Mathematical Induction

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

22 August, 2013

Motivation

Reaching arbitrary rungs of a ladder.

Motivation

Reaching arbitrary rungs of a ladder.

Note

Can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g. integers.

Motivation

Reaching arbitrary rungs of a ladder.

Note

Can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g. integers.

Principle

Assume that the domain is the set of positive integers.

Motivation

Reaching arbitrary rungs of a ladder.

Note

Can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g. integers.

Principle

Assume that the domain is the set of positive integers.

• *P*(1) is true.

Motivation

Reaching arbitrary rungs of a ladder.

Note

Can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g. integers.

Principle

Assume that the domain is the set of positive integers.

• *P*(1) is true.

$$(\forall k)[P(k) \to P(k+1)]$$

Motivation

Reaching arbitrary rungs of a ladder.

Note

Can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g. integers.

Principle

Assume that the domain is the set of positive integers.

- *P*(1) is true.
- $(\forall k)[P(k) \rightarrow P(k+1)]$

P(n) is **true**, for all positive integers *n*.

Motivation

Reaching arbitrary rungs of a ladder.

Note

Can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g. integers.

Principle

Assume that the domain is the set of positive integers.

- *P*(1) is true.
- $(\forall k) [P(k) \rightarrow P(k+1)]$

P(n) is **true**, for all positive integers *n*.

Note

(i) Showing that P(1) is true is called the basis step.

Motivation

Reaching arbitrary rungs of a ladder.

Note

Can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g. integers.

Principle

Assume that the domain is the set of positive integers.

- *P*(1) is true.
- $(\forall k) [P(k) \rightarrow P(k+1)]$

P(n) is **true**, for all positive integers *n*.

Note

- (i) Showing that P(1) is true is called the basis step.
- (ii) Assuming that P(k) is true, in order to show that P(k + 1) is true is called the inductive hypothesis.

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$.

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

BASIS (P(1)):

LHS =

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$HS = \sum_{i=1}^{1} i$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$
$$RHS = \frac{1 \cdot (1+1)}{2}$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$
$$RHS = \frac{1 \cdot (1+1)}{2}$$
$$= \frac{1 \cdot (2)}{2}$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$
$$RHS = \frac{1 \cdot (1+1)}{2}$$
$$= \frac{1 \cdot (2)}{2}$$
$$= \frac{2}{2}$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$
$$RHS = \frac{1 \cdot (1+1)}{2}$$
$$= \frac{1 \cdot (2)}{2}$$
$$= \frac{2}{2}$$
$$= 1$$

Example

Show that the sum of the first *n* integers is $\frac{n \cdot (n+1)}{2}$. Formally, $\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$.

Proof.

BASIS (P(1)):

$$LHS = \sum_{i=1}^{1} i$$
$$= 1$$
$$RHS = \frac{1 \cdot (1 + 1)}{2}$$
$$= \frac{1 \cdot (2)}{2}$$
$$= \frac{2}{2}$$
$$= 1$$

Thus, LHS = RHS and P(1) is true.

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{k=1}^{k} i = \frac{k \cdot (k+1)}{2}.$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}.$$

We need to show that P(k + 1) is true,

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}.$$

$$LHS = \sum_{i=1}^{k+1} i$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

LHS =
$$\sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

LHS =
$$\sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

$$HS = \sum_{i=1}^{k+1} i$$

= 1 + 2 + 3 + ... + k + (k + 1)
= (1 + 2 + 3 + ... + k) + (k + 1)
= $\frac{k \cdot (k+1)}{2}$ + (k + 1), using the inductive hypothesis

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

$$HS = \sum_{i=1}^{k+1} i$$

= 1+2+3+...+k+(k+1)
= (1+2+3+...+k)+(k+1)
= $\frac{k \cdot (k+1)}{2}$ +(k+1), using the inductive hypothesis
= $\frac{k+1}{2}(k+2)$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

$$HS = \sum_{i=1}^{k+1} i$$

$$= 1 + 2 + 3 + \ldots + k + (k + 1)$$

$$= (1 + 2 + 3 + \ldots + k) + (k + 1)$$

$$= \frac{k \cdot (k + 1)}{2} + (k + 1), \text{ using the inductive hypothesis}$$

$$= \frac{k + 1}{2} (k + 2)$$

$$= \frac{(k + 1) \cdot (k + 2)}{2}$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

$$HS = \sum_{i=1}^{k+1} i$$

$$= 1 + 2 + 3 + \ldots + k + (k + 1)$$

$$= (1 + 2 + 3 + \ldots + k) + (k + 1)$$

$$= \frac{k \cdot (k + 1)}{2} + (k + 1), \text{ using the inductive hypothesis}$$

$$= \frac{k + 1}{2} (k + 2)$$

$$= \frac{(k + 1) \cdot (k + 2)}{2}$$

$$= RHS.$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}.$$

We need to show that P(k + 1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} i = \frac{(k+1)\cdot(k+2)}{2}$.

$$HS = \sum_{i=1}^{k+1} i$$

$$= 1 + 2 + 3 + \ldots + k + (k + 1)$$

$$= (1 + 2 + 3 + \ldots + k) + (k + 1)$$

$$= \frac{k \cdot (k + 1)}{2} + (k + 1), \text{ using the inductive hypothesis}$$

$$= \frac{k + 1}{2} (k + 2)$$

$$= \frac{(k + 1) \cdot (k + 2)}{2}$$

$$= RHS.$$

Since, LHS=RHS, we have shown that $P(k) \rightarrow P(k+1)$.

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i = \frac{k \cdot (k+1)}{2}$$

We need to show that P(k + 1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} i = \frac{(k+1)\cdot(k+2)}{2}$.

$$HS = \sum_{i=1}^{k+1} i$$

$$= 1 + 2 + 3 + \ldots + k + (k + 1)$$

$$= (1 + 2 + 3 + \ldots + k) + (k + 1)$$

$$= \frac{k \cdot (k + 1)}{2} + (k + 1), \text{ using the inductive hypothesis}$$

$$= \frac{k + 1}{2} (k + 2)$$

$$= \frac{(k + 1) \cdot (k + 2)}{2}$$

$$= RHS.$$

Since, LHS=RHS, we have shown that $P(k) \rightarrow P(k+1)$.

Applying the first principle of mathematical induction, we conclude that the conjecture is true.

Main Ideas

Subramani Proof techniques

Main Ideas

(i) Mathematicize the conjecture.

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).
- (iv) Show P(k+1).

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).
- (iv) Show P(k + 1). (The hard part.

- (i) Mathematicize the conjecture.
- (ii) Prove the basis (usually P(1) and usually easy.)
- (iii) Assume P(k).
- (iv) Show P(k + 1). (The hard part. Use mathematical manipulation.)

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$,

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

LHS =
$$\sum_{i=1}^{1} i^2$$

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

$$LHS = \sum_{i=1}^{1} i^{i}$$

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

LHS =
$$\sum_{i=1}^{1} i^2$$

= 1
RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}$

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

LHS =
$$\sum_{i=1}^{1} i^{2}$$

= 1
RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}$
= $\frac{1 \cdot (2 \cdot 1+1)}{6}$

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

LHS =
$$\sum_{i=1}^{1} i^{2}$$

= 1
RHS = $\frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}$
= $\frac{1 \cdot (2) \cdot (3)}{6}$
= $\frac{6}{8}$

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

$$LHS = \sum_{i=1}^{1} i^{2}$$

= 1
$$RHS = \frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}$$

$$= \frac{1 \cdot (2) \cdot (3)}{6}$$

$$= \frac{6}{6}$$

= 1

Another Induction Example

Example

Show that the sum of the squares of the first *n* integers is $\frac{n \cdot (n+1) \cdot (2n+1)}{6}$, i.e., show that $\sum_{i=1}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2n+1)}{6}$.

Proof.

BASIS (P(1)):

$$LHS = \sum_{i=1}^{1} i^{2}$$

= 1
$$RHS = \frac{1 \cdot (1+1) \cdot (2 \cdot 1+1)}{6}$$

$$= \frac{1 \cdot (2) \cdot (3)}{6}$$

$$= \frac{6}{6}$$

= 1

Thus, LHS = RHS and P(1) is true.

Induction example (contd.)

Proof.

Let us assume that P(k) is true,

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

We need to show that P(k + 1) is true,

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{k=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

We need to show that P(k + 1) is true, i.e., we need to show that

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$LHS = \sum_{i=1}^{k+1} i^2$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$LHS = \sum_{i=1}^{k+1} i^2$$

= 1² + 2² + 3² + ... + k² + (k + 1)²

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$LHS = \sum_{i=1}^{k+1} i^{2}$$

= $1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$
= $(1^{2} + 2^{2} + 3^{2} + \dots + k^{2}) + (k+1)^{2}$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

LHS =
$$\sum_{i=1}^{k+1} i^2$$

= $1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$
= $(1^2 + 2^2 + 3^2 + \dots + k^2) + (k+1)^2$
= $\frac{k \cdot (k+1) \cdot (2k+1)}{k} + (k+1)^2$, using the inductive hypothesis

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$HS = \sum_{i=1}^{k+1} i^{2}$$

= $1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$
= $(1^{2} + 2^{2} + 3^{2} + \dots + k^{2}) + (k+1)^{2}$
= $\frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2}$, using the inductive hypothesi
= $\frac{k+1}{6} (k \cdot (2k+1) + 6 \cdot (k+1))$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$HS = \sum_{l=1}^{k+1} l^{2}$$

$$= 1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$$

$$= (1^{2} + 2^{2} + 3^{2} + \dots + k^{2}) + (k+1)^{2}$$

$$= \frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2}, \text{ using the inductive hypothes}$$

$$= \frac{k+1}{6} (k \cdot (2k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2k^{2} + k + 6k + 6)$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$HS = \sum_{i=1}^{k+1} i^{2}$$

$$= 1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$$

$$= (1^{2} + 2^{2} + 3^{2} + \dots + k^{2}) + (k+1)^{2}$$

$$= \frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2}, \text{ using the inductive hypothesis}$$

$$= \frac{k+1}{6} (k \cdot (2k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2k^{2} + k + 6k + 6)$$

$$= \frac{k+1}{6} (2k^{2} + 7k + 6)$$

Induction example (contd.)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} i^{2} = \frac{k \cdot (k+1) \cdot (2k+1)}{6}$$

$$HS = \sum_{i=1}^{k+1} i^{2}$$

$$= 1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2}$$

$$= (1^{2} + 2^{2} + 3^{2} + \dots + k^{2}) + (k+1)^{2}$$

$$= \frac{k \cdot (k+1) \cdot (2k+1)}{6} + (k+1)^{2}, \text{ using the inductive hypothesis}$$

$$= \frac{k+1}{6} (k \cdot (2k+1) + 6 \cdot (k+1))$$

$$= \frac{k+1}{6} (2k^{2} + k + 6k + 6)$$

$$= \frac{k+1}{6} (2k^{2} + 7k + 6)$$

Induction proof (contd.)

$$= \frac{k+1}{6}(2k^2+4k+3k+6)$$

Induction proof (contd.)

$$= \frac{k+1}{6}(2k^2 + 4k + 3k + 6)$$
$$= \frac{k+1}{6}(2k \cdot (k+2) + 3 \cdot (k+2))$$

Induction proof (contd.)

$$= \frac{k+1}{6}(2k^2 + 4k + 3k + 6)$$

= $\frac{k+1}{6}(2k \cdot (k+2) + 3 \cdot (k+2))$
= $\frac{k+1}{6}(2k + 3) \cdot (k+2))$

Induction proof (contd.)

$$= \frac{k+1}{6}(2k^2 + 4k + 3k + 6)$$

$$= \frac{k+1}{6}(2k \cdot (k+2) + 3 \cdot (k+2))$$

$$= \frac{k+1}{6}(2k+3) \cdot (k+2))$$

$$= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1) + 1)}{6}$$

Induction proof (contd.)

$$= \frac{k+1}{6} (2k^2 + 4k + 3k + 6)$$

$$= \frac{k+1}{6} (2k \cdot (k+2) + 3 \cdot (k+2))$$

$$= \frac{k+1}{6} (2k+3) \cdot (k+2))$$

$$= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1) + 1)}{6}$$

$$= BHS$$

Induction proof (contd.)

Proof.

$$= \frac{k+1}{6}(2k^2 + 4k + 3k + 6)$$

$$= \frac{k+1}{6}(2k \cdot (k+2) + 3 \cdot (k+2))$$

$$= \frac{k+1}{6}(2k+3) \cdot (k+2))$$

$$= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1) + 1)}{6}$$

$$= RHS.$$

Since, LHS=RHS, we have shown that $P(k) \rightarrow P(k + 1)$.

Induction proof (contd.)

Proof.

$$= \frac{k+1}{6}(2k^2 + 4k + 3k + 6)$$

$$= \frac{k+1}{6}(2k \cdot (k+2) + 3 \cdot (k+2))$$

$$= \frac{k+1}{6}(2k+3) \cdot (k+2))$$

$$= \frac{(k+1) \cdot (k+2) \cdot (2 \cdot (k+1) + 1)}{6}$$

$$= BHS$$

Since, LHS=RHS, we have shown that $P(k) \rightarrow P(k + 1)$.

Applying the first principle of mathematical induction, we conclude that the conjecture is true.

Induction Example

Example

Show that the sum of the first *n* odd integers is n^2 , i.e., show that $\sum_{i=1}^{n} (2i - 1) = n^2$.

Example

Show that the sum of the first *n* odd integers is n^2 , i.e., show that $\sum_{i=1}^{n} (2i - 1) = n^2$.

Proof.

$$HS = \sum_{i=1}^{1} (2i - 1)$$

Example

Show that the sum of the first *n* odd integers is n^2 , i.e., show that $\sum_{i=1}^{n} (2i - 1) = n^2$.

Proof.

$$HS = \sum_{i=1}^{1} (2i - 1)$$
$$= 2 \cdot 1 - 1$$

Example

Show that the sum of the first *n* odd integers is n^2 , i.e., show that $\sum_{i=1}^{n} (2i - 1) = n^2$.

Proof.

$$HS = \sum_{i=1}^{1} (2i - 1)$$

= 2 \cdot 1 - 1
= 1

Example

Show that the sum of the first *n* odd integers is n^2 , i.e., show that $\sum_{i=1}^{n} (2i - 1) = n^2$.

Proof.

LHS =
$$\sum_{i=1}^{1} (2i - 1)$$

= $2 \cdot 1 - 1$
= 1
RHS = 1^{2}

Example

Show that the sum of the first *n* odd integers is n^2 , i.e., show that $\sum_{i=1}^{n} (2i - 1) = n^2$.

Proof.

LHS =
$$\sum_{i=1}^{1} (2i - 1)$$

= $2 \cdot 1 - 1$
= 1
RHS = 1^{2}
= 1

Example

Show that the sum of the first *n* odd integers is n^2 , i.e., show that $\sum_{i=1}^{n} (2i - 1) = n^2$.

Proof.

BASIS (P(1)):

$$HS = \sum_{i=1}^{1} (2i - 1)^{i}$$
$$= 2 \cdot 1 - 1$$
$$= 1$$
$$HS = 1^{2}$$
$$= 1$$

Thus, LHS = RHS and P(1) is true.

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{k=1}^{k} (2i-1) = k^2$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i-1) = k^2$$

We need to show that P(k + 1) is true,

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i-1) = k^2$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i - 1) = k^2$$

LHS =
$$\sum_{i=1}^{k+1} (2i-1)$$

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i-1) = k^2$$

LHS =
$$\sum_{i=1}^{k+1} (2i-1)$$

= 1+3+5+...(2k-1)+(2(k+1)-1)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i - 1) = k^2$$

LHS =
$$\sum_{i=1}^{k+1} (2i-1)$$

= 1+3+5+...(2k-1)+(2(k+1)-1)
= (1+3+5+...(2k-1))+(2k+1)

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i - 1) = k^2$$

LHS =
$$\sum_{i=1}^{k+1} (2i-1)$$

= 1+3+5+...(2k-1)+(2(k+1)-1)
= (1+3+5+...(2k-1))+(2k+1)
= k²+(2k+1), using the inductive hypothesis

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i-1) = k^2$$

$$HS = \sum_{i=1}^{k+1} (2i - 1)$$

= 1 + 3 + 5 + ... (2k - 1) + (2(k + 1) - 1)
= (1 + 3 + 5 + ... (2k - 1)) + (2k + 1)
= k^{2} + (2k + 1), using the inductive hypothesis
= (k + 1)^{2}

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i - 1) = k^2$$

$$HS = \sum_{i=1}^{k+1} (2i - 1)$$

= 1 + 3 + 5 + ... (2k - 1) + (2(k + 1) - 1)
= (1 + 3 + 5 + ... (2k - 1)) + (2k + 1)
= k^2 + (2k + 1), using the inductive hypothesis
= (k + 1)^2
= RHS

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i - 1) = k^2$$

$$HS = \sum_{i=1}^{k+1} (2i - 1)$$

= 1 + 3 + 5 + ... (2k - 1) + (2(k + 1) - 1)
= (1 + 3 + 5 + ... (2k - 1)) + (2k + 1)
= k^2 + (2k + 1), using the inductive hypothesis
= (k + 1)^2
= RHS

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i - 1) = k^2$$

We need to show that P(k + 1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} (2i - 1) = (k + 1)^2$.

$$HS = \sum_{i=1}^{k+1} (2i - 1)$$

= 1 + 3 + 5 + ... (2k - 1) + (2(k + 1) - 1)
= (1 + 3 + 5 + ... (2k - 1)) + (2k + 1)
= k^2 + (2k + 1), using the inductive hypothesis
= (k + 1)^2
= RHS

Since LHS = RHS, we have shown that $P(k) \rightarrow P(k + 1)$.

Proof.

Let us assume that P(k) is true, i.e., assume that

$$\sum_{i=1}^{k} (2i-1) = k^2$$

We need to show that P(k + 1) is true, i.e., we need to show that $\sum_{i=1}^{k+1} (2i - 1) = (k + 1)^2$.

$$HS = \sum_{i=1}^{k+1} (2i - 1)$$

= 1 + 3 + 5 + ... (2k - 1) + (2(k + 1) - 1)
= (1 + 3 + 5 + ... (2k - 1)) + (2k + 1)
= k^2 + (2k + 1), using the inductive hypothesis
= (k + 1)^2
= RHS

Since LHS = RHS, we have shown that $P(k) \rightarrow P(k + 1)$. Applying the first principle of mathematical induction, we conclude that the conjecture is true.

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

$$LHS = 7^0 - 5^0$$

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

$$LHS = 7^0 - 5^0$$

= 1 - 1

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof.

$$LHS = 7^0 - 5^0$$

= 1 - 1
= 0

Example

Show that $7^n - 5^n$ is always an even number for $n \ge 0$, i.e., show that $2 \mid (7^n - 5^n)$, $\forall n \ge 0$.

Proof. BASIS (P(0)): $LHS = 7^{0} - 5^{0}$ = 1 - 1 = 0Since the LHS is even, we have proven the basis P(0).

Proof.

Let us assume that P(k) is true, i.e., assume that $(7^k - 5^k)$ is divisible by 2 for some k.

Proof.

Let us assume that P(k) is true, i.e., assume that $(7^k - 5^k)$ is divisible by 2 for some k. It follows that $(7^k - 5^k) = 2m$, for some integer m.

Proof.

Proof.

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

Proof.

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

= $7 \cdot (2m + 5^k) - 5 \cdot 5^k$, using the inductive hypothesis

Proof.

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

= 7 \cdot (2m + 5^k) - 5 \cdot 5^k, using the inductive hypothesis
= 14m + 7 \cdot 5^k - 5 \cdot 5^k

Proof.

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

= 7 \cdot (2m + 5^k) - 5 \cdot 5^k, using the inductive hypothesis
= 14m + 7 \cdot 5^k - 5 \cdot 5^k
= 14m + 5^k \cdot (7 - 5)

Proof.

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

= 7 \cdot (2m + 5^k) - 5 \cdot 5^k, using the inductive hypothesis
= 14m + 7 \cdot 5^k - 5 \cdot 5^k
= 14m + 5^k \cdot (7 - 5)
= 14m + 2 \cdot 5^k

Proof.

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

= 7 \cdot (2m + 5^k) - 5 \cdot 5^k, using the inductive hypothesis
= 14m + 7 \cdot 5^k - 5 \cdot 5^k
= 14m + 5^k \cdot (7 - 5)
= 14m + 2 \cdot 5^k
= 2 \cdot (7m + 5^k)

Proof.

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

= 7 \cdot (2m + 5^k) - 5 \cdot 5^k, using the inductive hypothesis
= 14m + 7 \cdot 5^k - 5 \cdot 5^k
= 14m + 5^k \cdot (7 - 5)
= 14m + 2 \cdot 5^k
= 2 \cdot (7m + 5^k)
= some even number!

Proof.

Let us assume that P(k) is true, i.e., assume that $(7^k - 5^k)$ is divisible by 2 for some k. It follows that $(7^k - 5^k) = 2m$, for some integer m. We need to show that P(k + 1) is true, i.e., $(7^{k+1} - 5^{k+1})$ is divisible by 2. Observe that,

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

= 7 \cdot (2m + 5^k) - 5 \cdot 5^k, using the inductive hypothesis
= 14m + 7 \cdot 5^k - 5 \cdot 5^k
= 14m + 5^k \cdot (7 - 5)
= 14m + 2 \cdot 5^k
= 2 \cdot (7m + 5^k)
= some even number!

We have thus shown that $P(k) \rightarrow P(k+1)$.

Proof.

Let us assume that P(k) is true, i.e., assume that $(7^k - 5^k)$ is divisible by 2 for some k. It follows that $(7^k - 5^k) = 2m$, for some integer m. We need to show that P(k + 1) is true, i.e., $(7^{k+1} - 5^{k+1})$ is divisible by 2. Observe that,

$$7^{k+1} - 5^{k+1} = 7 \cdot 7^k - 5 \cdot 5^k$$

$$= 7 \cdot (2m + 5^k) - 5 \cdot 5^k, \text{ using the inductive hypothesis}$$

$$= 14m + 7 \cdot 5^k - 5 \cdot 5^k$$

$$= 14m + 5^k \cdot (7 - 5)$$

$$= 14m + 2 \cdot 5^k$$

$$= 2 \cdot (7m + 5^k)$$

$$= \text{ some even numberl}$$

We have thus shown that $P(k) \rightarrow P(k+1)$. Applying the first principle of mathematical induction, we conclude that the conjecture is true.

First Principle of Induction Second Principle of Induction

Second Principle of Induction

Note

Also called Strong Induction. Is necessary, when the first principle does not help us.

Second Principle of Induction

Note

Also called Strong Induction. Is necessary, when the first principle does not help us.

Principle

Assume that the domain is the set of integers.

Second Principle of Induction

Note

Also called Strong Induction. Is necessary, when the first principle does not help us.

Principle

Assume that the domain is the set of integers.

(i) *P*(1) is true.

Second Principle of Induction

Note

Also called Strong Induction. Is necessary, when the first principle does not help us.

Principle

Assume that the domain is the set of integers.

(i)
$$P(1)$$
 is **true**.
(ii) $(\forall r)[P(r)$ true for all r ,

$$1 \leq r \leq k \rightarrow P(k+1)$$

Second Principle of Induction

Note

Also called Strong Induction. Is necessary, when the first principle does not help us.

Principle

Assume that the domain is the set of integers.

(ii)
$$(\forall r)[P(r) \text{ true for all } r,$$

$$1 \leq r \leq k \rightarrow P(k+1)]$$

P(n) is **true** for all n.

Show that every number greater than or equal to 8 can be expressed in the form $(5 \cdot a + 3 \cdot b)$, for suitably chosen *a* and *b*.

Show that every number greater than or equal to 8 can be expressed in the form $(5 \cdot a + 3 \cdot b)$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10.

Show that every number greater than or equal to 8 can be expressed in the form $(5 \cdot a + 3 \cdot b)$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$.

Show that every number greater than or equal to 8 can be expressed in the form $(5 \cdot a + 3 \cdot b)$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1.

Show that every number greater than or equal to 8 can be expressed in the form $(5 \cdot a + 3 \cdot b)$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1. Without loss of generality, we assume that $(k + 1) \ge 11$.

Show that every number greater than or equal to 8 can be expressed in the form $(5 \cdot a + 3 \cdot b)$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1. Without loss of generality, we assume that $(k + 1) \ge 11$. Observe that (k + 1) - 3 = (k - 2) is at least 8 and less than k.

Show that every number greater than or equal to 8 can be expressed in the form $(5 \cdot a + 3 \cdot b)$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1. Without loss of generality, we assume that $(k + 1) \ge 11$. Observe that (k + 1) - 3 = (k - 2) is at least 8 and less than k. As per the inductive hypothesis, (k - 2) can be expressed in the form $(3 \cdot a + 5 \cdot b)$, for suitably chosen a and b.

Show that every number greater than or equal to 8 can be expressed in the form $(5 \cdot a + 3 \cdot b)$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1. Without loss of generality, we assume that $(k + 1) \ge 11$. Observe that (k + 1) - 3 = (k - 2) is at least 8 and less than k. As per the inductive hypothesis, (k - 2) can be expressed in the form $(3 \cdot a + 5 \cdot b)$, for suitably chosen a and b. It follows that $(k + 1) = 3 \cdot (a + 1) + 5 \cdot b$, can also be so expressed.

Show that every number greater than or equal to 8 can be expressed in the form $(5 \cdot a + 3 \cdot b)$, for suitably chosen *a* and *b*.

Proof.

The conjecture is clearly true for 8, 9 and 10. Assume that the conjecture holds for all $r, 8 \le r \le k$. Consider the integer k + 1. Without loss of generality, we assume that $(k + 1) \ge 11$. Observe that (k + 1) - 3 = (k - 2) is at least 8 and less than k. As per the inductive hypothesis, (k - 2) can be expressed in the form $(3 \cdot a + 5 \cdot b)$, for suitably chosen a and b. It follows that $(k + 1) = 3 \cdot (a + 1) + 5 \cdot b$, can also be so expressed. Applying the second principle of mathematical induction, we conclude that the conjecture is true.