Advanced Analysis of Algorithms - Final

K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu}

1 Instructions

- 1. You are required to turn in the exam by 1 pm.
- 2. You are permitted to use class notes and the course textbook.
- 3. Each question is worth 4 points.

2 **Problems**

1. The Maximum Subarray problem is defined as follows: Given an array $A[1 \cdot n]$ of *n* integers (with at least one positive element) find a contiguous sub-array within A which has the largest sum.

For instance, in the array **A** defined by A[1] = -2, A[2] = 1, A[3] = -3, A[4] = 4, A[5] = -1, A[6] = 2, A[7] = 1, A[8] = -5, A[9] = 4, the contiguous subarray with the largest sum is $A[4 \cdot \cdot 7]$ with sum 4 + (-1) + 2 + 1 = 6.

Design a Divide-and-Conquer algorithm for the Maximum Subarray problem and analyze its running time.

- 2. As discussed in class, a *matching* in a graph $\mathbf{G} = \langle V, E \rangle$ is a collection of vertex-disjoint edges. The size of a matching is the number of edges in the disjoint collection. A *perfect matching* is a matching of size $\frac{|V|}{2}$. Observe that in a perfect matching, every vertex is matched to another vertex. Likewise, if a graph with an odd number of vertices cannot have a perfect matching. Design a *linear-time* algorithm to check whether **G** has a perfect matching, under the assumption that **G** has no cycles.
- 3. In class, we defined the 2 partition problem as follows: Let S = {a₁, a₂, ..., a_n} denote a set of n integers. Does there exist a set A ⊆ S, such that such that ∑_{a_i∈A} a_i = ∑_{a_j∈S\A} a_j. In other words, the sum of the elements in A is equal to the sum of the elements not in A. Design a dynamic programming algorithm for the 2-partition problem that runs in time O(n · N), where N = ∑_{a_i∈S} a_i. Does your algorithm establish that this problem is in the class **P**?
- 4. (a) Let A be an NP-complete set and let B be a set in P. Assume that the A ∩ B = Ø. What is the complexity of the set A ∪ B? If A ∩ B ≠ Ø, what can you say about the complexity of A ∪ B?
 - (b) Let A and B be two sets in NP. Establish that the sets $A \cap B$ and A^* are also in NP.
- 5. The Minimal SAT problem is defined as follows: Given a 3CNF formula ϕ , defined over the variables $\{x_1, x_2, \dots, x_n\}$ and the clauses C_1, C_2, \dots, C_m , is there a satisfying assignment for ϕ , such that exactly one literal in each clause is set to **true**? Prove that the Minimal SAT problem is **NP-complete**. (*Hint: 3SAT or 4SAT*.)