit an infinite number of
failures; in this case the parameter set is infinite. By setting

for

the finite failure model is obtained as a special case.
For the model to be fully specified, it is necessary to consider

the way the parameters change as a result of the fault removal
attempts. There are two possible approaches to modeling the
parameter set :

• Relate them to the number of test runs or to the number
of faults in a systematic way by assuming various deter-
ministic functional relationships. The free parameters are
seen simply as unknown constants to be estimated by the
sample data.

• Treat the parameters as r.v. themselves, to consider the un-
certainty about the effect of fault removal [17], [18]. Thus,
even if the fault removal is successful, there is uncertainty
about the size of the fault removed, and thus uncertainty

about the magnitude of reliability improvement. This ap-
proach results in a doubly stochastic model: one model for
set of parameters; the other for the times between failures,
conditional on the parameters.

The brief review of SRGM discussed in previous section is
presented to demonstrate the differences that arise from the ad-
ditional assumptions about the way the modeling parameters
change as a result of the fault removal attempts. The models,
Jelinski–Moranda [14], Moranda [22], and Littlewood–Verrall
[17], are examples of TBF models and all have the common
assumption that the inter-failure times are-independent expo-
nentially distributed r.v.

They differ in assumptions about the waychanges as a result
of fault removal attempts.

The Jelinski–Moranda model assumes that the initial number
of faults is an unknown fixed constant, faults are instantly
and perfectly corrected without introducing any new faults, and
all faults that still remain are equally likely to occur. As a conse-
quence, failure intensity is proportional to the residual number
of faults,

which means that all faults have the same size.
The Moranda model assumes that the initial number of faults

is infinite and that the faults detected and removed early in the
software testing decrease failure intensity more rapidly from
those detected later on. Thus the failure intensity decreases in
a geometric progression on the occurrence of each individual
failure,

The Littlewood–Verrall model is a doubly stochastic model
which treats the as a r.v. with a gamma distribution. This re-
flects the likelihood, but not a guarantee, that a fault removal
improves reliability and, if an improvement occurs, it is of un-
certain magnitude.

The Goel–Okumoto model [7] treats , initial number of
faults in software system, as a Poisson r.v. which results in
NHPP with failure intensity . However, failure occurrence
rate per fault for this model is constant, that is, all faults
have same size. In contrast to the constant fault detection
rate of the Goel–Okumoto model, many commonly used FC
models are obtained by choosing different which results in
different NHPP that can capture increasing/decreasing failure
occurrence rate per fault. The SRGM based on NHPP differ
from TBF models in one more aspect: the inter-failure times
are not -independent and the nonstationarity of the process
complicates their distributions. Nevertheless, if NHPP has
failure intensity then, given that there are failures in
interval , these failures are i.i.d. with pdf [3]

GOSEVAPOPSTOJANOVA AND TRIVEDI: FAILURE CORRELATION IN SOFTWARE RELIABILITY MODELS 47

To summarize, while SRGM can be related to each other and de-
rived from the same mathematical framework, they may differ
appreciably in their assumptions about the failure mechanisms,
fault removal process, and overall growth in reliability during
the testing phase. The software reliability modeling framework
in this paper provides the basis for a more flexible, consistent ap-
proach to the mathematical formulation of software reliability,
and contributes toward more realistic modeling since it inte-
grates the phenomena of failure correlation. However, in order
to apply the model to real data, the development of more detailed
and specific models within this framework, as well as statistical
inference procedures for modeling parameters are the subjects
of our future research. Some basic issues that should be taken
into account when making additional assumptions about the

• fault-removal process,
• way that modeling parameters change as a result of fault

removal attempts,

Ref. [1], [35] are briefly outlined here:

• Size of faults:In general, different software faults do not
affect the failure probability equally. Some faults which
are more likely to occur contribute more to the failure
probability than other faults.

• Imperfect debugging:Often, fault fixing cannot be seen
as a deterministic process, leading with certainty to the
removal of the fault. An attempt to fix one fault can intro-
duce new faults in the code.

• Non-instantaneous and delayed fault-removal:Usually,
neither the removal of a fault occurs immediately after the
failure is observed, nor the time to remove the fault is neg-
ligible.

• Changing testing strategy:The failure history of a pro-
gram depends on the testing strategy used; so SRGM must
consider the testing process used. In practice it is impor-
tant to deal with nonhomogeneous testing, i.e., the model
should include the possibility of describing variations of
the testing strategy with time.

REFERENCES

[1] S. Bittanti, P. Bolzern, and R. Scattolini, “An introduction to software
reliability modeling,” , vol. 29, pp. 43–66.

[2] K. Cai, “Censored software-reliability models,”IEEE Trans. Reliability,
vol. 46, no. 1, pp. 69–75, Mar. 1997.

[3] D. R. Cox and V. Isham,Point Processes: Chapman and Hall, 1980.
[4] D. R. Cox and H. D. Miller,The Theory of Stochastic Processes:

Chapman and Hall, 1990.
[5] L. H. Crow and N. D. Singpurwalla, “An empirically developed Fourier

series model for describing software failures,”IEEE Trans. Reliability,
vol. R-33, pp. 176–183, June 1984.

[6] W. Farr, “Software reliability modeling survey,” , vol. 13, pp. 71–117.
[7] A. L. Goel and K. Okumoto, “Time dependent error-detection rate model

for software reliability and other performance measures,”IEEE Trans.
Reliability, vol. R-28, pp. 206–211, 1979.

[8] S. Gokhale, P. N. Marinos, K. S. Trivedi, and M. R. Lyu, “Effect of re-
pair policies on software reliability,”Proc. Computer Assurance (COM-
PASS’1997), pp. 105–116, 1997.

[9] S. Gokhale, M. Lyu, and K. Trivedi, “Software reliability analysis in-
corporating fault detection and debugging activities,” inProc. 9th IEEE
Int’l Symp. Software Reliability Engineering, 1998, pp. 202–211.

[10] K. Goševa-Popstojanova and A. Grnarov, “Hierarchical decomposition
for estimating reliability of fault-tolerant software in mission-critical
systems,” inProc. IASTED Int’l. Conf. Software Engineering, 1997, pp.
141–146.

[11] D. Hamlet, “Are we testing for true reliability?,”IEEE Software, pp.
21–27, July 1992.

[12] J. J. Hunter, “Mathematical techniques of applied probability,” inDis-
crete Time Models: Techniques and Applications: Academic Press, 1983,
vol. 2.

[13] M. R. Lyu, Ed.,Handbook of Software Reliability Engineering: Mc-
Graw-Hill, 1996.

[14] Z. Jelinski and P. B. Moranda, “Software reliability research,” inStatis-
tical Computer Performance Evaluation, W. Freiberger, Ed: Academic
Press, 1972, pp. 485–502.

[15] N. Langberg and N. D. Singpurwalla, “A unification of some software
reliability models,”SIAM J. Sci. Stat. Comput., vol. 6, pp. 781–790, July
1985.

[16] J. Laprie and K. Kanoun, “Software reliability and system reliability,” ,
vol. 13, pp. 27–69.

[17] B. Littlewood and J. L. Verrall, “A Bayesian reliability growth model
for computer software,” inProc. IEEE Symp. Computer Software Reli-
ability, 1973, pp. 70–77.

[18] B. Littlewood, “Modeling growth in software reliability,” inSoftware
Reliability Handbook, P. Rook, Ed: Elsevier Applied Science, 1990, pp.
137–153.

[19] B. Littlewood and D. Wright, “Some conservative stopping rules for the
operational testing of safety-critical software,”IEEE Trans. Software
Engineering, vol. 23, pp. 673–683, Nov. 1997.

[20] D. F. McAllister and M. A. Vouk, “Fault-tolerant software reliability
engineering,” , vol. 13, pp. 567–614.

[21] K. W. Miller, L. J. Morell, and R. E. Noonanet al., “Estimating the prob-
ability of failure when testing reveals no failures,”IEEE Trans. Software
Engineering, vol. 18, pp. 33–43, Jan. 1992.

[22] P. B. Moranda, “Prediction of software reliability during debugging,” in
Proc. Annual Reliability and Maintainability Symp, 1975, pp. 327–332.

[23] J. D. Musa, A. Iannino, and K. Okumoto,Software Reliability: Measure-
ment, Prediction, Application: McGraw-Hill, 1987.

[24] C. V. Ramamoorthy and F. B. Bastani, “Modeling of the software relia-
bility growth process,”Proc. COMPSAC, pp. 161–169, 1980.

[25] , “Software reliability—Status and perspectives,”IEEE Trans. Soft-
ware Engineering, vol. SE-8, pp. 354–371, July 1982.

[26] S. M. Ross,Applied Probability Models with Optimization Applications:
Holden-Day, 1970.

[27] M. Sahinoglu, “Compound-Poisson software reliability model,”IEEE
Trans. Software Engineering, vol. SE-18, pp. 624–630, July 1992.

[28] R. F. Serfozo, “Compound Poisson approximations for sums of random
variables,”Annals of Probability, vol. 14, no. 4, pp. 1391–1398, 1986.

[29] S. Bittanti, Ed., Software Reliability Modeling and Identification:
Springer-Verlag, 1988, vol. 341.

[30] A. T. Tai, J. F. Meyer, and A. Avižienis, “Performability enhancement of
fault-tolerant software,”IEEE Trans. Reliability, vol. 42, pp. 227–237,
June 1993.

[31] J. Tian, “Integrating time domain and input domain analyzes of software
reliability using tree-based models,”IEEE Trans. Software Engineering,
vol. 21, pp. 945–958, Dec. 1995.

[32] J. Tian and J. Palma, “Data partition based reliability modeling,” in
Proc. 7th IEEE Int’l Symp. Software Reliability Engineering, 1996, pp.
354–363.

[33] L. A. Tomek, J. K. Muppala, and K. S. Trivedi, “Modeling correlation in
software recovery blocks,”IEEE Trans. Software Engineering, vol. 19,
pp. 1071–1086, Nov. 1993.

[34] K. S. Trivedi,Probability and Statistics with Reliability, Queuing, and
Computer Science Applications: Prentice-Hall, 1982.

[35] M. Xie, Software Reliability Modeling: World Scientific Publishing
Company, 1991.

Katerina Goševa-Popstojanova(M) received the B.S. (1980), M.S. (1985),
and Ph.D. (1995) in Computer Science from the Faculty of Electrical Engi-
neering, University “Sv. Kiril i Metodij Skopje,” Macedonia. Since 1997, she
has been working as an Assistant Professor in the Department of Computer Sci-
ence at Faculty of Electrical Engineering, University Sv. Kiril i Metodij. Cur-
rently she is a visiting scholar in the Department of Electrical and Computer
Engineering at Duke University. Her research interests include software relia-
bility, fault-tolerant computing, and dependability, performance, and performa-
bility modeling; she has published numerous articles on these topics. She is a
Member of IEEE.

48 IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 1, MARCH 2000

Kishor S. Trivedi (F) received the B.Tech. from the Indian Institute of Tech-
nology (Bombay), and M.S. and Ph.D. in Computer Science from the Univer-
sity of Illinois, Urbana-Champaign. He is the author of the well known text,
Probability and Statistics with Reliability, Queuing and Computer Science Ap-
plications.He has recently published two books:Performance and Reliability
Analysis of Computer SystemsandQueuing Networks and Markov Chains.His
research interests are in reliability and performance assessment of computer and
communication systems. He has published over 250 articles, and has lectured
extensively on these topics. He has supervised 32 Ph.D. dissertations. He is an
IEEE Fellow, and a Golden Core Member of the IEEE Computer Society. He
holds the Hudson chair in the Department of Electrical and Computer Engi-
neering at Duke University, and holds a joint appointment in the Department of
Computer Science there. He is the Duke-Site Director of an NSF Industry-Uni-
versity Cooperative Research Center between NC State University and Duke
University for carrying out applied research in computing and communications.
He has been on the Duke faculty since 1975, and has served as a Principal In-
vestigator on various AFOSR, ARO, Burroughs, Draper Lab, IBM, DEC, Al-
catel, Telcordia, Motorola, NASA, NIH, ONR, NSWC, Boeing, Union Switch
and Signals, NSF, and SPC funded projects, and as a consultant to industry and
research laboratories. He was an Editor of IEEE TRANS. COMPUTERSduring
1983–1987. He is a co-designer of HARP, SAVE, SHARPE, SPNP, and SREPT
modeling packages; these packages have been widely circulated.

