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Failure Correlation in Software Reliability Models

Katerina G&eva-Popstojanoydember, IEEEand Kishor S. TrivediFellow, IEEE

Abstract—Perhaps the most stringent restriction in most soft- MRP Markov renewal process
ware reliability models is the assumption of statistical indepen- [ ST Laplace—Stieltjes transform
o_Ience among successive software failures. Our_ rese_arch_ was mopg s-confidence bound
tivated by the fact that although there are practical situations in .
which this assumption could be easily violated, much of the pub- r.V. ranc-ion?.va.rlablle .
lished literature on software reliability modeling does not seriously ~ Software reliability is widely recognized as one of the most
address this issue. important aspects of software quality, and it spawns much re-

The research workin this paper is devoted to developing the soft- search effort into developing methods of quantifying it. De-

ware reliability modeling framework that can consider the phe-  giq the progress in software-reliability modeling, the use of
nomena of failure correlation and to study its effects on the soft- ) . ’
the models is restricted by

ware reliability measures. The important property of the developed
Markov renewal modeling approach is its flexibility. It allows con- « often unrealistic assumptions made to obtain mathemati-
struction of the software reliability model in both discrete time and cally tractable models,

continuous time, and_ (depending on the goals) to base the analysis the lack of enough experimental data.

either on Markov chain theory or on renewal process theory. Thus,
our modeling approach is an important step toward more consis- Among the basic assumptions made by various SRM, one which
tent and realistic modeling of software reliability. It can be related appears to be the weakest point is thmdependence among

and time-domain models can be derived as special cases under the i S
assumption of failure s-independence. Most existing SRGM assume that the testing is performed

This paper aims at showing that the classical software reliability homogeneously and randomly, i.e., the teSt.data are chosen from
theory can be extended to consider a sequence of possilshgdepen- the input space by some random mechanism and the software
dent software runs,viz, failure correlation. It does notdeal within-  is tested using these data-assuming homogeneous conditions.
ference nor with predictions, per seFor the model to be fully speci- | practical situations this is usually not true. During the testing

fied and applied to estimations and predictions in real software de- . . :
velopment projects, we need to address many research issues, e_gphase, various test scenarios are usually grouped according to

the high-level functionalities, which means that a series of related
+ detailed assumptions about the nature of the overall relia- (€St runs are conducted. In addition, input data are usually
bility growth, chosen in order to increase the testing effectiveness, i.e., to
« way modeling-parameters change as a result of the fault-re- detect as many faults as possible. As a result, once a failure is
moval attempts. observed, usually a series of related test runs are conducted to
Index Terms—Failure correlation, Markov renewal process, se- help isolate the cause of failure. Overall, testing of software
quence of dependent software runs, software reliability. systems uses a mixture of [32]

« structured (centered around scenarios),
|. INTRODUCTION « clustered (focused on fault localization),
¢ random testing.

Acronyms The s-dependence of successive software runs also depends
SRM software reliability model on the extent to which internal state of a software has been af-
SRGM  software reliability growth model fected and on the nature of operations undertaken for execution
TBF time between failures resumption, i.e., whether or not they involve state cleaning [16].
FC failure count Assuming thes-independence among successive software
NHPP  nonhomogeneous Poisson process runs does not seem to be appropriate in many operational
DTMC  discrete-time Markov chain usages of software either. For instance, in many applications,
SMP semi-Markov process such as real-time control systems, the sequence of input values

to the software tends to change slowly: successive inputs are
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will occur in the near term. Software failures occur in clusters  (debugging) phase, as well as to the validation phase and
if failures have tendency to occur in groups, i.e., the times be- operational phase.
tween successive failures are short for some periods of time an&ection |l presents a brief overview of Markov renewal pro-
long for other periods of time. cesses.

Prevalent SRGM fall into two categories: Section Ill presents a software reliability modeling frame-
work based on MRP which is then used to derive SRGM that

* TBF models which treat the inter-failure interval as ar.v,

« EC models which treat the number of failures in a givei’g]corporates the phenomena of failure correlation and enables
period as a r.v. us to study its effects on software reliability. Some ideas about

_ ) ... the way particular assumptions can be removed or relaxed are
For TBF models, the parameters of the inter-failure distributiqfoquced.

change as testing proceeds; while the software reliability evolu-gaction |v presents the application of the model to the vali-

tion in FC models is described by letting the parameters of digztion and operational phases.

tribution, such as mean value function, be suitable functions OfSection V explores the relation of the MRP approach to the
time. The two approaches here are strictly related. “Failure tir@?isting SRGM.
intervals” description and *failure counting process” descrip- gection VI discusses the issues that should be considered

tion are essentially two different ways of looking at the samgen, developing specific models within this framework.
phenomenon. To some extent, it is possible to switch between

them. In this paper, the analysis of the existing models and tﬂ%tation

correspondence between the two classes is not pursued any fur- .

ther. For surveys on existing SRGM see [13], [23], [25], [29], ordmal number of softwarg run

[35]. Z; nonindependent Bernoulli r.v) = success]l =
One of the basic assumptions common to both classes of failure

models is that the failures, when the faults are detected, &re PiZj+. = 0|Z; = 0}

s-independent. For example, in [6] this assumption is includéd 1—p

in the Standard Assumptions that apply for each presentéd PHZjt1 = 1%, = 1}

model. In other words, neither TBF nor FC models statistical l—q )

satisfy the requirements of addressing the issue-dépen- °» sum ofs-dependeng; overj =1, ---, n

dencies among successive software runs which usually rediit:(t) ~ Cdfof time spentin a transition from stateo state
in failure clustering. One of the reasons “Why conventional [ of SMP

reliability theory fails” for software [11] is that the programfexs(t) ~ Cdf of the successful run’s execution time
runs are not always-independent. F,..(t)v Cdf of the failed run’s execution time

To the best of our knowledge, there are only a few publishda=(t) ~ Cdf of the run’s execution time wheflex, () =

papers that consider failure-correlation. The empirically Fexp (1) )
developed Fourier series model [5] can be used for analyzi{@gt) number of runs in0, ¢]
clustered failure data, especially those with cyclic behavior F(f) ~ number of failed runs irf0, ¢]
The Compound-Poisson SRM [27] considers multiple failuregs t number of SU,CCESSfUI runs o, 7]
that occur simultaneously in bunches within the specified CPU ”“mb?r of failures @(_penenced .
second or time unit. The work [33] considers the problem &f % con_d|t|0nal probabilities of [success, fallu_rg] for
modeling correlation between successive executions of the testing runs that follow the occurrence of failure
software fault-tolerance technique based on recovery blocks?: i - gi

This paper proposes a software reliability modeling frame: — T .
work, based on Markov renewal processes, which can incorg:+* number of runs betwe_,-en.fanyresmd(z +1)
rate the possible-dependence among successive software runs, 0(/:currenf:.e_ time O.f fa|lu_re: To=0
viz, the effect of clustering. Markov renewal model formulationy +* Ly, — I;: inter-failure time
has several advantages, both theoretical and practical, such 33! realization off;, .

(t) PHT;41 > ¢t -- -, t;}: conditional Sf

* Flexible and more consistent modeling of software reliaﬂwrljL ) 1— R;41(t): conditional Cdf ofZf}4
bility: The model is cons;ructed in 2 stages: 1) Con5|d9;f+l(t) conditional pdf ofZ},
the outcomes of successive software runs to construct ghe unconditional probability of failure per run (valida-
model in discrete time. 2) Considering the execution times tion and operational phase)
of the software runs, we build a model in continuous time,. pitqi—1

* Adaptability of the model to both-dependent and  Other, standard notation is given in the “Information for
s-independent sequences of software rdrfee model in- Readers and Authors” at the rear of each issue.
troducess-dependence among successive software runs,
viz,failure s-correlation. Considering theindependence
among software runs is a special case of the proposed
modeling framework. Consider a process constructed as follows:

« Applicability to different phases of the software life cycle: 1) Take ann-state DTMC with transition probability matrix
The proposed modeling approach applies to the testing P = [px (]

Il. MARKOV RENEWAL PROCESSEBRIEF OVERVIEW
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2) Construct a process in continuous time by making thiRegarding the validity of the underling assumptions, there are
time spent in a transition from stateto statel have Cdf two questions:
Fy, ((t), such that times are mutualtyindependent. 1) Is the probability of failure constant?
This is an SMP, and is a generalization of both continuous 2) Are the runss-independent?
and discrete time Markov processes with countable state space@yestion #1 is addressed by SRGM which consider the
A descriptive definition of SMP is that it is a stochastic procesgsting phase of the software life cycle. When a failure occurs
which moves from one state to another among a countalilgsny run, removing the underlying faults will cause the prob-
number of states, with the successive states visited formiggijity of failure to change. The work in this paper addresses
a discrete time Markov chain, and that the process staySdfestion #2. Our goal is to show that the classical software
a given state a random length of time, the Cdf of which caRiapility theory can be extended to consider a sequence of
depend on this state as well as on the one to be visited neXt-possinys—dependent software runs.
The family of stochastic processes used in this paper, MRP, isthe sequence of successive software runs (successful or
equivalent to the family of SMP [3], [4]. Thus, the SMP recordgyjjeq) can be viewed as a realization of point events in time: a

the state of the process at each time pejnthile the MRP is 4int process. Poisson process is the simplest point process. It
a point (counting) process which records the number of timgg,siders only the failure points, i.e.

each of the possible states has been visited up to #irllRP . .
are of general interest since they join together the theory of two _d|sregards the SUCCG.}SSM runs between 2 failures,
different types of processes: the renewal process and the Markoy’ .|gnores thg infarmation conveyed by them.

chain. In studying MRP one can follow the methods used for | IS Paper views the sequence sfdependent software
renewal processes, or can base the treatment much more heéUﬁ}?’ When.the outcome of each run depends on the outcpme
on the theory of Markov chains. of the previous run, as a sequencesedependent Bernoulli

In renewal theory, the basic process is the number of renewH[&!S- Therefore, we consider both failed and successful runs:
{N(t); t > 0} in the interval(0, £]. If one regards the MRP both failure and nonfailure stops of software operation. A

as consisting ofn s-dependent processé (), - - -, No(t), convenient way of specifying a point process with more then 1

whereN,.(#) refers to the points of clags viz, number of times class of points is a Markov renewal process. It enable intuitive
statek has been visited, then the observed process of point?&d separate d_ISCl.JSSIon of the 2 elements of randomness in
the SuperpositiolV(¢) = Ny (£) + - -- + Ny (t). Many of the SOftware operation:

properties of MRP are derived from those of renewal processes* uncertainty about the outcome of the software run,

[3]. For example, the points of particular type form a renewal ¢ uncertainty about the time for the run to be executed.
process, so that if these points are of interest, then it is necessglis, we build the model in 2 stages:

to consider only the distribution of an interval between succes-

sive points of this type and to use the standard results of renewaﬂ') Define a DTMC which considers the outcomes from the

sequence of possibly-dependent software runs in dis-

theory. crete time.
2) Construct the process in continuous time by attaching the
distributions of the runs execution time to the transitions
[ll. SOFTWARE RELIABILITY MODELING FRAMEWORK BASED of the DTMC.

ON MRP The SMP describes both failure and execution behavior of the

oftware. Since software reliability theory considers the distri-

We have developed a software reliability modeling frame-" | . .
work based on MRP which is intuitive and easily introduce ution of the time to the next failure and the number of software
ilures in time interval of duratiofy, this paper focuses on the

s-dependence among successive software runs. Since each - )

ware run has 2 possible outcomes (success or failure), the u ivalent pomt process: the MRP
way of looking at the sequence of software runs is to consider it ssumptions:
as a sequence efindependent Bernoulli trials, where each trial 1) The probability of success or failure at each run depends

has success-probabilityand failure-probabilityy = 1 —p. The on the outcome of the previous run.
two Cdf, binomial and geometric, are connected with 4fie- 2) A sequence of software runs is defined as a sequence of
dependent Bernoulli trials: s-dependent Bernoulli trials.

3) Each software run takes a random amount of time to be

 the number of runs that have failed amonguccessive

software runs defines a r.v. with a binomial pmf; 4 eSxefcuted. L identicall distributed
» the number of software runs between two failures has the ) Software execution t_|mes are not identically distribute
for successful and failed runs. <

geometric pmf.

Since the number of software runss large and; is small, the o ]
well known limiting results for these pmf are usually used &8 SRMin Discrete Time

basic assumptions in SRM [18]: We view the sequence of software runs in discrete time as
 the number of failures in the limit has the Poisson distra sequence of-dependent Bernoulli trials in which the proba-
bution, bility of success or failure at each trial depends on the outcome

* the time to failure in the limit is exponentially distributed of the previous trial. Associate with the software-ruar.v. Z;
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p q 1 1
P
q Fig.2. DTMCforp =q=1
Fig. 1. Markov Interpretation of-Dependent Bernoulli Trials 1

that distinguishes whether the outcome of that particular run re-
sulted in success or failure:

7 - 0 asuccess onrun
7711 afailure on rury.

If we focus attention on failures and score 1 each time a failuf¥- 3- PTMCfor:p = ¢ =0

occurs and 0 otherwise, then the number of runs that have re-
sulted in a failure among successive software runs is: If p+ ¢ =1, then the Markov chain describes a sequence of

s-independent Bernoulli trials, and (4) reduces to:

of n possiblys-dependent r.v. PiZim =1k =P =2

Suppose that if rugi results in failure then, at run+ 1, the  which means that the failure probability does not depend on the
failure probability isg and the success probabilitygs outcome of the previous run. Thus each subsequent run succeeds
or fails independently with probabilitigs andq = p respec-
PriZj41=1|2; =1} =q, tively. In this caseS,, defined by (1) is a sum of mutually
PiZj+1=0|Z; =1} =7. s-independent Bernoulli r.v. and has binomial pmf.

If p+ ¢ # 1 then the DTMC describes the sequence-die-
pendent Bernoulli trials and enables us to accommodate pos-
sible s-dependence among successive runs. In this case the out-
PH{Z;41 =0/Z; =0} =p, come of the softwarg run (succgss or failure) depends.on the
PrVZ» 17 — 0' - o_utcor_ne o_f the previous run as in (4) and the gssumptlons of

1Zj+ 1Z; }=p binomial distribution do not hold. The pmf &, given by the
The sequence of-dependent Bernoulli trial§Z,; j > 1} sum ofn s-dependent r.v., can be derived using the observation

defines a discrete-time Markov chain with 2 states. One of tHaat €ach visit to a given state of DTMC is a possibly delayed
states, denoted by 0, is a success; the other denoted by 1 f§G&/rrent event [12]. N -
failure. A graphic description of this Markov chain is provided Whenp+ ¢ > 1, runs are positively correlated: if a software

by its state diagram in Fig. 1. Its transition probability matrix igf@ilure occurs in rury, then there is an increased chance that
another failure occurs in the next run. Thus, in this case, failures

p— [p 1_7} 0< <1 occur in clusters. The boundary case arises when equality in (3)
=\ ; <p,g<L (2) . ;
q q holds:p + ¢ = 2 (p = ¢ = 1). This means that if the sequence
of software runs starts with failure, then all successive runs fail;
if it starts with success, then all successive runs succeed. That
lp+q—1]<1. (3) |s It:r_le I\;Iarkov chain remains forever in its initial state as shown
in Fig. 2.
First consider in some detail the Markov chain. The proba- Next consider the case when successive software runs are
bility ¢ (p) is the conditional probability of failure (success) omegatively correlated+ g < 1. In this case if a software failure
a software run given that the previous run has failed (succeedesticurs in runy, then there is an increased chance that a success
The unconditional probability of failure on rug + 1) is: occurs in run(j + 1), i.e., there is a lack of clustering. In the
boundary case, when the equality in (3) holdsHg = 0, i.e.,

Similarly, if run j results in success therandp are the proba-
bilities of success and failure, respectively, at (gn- 1):

Sincep andq are probabilities, it follows that

P{Zjt1 =1} p = q = 0), then the Markov chain alternates deterministically
=PH{Z;;1=1,Z; =1} +PH{Z;;. =1, Z; =0} between the 2 states, as in Fig. 3.
=PH{Zj1=1%;=1}-P{Z; =1} The boundary cases are excluded from further analysis since

they are somewhat trivial, with no practical interest. We impose
P{Z,41 =1|Z; =0}-P{Z, =0 . .. .
+ Pz =1 a b PriZ; =0} the condition0 < p, ¢ < 1 on transition probabilities, which
=q-Pi{Z; =1} +p-Pr{Z; =0} implies that:

=q-P{Z; =1} +p-[1 - P{Z; = 1}] clp+q-1 <1
=F+(p+q—1) Pz =1}. (4) * DTMC in Fig. 1 is irreducible and aperiodic [34].
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Py
Po qy P
F———C
5y N 1 N
Fig. 4. Nonhomogeneous DTMC for SRGM
B. SRM in Continuous Time of s-dependent Bernoulli trials with step-dependent probabil-

The next step in the model construction is to obtain a procdlgS- The underlying stochastic process is a nonhomogeneous

in continuous time, considering the time that takes software ruRdM

to be executed, ,(t) is a Cdf of the time spent in a transition The sequencé,, = Z; + --- 4 Z, provides an alternate
from statek to statel of the DTMC in Fig. 1. It seems realistic 9€Scription of the SRGM considered here. THSS } defines

to assume that the runs execution times are not identically did€ DTMC presented in Fig. 4. Both statésnd;, represent

tributed for successful and failed runs. Thus, e (¢) depend that the failure state has been occupitthes. Staté represents
only of the type of point at the end of the interval- the first trial for whichS,, = i. Statei, represents all subsequent

trials for which S,, = 4, i.e., all subsequent successful runs

Fo,o(t) = F1o(t) = Faxy (8), before the occurrence of next failufe+ 1). Without loss of
generality let the first run be successful which means that 0 is
Fo,1(8) = F1,1(8) = Foxp(B). the initial state.

ith the additi fth h " ¢ The SRGM in continuous time is obtained by assigning runs
With the addition of thef,,;(#) to the transitions of DTMC, oy acution-time distributions to transitions of the DTMC in

we obtain an MRP as the _S_RM in continuous time. Thﬁig. 4. For simplicity, we have chosen the same execution time
{N(t),t > 0} is a superposition of 3-dependent renewal jiciribution regardless of the outcome:
processesNs(t) and Ng(t) which refer to the number of

times states 0 (success) and 1 (failure) of the DTMC have been Fo(t) = Fux s (t) = Fiuxp (1),  asin assumption #A3.
visited in (0, ¢].

Thus, T, of each software run has Cdf
C. SRGM Based On MRP

. . . . Fex(t) = Pr{Tex S t}
In addition to assumptions #1—#3, this section uses assump-

tions #A1—#A4. Considering the situation when software execution times are not
Assumptions: identically distributed for successful and failed runs,
Al) Whenever a failure occurs, faults are detected and re-
moved instantaneously. Fexs(t) # Foxr (1)

A2) At_ each such event, the probabilities of success ar|1sdstraightforward, and is discussed in Section I1I-D-1.
failure change.

L . . - In software reliability modeling we are interested in deriving
A3) Software execution tmes aseidentically distributed the distribution of the time between successive failures. This
for successful and failed runs.

: . . S means that only the points of particular type (failures) are of in-
Ad) Run S executlgn time distribution does not ChangFerest. Therefore, itis only necessary to consider the distribution
during the testing phase.

Assumbtions AL A3. A4 can ilv be relaxed or remov dof an interval between successive failures and to use the stan-
SSUMPLoONS AL, As, AS can easily be relaxed orremoved g g results of renewal theory. When software reliability growth
shown in Section IlI-D.

During the testing phase. software is subiected to a se ueins considered, a usual measure of reliability is conditional reli-
gthe 9p e ) ) a aBﬁity. Since the system has experienéddilures, conditional
of runs, making no changes if there is no failure. When a failu

th oo i s 1o fix the arder 'Fliability is the Sf associated with failufe -+ 1).
occurs on any run, then an attempt IS made o iXthe Underlyingn , o the distribution of the discrete r;,1, the number

faglt which causes the conditional probabilities of success agfj[r)uns between failures and (i + 1). From Fig. 4, the r.v.
failure on the next run to change. Thus

X;y1(z > 1) has the pmf:

P P; ; if k=1
P=12 5 =%

{qi qzl ©) Pr{X”l_k}_{@-pi‘“Q-n ifh>2  ©
defines thep;, ¢; for the testing runs that follow the occurrenceéerive the distribution of the continuous r&.;, which is the
of failure ¢, up to the occurrence of the next failufg,+ 1). interval distribution of the point proce$éx(¢) that records the
The SRGM in discrete time can be described with a sequera@mber of failures ir{0, ¢].
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It follows from (6) that the conditional Cdf of the time toThus,
failure (¢+ 1), given that the system has hafdilures, fori > 1

is: Var[T; ] = w -Var[T ]
o~ —2 - i + @) q;
Fon®) = a- P+ 0525 FR () (D) +%-<me}>2. (12)
k=2 4

Besides the mean and variance, an important feature of distri-
butions is the coefficient of variation:

OT; 11
: . 12
CT7+1 E[TH—l] ( )

F¥* = k-fold convolution of F.
The LST of Fex(t) is the Fix(s) defined fors > 0 by

Fo(s) = / exp(—s - £) dFux(t) = Elexp(—s - 1)].
0
Cr,., is arelative measure of the spread of the distribution; the
The LST of i1, (t) becomes idea is that a deviation of amouat,,, is less important, the
larger E[T;1] is. Substitute (9) and (11) into (12):

Fé+1(£) =4q- Fex(s) + Z q; -pf_Q "Dy ij(s) (pi —qi) - (pi +qi — 1)

1

R k=2 - 012« = — —_ C%i-n + — —
g () + (1 —pi —qi) - F2(s) ®) oD j 7 i+ ( ()Pi +7)*
- —pi- F ' _ o2y P a) T
1—pi - Fex(s) =T CFin + TETaE (13)

The inversion of (8) is, in principle, straightforward, and reason- ) - - .
ably simple closed-form results can be obtained whgg(#) Crs» = listhe coefficient of variation when the successive runs

has a rational LST (such as phase-type distributions [4]). ~ &rés-independent. _ .
Some general properties of the inter-failure time are devel-A Very plausible assumption for any software jig: > g;.

oped without making assumptions about the form of the runfsProgram for which this assumption couldn’t be made, would
execution-timeF,(t). Due to the well known property of LST, be enormously unreliable, and it is unlikely that its use would
the moments can be derived easily by a simple differentiation'?f ever attempted. It follows that the sign of the second term in

(8). Thus, the mean time to failure is: (13) depends only on;. _ _
The derived equations for the mean time to failure (10) and

_ dFi(s) coefficient of variation (13) can show the effects of failure cor-
Ellin] =~ ds relation on software reliability. If the successive software runs
=0 ares-dependentr; # 0), then 2 cases are considered:

__bitd dFex(s) H)If0o < m < 1(p + ¢ > 1) then successive runs
D; ds a0 are positively correlated: the failures occur in clusters. It
P, +G; follows from (10) that the mean time between failures is

== E[Tx] ©) shorter than it would be if the runs weséndependent:
E[1.4] = the run’s mean execution-time. E[T;14] < E[T{1).

On average, there is growth in reliability: ] ] .
The second term in (13) is positive, hence

E[Ti14] > E[T;]—iff .
_q—“’l >4 Oty > 1—m CTE;”I - CTJ;’&'
Piv1  Di . . .
. : These results imply that in the presence of failure clus-
If pi + i = 1, then successive runs asendependent and (9) tering, the inter-failure time has smaller mean and greater
becomes: coefficient of variation compared to theindependent
BT — ET«] case. Thatis, SRGM that assumédependence among
[F55] = i failures result in overly optimistic predictions.
) _ 2) If -1 < m; < 0(p; + ¢ < 1) then successive runs are
Thus, rewrite (9) as: negatively correlated:
E[Ti] = (0 +3) - BT = (1—m) - E[T33]- - (10) E[T;11] > E[T}].
Next, derive The second term in (13) is negative; hence
B Fiq(s) 1
21— i+l . 2 2 2
E[Ti—i—l] - ds2 ) Ty < 1, . CT;+”1 < CTAHI

s=0
then substitute it together with (9) in: It follows that, assuming a lack of clustering leads to
greater mean and smaller coefficient of variation of the

Var[T; 1] = o—%ﬂ = E[TA,] — (E[T;11])* inter-failure times, compared to theindependent case.
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D. Model Generalizations

The model here can be generalized in many ways. Some of
these generalizations are presented, together with brief com-
ments on the nature of new ideas involved.

1) Replace Assumption #A3 With Assumption £ansider
nonidentically distributed execution times for successful and
failed runsFo, () # Fex.(t). Assign

» F...(t) to transition to state 0 and to all transitions to
statesis (successful runs),

» F,..(t) to all transitions to statg i > 1 (failed runs) of
the DTMC in Fig. 4.

Make the appropriate changes in (7):

Fii(t) =g Fep () + > G o072
k=2

. ngs_l)*(t) D FeXF (t) (14)

This leads to LST transform:

- IQi'FeXF(S)+(1_pi_Qi)'FeXF(S)'FeXs(S)'

Fi-l-l(s) 1 F
—Pir eXS(S) (15) Fig. 5. DTMC for Non-Instantaneous and Delayed Fault Removal
2) Change Assumption A4\Ve have assumed that.(t) V. APPLICABILITY TO VALIDATION AND OPERATIONAL
does not change during the whole testing phase. This assump- PHASES

tion can be violated for reasons such as important changes iThe MRP can be used to estimate reliability of the software,
the code due to the fault-fixing attempts. Thus, consider the sifased on the results of testing performed in its validation phase.
uation when the parameters bf,(t) change after each failure For safety-critical software it is common to demand that all
occurrence (after each visit to the failure state). Then we neggbwn faults are removed. This means that if there is a failure
only to replaceliex(t) With Fex, (t) in (7). during the testing, then the fault must be identified and removed.

3) Remove Assumption A®s DTMC which describes SRM after the testing (debugging) phase the software enters a vali-
in discrete time can be defined so that it considers noninstanggtion phase to show that it has a high reliability prior to actual
neous fault removal, periods of time when the software is idlgse. In this phase, no changes are made to the software. Usually,
or more than one failure type. For example, DTMC in Fig. 5 caie validation testing for safety-critical software takes the form
be used to describe various testing scenarios, such as: of a specified:

1) v = v = 1: the model reduces to the one considered « number of test cases, or

previously, i.e., instantaneous fault removal which occurs « period of working,

immediately after the failure is observed. _that must be executed failure-free. While of particular interest
2) u =1 andv = 0: noninstantaneous fault removal whichq safety-critical software, the same approach can be applied
occurs immediately after the failure is observed. to any software that, in its current version, has not failed-for
3) v = 1 andv # 0: delayed and noninstantaneous faulf,-cessive runs.
removgl following the failure occurrence. Let 6 be the unconditional probability of a failure per run
4) u # 1: the program can be changed, due to the faylbyecution). Fors-independent Bernoulli trials, each run fails
removal or other modifications, following successful rung;iin probabilityd = ¢, i.e., succeeds with probability— 6 = p
as well. s-independently of the previous runs. Thus, the probability that

As for SRGM in Section III-C, the transition probabilities;, . independent test runs are conducted without failure is:
change at each visit to fault removal state.

With a few exceptions, such as [8], [9], the existing SRGM 1-6"=q"=p". (16)
assume that faults that are source of failures are detected and
corrected instantly following the failure occurrence, i.e., ignorEhe largest value of such that
repair times. The model in Fig. 5 allows assumption Al to be (1-6)">a 17)
removed in order to encompass the case when the fault removal =
process is noninstantaneous and does not necessarily follow §iBfines thel — « upper CB org [11], [34]. Solving (17) foré
mediately after the failure is observed. Unfortunately, unlike thfyes1 — « s-confidence that the failure probability per execu-

run’s execution time distribution which can be easily incorpgion of a software that reveals no failuresins-independent runs
rated into the model based on measurements, currently thgrgejow

is a lack of information and little agreement about repair time
distributions. 6" =1—a'/". (18)
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For related recent work on a Bayes estimation approach see [A9],SOME SPECIAL CASES AND RELATION TO EXISTING MODELS
[21].

. . The MRP approach in this paper can be related to existin
Now consider a sequence of possiblgependent software bp pap g

During the validati h the soft i< not chandi SRM. The SRM in discrete time is comparable with input-do-
runs. buring the validation phase, the software 1S not changing.,;, p,sed models which are static and don’t consider the time;

p a_ndq do not vary. That is, the sequence of runs can be. While the SRM in continuous time is comparable with time-do-
scribed by the homogeneous DTMC with transition probablll%ain SRGM. We next examine these relations

matrix (2). Assume that the DTMC is stationary, i.e., each run The SRM in discrete time (in this paper) can be related to

has the same failure-probability: input-domain based models which consider the software input
space from which test cases are chosen. For example, the input-
P{Z;41 =1} =Pr{Z; =1} =6. domain model [24] defines:
Then, from (4) it follows that A0 <A < 1)

as a fault-size under operational inputs after changehe pro-

9 — p ) (19) gram, i.e., given that faults have been detected and corrected.
P+q Then the probability that there ake> 0 successful runs before
. _ . the occurrence of the next failur@, + 1), is
The probability that: successive runs succeed is:
Pi{kA} = (1= 2" A (22)
PH{Zy = =2Zs =21 =0|Z = 1} Eqg. (22) is a special case of (6) under the assumption that suc-
=Pr{Z,=0|Z,-1 =0} ---Pr{Z, =0|Z, =0} cessive runs are-independent. In [24]); is treated as a r.v.
“PH{Z =0|Zy =1} with a CdfG(\;); (22) becomes:

=p" g (20)

P = [(= A% NG ) = Bl = At A

Use (19) to rewrite (20) in terms @éfand . It follows that in
the case ok-dependent Bernoulli trial§l — «) upper CB on
failure probability per executiof becomes:

The SRM in discrete time is also related to the Compound-
Poisson SRM in [27]. This model is based on the work in [28]
which approximates the sum gfdependent integer-valued r.v.
S, given by (1) with a compound Poisson process when these
_ 1= o'/t 1) r.v. are rarely nonzero and given they are nonzero their condi-
B 1—7n tional distributions are nearly identical.

. . . Consider the SRM in continuous time.fif.(s) is a rational
If failures occur in clusterd < « < 1) then the CB on failure function of s. SO t00 iSE. ()

o . i -+1(s); and the inversion of (8) is, in
probability is approximatelyt/(1 — «) higher than the CB ob- principle, straightforward. An important special case is when

tained underth_e—mdependence assump_non_ (18). Itfollows t.h%e distribution of the run’s execution time is exponential so that
the result obtained under the assumption-@fidependence is Fux(t) = p-exp (—pu-t), since it relates the MRP approach to the

overly optimistic. existing time-domain based SRGM and some of their basic as-

Consider the applicability of the MRP approach in the OICEumptions, such as theindependence of successive runs and

erational phase. During the operational phase, assume thaml:?exponential distribution of the inter-failure times. In other

changes are.made to the software. Then the sequence of WBrds, the simplest special case of the model is under the as-
can be described by the homogeneous DTMC. The well dev@hmptions that the-

oped theory of MRP [4], [26] and its limiting results can be used
to derive several measures other than the distribution of the time
between failures, such as the:

* mean number of failured/r(t) = E[Nr(t)] and mean
number of successd¥s(t) = E[Ns(¢)] in the interval
O, o o fir1(t) =D; - - exp[=p; - 1 - t]; (23)
« probability of success at tinteinstantaneous availability;
« limiting probability that the process is in state 0 at tite i-€., the conditional reliability is
ast — oc: steady-state availability. . Ria(t) = 1= Fyyr(£) = expl—Fs - - ], (24)
The MRP approach can be used for modeling fault-tolerant
software systems. Per-run failure probability and run’s execlifollows that the inter-failure time is exponentially distributed
tion-time distribution for a particular fault-tolerant techniquevith ratep; - 1. if the software testing is considered as a sequence
can be derived using a variety of existing models (see [10], [2@ s-independent runs with an exponential distribution of the
[30] and references therein). Thus, in addition to the interversierecution times.
failure correlation on a single run considered in related work, The alternative interpretation of this special case is in [15].
our approach can account for the correlation among succesdireler the assumption that inputs arrive at the software system
failures. according to a Poisson process with rafevhich is interpreted

o*

* successive software runs aréndependenty; + ¢; = 1),

« software execution time is exponentially distributed with
rate u.

Inverting (8) leads to the pdf of the inter-failure times:
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as intensity of testing, the probability that the software encousdccessive software rung; (+ ¢; # 1). Inverting (8) leads to

ters no failures in a time intervéd, ] is: the pdf of the inter-failure time:
oo i j q; _ _ g — 1
RN S CERUR N TIPS R R
- ] " T )
5=0 7 M i - exp[—p - t]. (28)

M isthe size of the input data space (number of data items whithis distribution is a mixture (compound) distribution [34] with
can be used as input to the softwar)? is the total number of pdf of form:

these input data which can cause software failure. The first term

inside the summation is the probability thahputs are received 9(t) = a1 - g1(t) + az - g2(t)
intimet; the second term s probability that nonejafiputs lead o +az =1
to a failure of software. Eq. (25), when simplified, leads to:

ag, g > 0,

Whenp; + ¢; > 1 the inter-failure distribution (28) is hyperex-
" ponential: a mixture of two exponential distributions with rates
T t} . (26)

1—F(t):exp{— 5 n and g

This means that the time to first failure has an exponential difhe mixing probabilities are
tribution with failure rate\ = (M* /M) - n; M* /M is the prob-
ability of failure on a test run. o1 =7;/pi,
The conditional reliability (survivor function of the time be- ar =(pi+q —1)/pi,

tween failureqi — 1) andi, 7;) becomes _ o o
respectively. The coefficient of variation for the hyperexponen-

) tial distribution is greater than 1. Due to the presence of failure
clustering, the inter-failure time has smaller mean and greater

Even though the motivations are different and the parameté(f"g'ance’ compared to theindependent case, even under the

have different interpretations, mathematically the model in [1§]ssumpt|on of exponentially distributed duration of testing runs.

is a special case of the SRM based on MRP under the assu[[%whenpi""% < 1then (28) becomes amixture of an exponen-

tions that successive software runs armdependent and the =% distribution with ratep; - 1« e,m,d hypoexppnential distribution
software execution times are exponentially distributed with rafdt "atesp; - s andy. The mixing proportions are

1. Ref [15]- shows that the JelinskiMoranda model [14] can be
obtained by introducing

1— Fi(t) = PHT; > t} = exp(—A; - £). 7

o =q;/P;,
ar =(1—p; — ¢:) /P,

A= Ll (N—i+1)=A(N—-i+1) respectively. The coefficient of variation is less than 1. Thus, the

M inter-failure time has greater mean and smaller variance com-
and treatingA and N— as unknown parameters. Then byared to thes-independent case.
adopting a Bayes point of view, two other models can be These results demonstrate the effects of failure correlation on
derived from the JelinskiMoranda model [15]: the software reliability measures. Some of the common assump-
1) Goel-Okumoto model [7] is obtained by assumingas tlon§ made by SRM are inadequate and result in optimistic esti-
a known value, and assigning Poisson prior distributidfations when failures are clustered.
for V;
2) Littlewood—Verrall model [17] is obtained by assuming VI. DIsCUSSION ANDFUTURE WORK
N has a known value and thathas a prior gamma dis-  The ultimate goal when developing SRGM is development of
tribution. good reliability inference and prediction methods which can be
Some other time-domain SRGM can easily be obtained agplied to software development. This paper does not deal with
special cases under the assumptior-ofdependence. For ex-inference or predictionper se.lt is aimed mainly at showing
ample, the Moranda model [22] also assumésdependent ex- that the classical software reliability theory can be extended to
ponentially distributed times between failures with a failure ratsonsider a sequence of possiblgdependent software rungz,
that decreases in geometric progression on the occurrencéaifire correlation. However, there are many research issues that

each individual failure: we want to address in the near future in order for the model
‘ to be fully specified and applied in real software development
A= Ak k<1 projects for estimating and predicting.

Consider in some detail the concept of software runs. The op-

Due to space limitations and the vast number of SRGM, tleeation of software can be broken into series of runs [23]. Each
analysis of the relation to the existing models is not pursusedftware run performs mapping between a set of input variables
further. and a set of output variables, and consumes execution time. The
Keep the assumption that the distribution of the run’s ex@put variable for a software run is any data item that exists ex-
cution time is exponential, but assumselependence betweenternal to the software run and is used by a software run. There
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does not have to be a physical input process. The input variable about the magnitude of reliability improvement. This ap-
can simply be located in memory, waiting to be accessed. Even proach results in a doubly stochastic model: one model for
for software that operates continuously, it is possible and more  set of parameters; the other for the times between failures,
convenient to divide the operation into software runs by sub-  conditional on the parameters.
division of time associated with some user-oriented tasks [23].The brief review of SRGM discussed in previous section is
The information associated with software runs can generally peesented to demonstrate the differences that arise from the ad-
grouped into 2 categories: ditional assumptions about the way the modeling parameters
« Timing: This includes specific time associated with eacBhange as a result of the fault removal attempts. The models,
software run, such as start time, normal termination tin¥t€linski-Moranda [14], Moranda [22], and Littlewood-Verrall
for successful runs, or failure time for failed runs. [17], are examples of TBF models and all have the common
« Input and OutcomeThe descriptive information aboutassumption that the inter-failure times arendependent expo-
each specific software run generally specifies the inpaentially distributed r.v.
for the program, the testing environment, and the outcome
that has been obtained (success or failure). fir1(t) = Ai - exp(=Ai - 1).

Relevant data about the failed software runs, as well as ffr differ i " bout th h it
successful software runs are routinely captured in many proje ey differ in assumptions about the waychanges as a resu
ault removal attempts.

for test tracking, and testing process management purposes [§ L i
[32]. These data, with possibly minor modifications, provide he Jel|n§k|—Moranda quel assumes that the mmgl number
f faults V is an unknown fixed constant, faults are instantly

common source for SRGM, input-domain analysis, and int&" . : .
grated analysis in this paper. The MRP approach considers perfectly corrected without introducing any new faults, and
faults that still remain are equally likely to occur. As a conse-

the knowledge that we have about system: the outcomes and . . L ) .

ecution times of all testing runs, either successful or failed. quence, failure intensity is proportional to the residual number
The existing time-domain SRGM disregard the successfﬂlfl faults,

runs between two failures and ignore the information conveyed

by them. Successful runs (nonfailure stops of software opera-

tion) are considered in [2] for parameter estimation of some @,i-h means that all faults have the same size.

the existing SRGM. Itis pointed out that ‘disregarding the non- ta \oranda model assumes that the initial number of faults

failure stops’ violates the Maximum Information Principle thafs infinite and that the faults detected and removed early in the

suggests exploiting available software reliability information ag,¢vare testing decrease failure intensity more rapidly from

much as possible. those detected later on. Thus the failure intensity decreases in

For the MRP approach, thE,, is a r.v. whose distribution 5 geometric progression on the occurrence of each individual
depends on the distribution of the run’s execution tife(t), tailure

and on the conditional probabilitigs, ¢;. The timing informa-

tion associated with each run can be obtained quite easily in A=Ak (k< 1).

many computer systems. Therefore, instead of making assump-

tions, the specific Cdf of the run’s execution timig.(t) canbe  The Littlewood—Verrall model is a doubly stochastic model

)\7=A(N—L+1)

determined from measured data. which treats the\; as a r.v. with a gamma distribution. This re-
Consider possible models for the parameter sgécts the likelihood, but not a guarantee, that a fault removal
{1, @1, p2, @2, -1 improves reliability and, if an improvement occurs, it is of un-

It is mathematically possible to permit an infinite number ofertain magnitude.
failures; in this case the parameter set is infinite. By setting  The Goel-Okumoto model [7] treat¥, initial number of
faults in software system, as a Poisson r.v. which results in

=0, pi=1, fori>n+1, NHPP with failure intensity\(¢). However, failure occurrence
o _ _ _ rate per fault for this model is constant, that is, all faults
the finite failure model is obtained as a special case. have same size. In contrast to the constant fault detection

For the model to be fully specified, it is necessary to considgiie of the Goel-Okumoto model, many commonly used FC
the way the parameters change as a result of the fault remay@Jgels are obtained by choosing differat) which results in
attempts. There are two possible approaches to modeling ffierent NHPP that can capture increasing/decreasing failure
parameter sefp;, ¢;}: occurrence rate per fault. The SRGM based on NHPP differ

* Relate them to the number of test runs or to the numbgom TBF models in one more aspect: the inter-failure times

of faults in a systematic way by assuming various detesre nots-independent and the nonstationarity of the process
ministic functional relationships. The free parameters at@mplicates their distributions. Nevertheless, if NHPP has
seen simply as unknown constants to be estimated by faure intensity \(t) then, given that there are failures in

sample data. interval (0, #], these failures are i.i.d. with pdf [3]
 Treatthe parameters as r.v. themselves, to consider the un-
certainty about the effect of fault removal [17], [18]. Thus, A(®)

even if the fault removal is successful, there is uncertainty t ) d '
about the size of the fault removed, and thus uncertainty A () du
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To summarize, while SRGM can be related to each other and det1]
rived from the same mathematical framework, they may differ

) . ; . . .12
appreciably in their assumptions about the failure mechanlsmg,
fault removal process, and overall growth in reliability during
the testing phase. The software reliability modeling framework13]
in this paper provides the basis for a more flexible, consistent aPr14)
proach to the mathematical formulation of software reliability,
and contributes toward more realistic modeling since it inte-

. . . 15]
grates the phenomena of failure correlation. However, in orde[r
to apply the model to real data, the development of more detailed
and specific models within this framework, as well as statistical1®]
inference procedures for modeling parameters are the subje 19
of our future research. Some basic issues that should be taken

into account when making additional assumptions about the

[18]
fault-removal process,

way that modeling parameters change as a result of fauEt19

removal attempts, ]

Ref. [1], [35] are briefly outlined here:

L
[2]

(3]
[4]

(3]

—_—

(6]
(71

(8]

[9]

[10]

Size of faultsin general, different software faults do not [
affect the failure probability equally. Some faults which [21]
are more likely to occur contribute more to the failure
probability than other faults.

Imperfect debuggingOften, fault fixing cannot be seen
as a deterministic process, leading with certainty to thd?®!
removal of the fault. An attempt to fix one fault can intro- [24]
duce new faults in the code.

Non-instantaneous and delayed fault-removdsually,
neither the removal of a fault occurs immediately after the2e)
failure is observed, nor the time to remove the fault is neg-
ligible. [27
Changing testing strategyfhe failure history of a pro- [2g]
gram depends on the testing strategy used; so SRGM must
consider the testing process used. In practice it is impor[—29
tant to deal with nonhomogeneous testing, i.e., the modebo;
should include the possibility of describing variations of
the testing strategy with time.

[22]

[25]

[31]
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