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Permutations
Combinations

The Binomial Theorem

Permutations

Definition

A permutation is an ordered arrangement of objects. The number of distinct
permutations of r distinct objects chosen from n distinct objects is denoted by P(n, r).

Definition

n! =
{

1, if n = 0
n · (n − 1)!, otherwise

Computing P(n, r)

Using the multiplication principle,

P(n, r) = n · (n − 1) · . . . (n − r + 1)

= n · (n − 1) · . . . (n − r + 1) ·
(n − r) · (n − r − 1) · . . . 1
(n − r) · (n − r − 1) · . . . 1

=
n!

(n − r)!
, 0 ≤ r ≤ n
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The Binomial Theorem

Permutations (contd.)

Example

Compute P(7, 3), P(n, 0), P(n, 1), and P(n, n).

Solution: 210, 1, n, and n!.

Example

How many 3 letter words can be formed using the letters in the word “compiler”?
Solution: P(8, 3).

Example

In how many ways can a president and vice-president be chosen from a group of 20
people?
Solution: P(20, 2).
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Permutations
Combinations

The Binomial Theorem

One more exampe

Example

A library has 4 books on programming, 7 on algorithms and 3 on complexity. In how
many ways can the books be ordered on a shelf?

Provided that the books of a subject are required to be together?
Solution: If there is no restriction, the number of arrangements is P(14, 14) = 14!.
Now consider the case in which the books of a given subject are required to be
together. First arrange the three subjects. This can be done in P(3, 3) = 3! ways.
Corresponding to each such arrangement, the programming books can be permuted in
P(4, 4) = 4! ways, the algorithms books can be permuted in P(7, 7) = 7! ways and the
complexity books can be permuted in P(3, 3) = 3! ways. Using the multiplication
principle, the total number of arrangements is 3! · 4! · 7! · 3!.
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Combinations

The Binomial Theorem

Combinations

Definition

A combination is an (unordered) selection of objects. The number of distinct
combinations of r distinct objects chosen from n distinct objects is denoted by C(n, r).

Computing C(n, r)

Focus on a given combination of r objects chosen from n objects. The objects in this
combination can be permuted in r ! different ways to get r ! distinct permutations. It
follows that C(n, r) · r ! = P(n, r), i.e., C(n, r) = P(n,r)

r ! = n!
r !(n−r)! , 0 ≤ r ≤ n.

Example

Compute C(7, 3), C(n, 0), C(n, 1) and C(n, n).
Solution: 35, 1, n, 1.
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how many ways, can this committee be formed, if
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2 it must contain exactly one freshman. Solution: C(19, 1) · C(34, 7).
3 it can contain at most one freshman. Solution: C(34, 8) + C(19, 1) · C(34, 7).
4 it contains at least one freshman. Solution: C(53, 8)− C(34, 8).
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Motivation

Expansions

(i) (a + b)1 = a + b.

(ii) (a + b)2 = a2 + 2ab + b2.

(iii) (a + b)3 = a3 + 3a2b + 3ab2 + b3.

(iv) (a + b)4 =???

We want a general formula that permits us to write down the terms of (a + b)n without
actual multiplication.
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Pascal’s Triangle

The coefficient table

Consider the following table:

Row 0: C(0, 0)

Row 1: C(1, 0) C(1, 1)

Row 2: C(2, 0) C(2, 1) C(2, 2)

Row 3: C(3, 0) C(3, 1) C(3, 2) C(3, 3)

.

.

.
Row n: C(n, 0) C(n, 1) . . . . . . C(n, n − 1) C(n, n)
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Pascal’s triangle (contd.)

The Value Table

Writing down the values of the terms gives the following table:

Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1

.

.

.
Row n: 1 n . . . n 1
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Pascal’s formula

Theorem
C(n, k) = C(n − 1, k − 1) + C(n − 1, k), 1 ≤ k ≤ n − 1.

Proof.
Observe that,

C(n − 1, k − 1) + C(n − 1, k) =
(n − 1)!

(k − 1)![(n − 1 − (k − 1)!]
+

(n − 1)!

k!(n − 1 − k)!

=
(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!

k!(n − 1 − k)!

=
k(n − 1)!

k!(n − k)!
+

(n − k)(n − 1)!

k!(n − k)!

=
(n − 1)!

k!(n − k)!
[k + (n − k)]

=
n(n − 1)!

k!(n − k)!

=
n!

k!(n − k)!

= C(n, k)

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Pascal’s formula

Theorem
C(n, k) = C(n − 1, k − 1) + C(n − 1, k), 1 ≤ k ≤ n − 1.

Proof.
Observe that,

C(n − 1, k − 1) + C(n − 1, k) =
(n − 1)!

(k − 1)![(n − 1 − (k − 1)!]
+

(n − 1)!

k!(n − 1 − k)!

=
(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!

k!(n − 1 − k)!

=
k(n − 1)!

k!(n − k)!
+

(n − k)(n − 1)!

k!(n − k)!

=
(n − 1)!

k!(n − k)!
[k + (n − k)]

=
n(n − 1)!

k!(n − k)!

=
n!

k!(n − k)!

= C(n, k)

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Pascal’s formula

Theorem
C(n, k) = C(n − 1, k − 1) + C(n − 1, k), 1 ≤ k ≤ n − 1.

Proof.
Observe that,

C(n − 1, k − 1) + C(n − 1, k) =
(n − 1)!

(k − 1)![(n − 1 − (k − 1)!]
+

(n − 1)!

k!(n − 1 − k)!

=
(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!

k!(n − 1 − k)!

=
k(n − 1)!

k!(n − k)!
+

(n − k)(n − 1)!

k!(n − k)!

=
(n − 1)!

k!(n − k)!
[k + (n − k)]

=
n(n − 1)!

k!(n − k)!

=
n!

k!(n − k)!

= C(n, k)

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Pascal’s formula

Theorem
C(n, k) = C(n − 1, k − 1) + C(n − 1, k), 1 ≤ k ≤ n − 1.

Proof.
Observe that,

C(n − 1, k − 1) + C(n − 1, k) =
(n − 1)!

(k − 1)![(n − 1 − (k − 1)!]
+

(n − 1)!

k!(n − 1 − k)!

=
(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!

k!(n − 1 − k)!

=
k(n − 1)!

k!(n − k)!
+

(n − k)(n − 1)!

k!(n − k)!

=
(n − 1)!

k!(n − k)!
[k + (n − k)]

=
n(n − 1)!

k!(n − k)!

=
n!

k!(n − k)!

= C(n, k)

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Pascal’s formula

Theorem
C(n, k) = C(n − 1, k − 1) + C(n − 1, k), 1 ≤ k ≤ n − 1.

Proof.
Observe that,

C(n − 1, k − 1) + C(n − 1, k) =
(n − 1)!

(k − 1)![(n − 1 − (k − 1)!]
+

(n − 1)!

k!(n − 1 − k)!

=
(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!

k!(n − 1 − k)!

=
k(n − 1)!

k!(n − k)!
+

(n − k)(n − 1)!

k!(n − k)!

=
(n − 1)!

k!(n − k)!
[k + (n − k)]

=
n(n − 1)!

k!(n − k)!

=
n!

k!(n − k)!

= C(n, k)

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Pascal’s formula

Theorem
C(n, k) = C(n − 1, k − 1) + C(n − 1, k), 1 ≤ k ≤ n − 1.

Proof.
Observe that,

C(n − 1, k − 1) + C(n − 1, k) =
(n − 1)!

(k − 1)![(n − 1 − (k − 1)!]
+

(n − 1)!

k!(n − 1 − k)!

=
(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!

k!(n − 1 − k)!

=
k(n − 1)!

k!(n − k)!
+

(n − k)(n − 1)!

k!(n − k)!

=
(n − 1)!

k!(n − k)!
[k + (n − k)]

=
n(n − 1)!

k!(n − k)!

=
n!

k!(n − k)!

= C(n, k)

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Pascal’s formula

Theorem
C(n, k) = C(n − 1, k − 1) + C(n − 1, k), 1 ≤ k ≤ n − 1.

Proof.
Observe that,

C(n − 1, k − 1) + C(n − 1, k) =
(n − 1)!

(k − 1)![(n − 1 − (k − 1)!]
+

(n − 1)!

k!(n − 1 − k)!

=
(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!

k!(n − 1 − k)!

=
k(n − 1)!

k!(n − k)!
+

(n − k)(n − 1)!

k!(n − k)!

=
(n − 1)!

k!(n − k)!
[k + (n − k)]

=
n(n − 1)!

k!(n − k)!

=
n!

k!(n − k)!

= C(n, k)

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Pascal’s formula

Theorem
C(n, k) = C(n − 1, k − 1) + C(n − 1, k), 1 ≤ k ≤ n − 1.

Proof.
Observe that,

C(n − 1, k − 1) + C(n − 1, k) =
(n − 1)!

(k − 1)![(n − 1 − (k − 1)!]
+

(n − 1)!

k!(n − 1 − k)!

=
(n − 1)!

(k − 1)!(n − k)!
+

(n − 1)!

k!(n − 1 − k)!

=
k(n − 1)!

k!(n − k)!
+

(n − k)(n − 1)!

k!(n − k)!

=
(n − 1)!

k!(n − k)!
[k + (n − k)]

=
n(n − 1)!

k!(n − k)!

=
n!

k!(n − k)!

= C(n, k)

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Alternative Proof

A second Proof

Observe that C(n, k) represents the number of ways in which k objects can be
selected from n objects.

Focus on a particular object, say o. Note that each selection of
k objects from the n objects, either includes o or it does not. Let T1 denote the number
of ways in which k objects are selected from the n objects, with o definitely included.
But this means that we have to choose (k − 1) objects from the remaining (n − 1)
objects, i.e., T1 = C(n − 1, k − 1). Let T2 denote the number of ways in which k
objects are selected from the n objects, with o definitely excluded. But this means that
all k objects are selected from the remaining (n − 1) objects, i.e., T2 = C(n − 1, k).
Using the addition principle, C(n, k) = T1 + T2 = C(n − 1, k − 1) + C(n − 1, k).

Note

The above proof is called a combinatorial proof and is always preferred on account of
its elegance.
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The Theorem

Theorem

(a + b)n =
n∑

i=0
C(n, i) an−i · bi

, ∀n ≥ 0.

Proof.
Let P(n) denote the proposition in the above theorem. We prove that P(n) holds for all n by using mathematical induction.

BASIS: At n = 0, the LHS is (a + b)0 = 1 and the RHS is
∑0

i=0 C(0, i) a0−i · bi . Since the only value for i is also 0, the RHS is

C(0, 0) a0 · b0 = 1. Thus, LHS = RHS and the basis is proven.
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Proof of Binomial Theorem

Proof.
INDUCTIVE STEP: Assume that P(k) is true, for some k ≥ 0, i.e., assume that

(a + b)k =
k∑

i=0
C(k, i) ak−i · bi

, for some k ≥ 0.

At n = k + 1, we have,

LHS = (a + b)k+1

= (a + b)k (a + b)

= (
k∑

i=0
C(k, i) ak−i · bi ) · (a + b), using the inductive hypothesis

= a · (
k∑

i=0
C(k, i) ak−i · bi ) + b · (

k∑
i=0

C(k, i) ak−i · bi )

=
k∑

i=0
C(k, i) ak+1−i · bi +

k∑
i=0

C(k, i) ak−i · bi+1

= C(k, 0) ak+1 · b0 +
k∑

i=1
C(k, i) ak+1−i · bi +

k−1∑
i=0

C(k, i) ak−i · bi+1 + C(k, k) a0 · bk+1
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Proof (contd.)

Proof.
We focus on the quantity

(F)
k∑

i=1
C(k, i) ak+1−i · bi + (S)

k−1∑
i=0

C(k, i) ak−i · bi+1 (1)

Observe that the first k terms in F are ak · b1, ak−1 · b2, . . . , a1 · bk , while the first k terms in S are also
ak · b1, ak−1 · b2, . . . , a1 · bk .
In other words, the terms in F and S are identical, except for the coefficents.
Further, all the terms can be generated using the term formula, ak+1−p · bp, 1 ≤ p ≤ k .

Observe that the coefficient of ak+1−p · bp is C(k, p) in F and C(k, p − 1) in S. (This requires some thought!)

Accordingly, the coefficient of ak+1−p · bp in the sum (F + S) is C(k, p) + C(k, p − 1), which is C(k + 1, p), using Pascal’s formula.
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Proof (contd.)

Proof.
It follows that

LHS =

k+1∑
i=0

C(k + 1, i) ak+1−i · bi

= RHS

We have thus shown that P(k) → P(k + 1) and hence by applying the first principle of mathematical induction, we can conclude that P(n)

is true, for all n ≥ 0.
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Application

Example

Expand (x − 3)4.

Solution:

(x − 3)4 = C(4, 0)x4 · (−3)0 + C(4, 1)x3 · (−3)1 + C(4, 2)x2 · (−3)2

+C(4, 3)x1 · (−3)3 + C(4, 4)x0 · (−3)4

= x4 + 4x3 · (−3) + 6x2 · (9) + 4x · (−27) + 81

= x4 − 12x3 + 54x2 − 108x + 81
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One more example

Example
Show that

n∑
i=0

C(n, i) = 2n

Proof using the binomial theorem
As per the binomial theorem,

(1 + x)n =
n∑

i=0
C(n, i)1n−i · xi

= C(n, 0)1n · x0 + C(n, 1)1n−1 · x1 + . . . C(n, n)10 · xn

Substituting x = 1, we get,

(1 + 1)n = C(n, 0) · (1) + C(n, 1) · (1) + . . . C(n, n) · (1)

⇒
n∑

i=0
C(n, i) = 2n
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An alternate proof

Proof using combinatorial arguments

Consider a set S having n elements. C(n, i) represents the number of ways in which i
elements can be selected from n elements, i.e., C(n, i) represents the number of
subsets of S, which have cardinality i . The LHS is therefore counting the sum of the
number of subsets of cardinality 0, the number of subsets of cardinality 1 and so on.
However, this represents the total number of subsets of S. But we know that the total
number of subsets of S is precisely the cardinality of the power set of S, i.e., 2n.
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A third proof

Proof using induction

BASIS: At n = 0,

LHS =
0∑

i=0
C(0, 0)

= C(0, 0)

= 1

RHS = 20

= 1

Since LHS=RHS, the basis is proven.
INDUCTIVE STEP: Assume that the conjecture is true at n = k , , i.e., assume that

k∑
i=0

C(k, i) = 2k

for some k ≥ 0.
We now need to show that

k+1∑
i=0

C(k + 1, i) = 2k+1
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Inductive proof (contd.)

Completing the induction

Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Inductive proof (contd.)

Completing the induction
Observe that,

LHS =

k+1∑
i=0

C(k + 1, i)

= C(k + 1, 0) +
k∑

i=1
C(k + 1, i) + C(k + 1, k + 1)

= 1 +
k∑

i=1
[C(k, i) + C(k, i − 1)] + 1, Pascal′s formula

= (1 +
k∑

i=1
C(k, i)) + (

k∑
i=1

C(k, i − 1) + 1))

= (C(k, 0) +
k∑

i=1
C(k, i)) + (

k−1∑
j=0

C(k, j) + C(k, k))

Subramani Sets and Combinatorics



Permutations
Combinations

The Binomial Theorem

Motivation
Pascal’s Triangle
The Theorem
Application

Inductive proof (contd.)

The last steps

=
k∑

i=0
C(k, i) +

k∑
j=0

C(k, j)

= 2 ·
k∑

i=0
C(k, i)

= 2 · 2k
, using the inductive hypothesis

= 2k+1

Thus LHS=RHS and the inductive step is proven. Applying the first principle of mathematical induction, we conclude that the conjecture is
true.
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Inductive proof (contd.)

The last steps

=
k∑

i=0
C(k, i) +

k∑
j=0

C(k, j)

= 2 ·
k∑

i=0
C(k, i)

= 2 · 2k
, using the inductive hypothesis

= 2k+1

Thus LHS=RHS and the inductive step is proven.

Applying the first principle of mathematical induction, we conclude that the conjecture is
true.
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