Recurrence Relations

K. Subramani¹

¹Lane Department of Computer Science and Electrical Engineering West Virginia University

17 September, 2013

Subramani Proofs and Recursion

Sample Recurrences

Examples

Sample Recurrences

Examples	
(i)	
	<i>S</i> (1) = 2
	$S(n) = 2 \cdot S(n-1), n \geq 2.$

Sample Recurrences

Examples	
(i)	
<i>S</i> (1)	= 2
S(n)	$= 2 \cdot S(n-1), \ n \geq 2.$
(ii)	
<i>T</i> (1)	= 1
	$=$ $T(n-1)+3, n \ge 2.$

Sample Recurrences

Examples
(i)
S(1) = 2
$S(n) = 2 \cdot S(n-1), n \geq 2.$
(ii)
T(1) = 1
$T(n) = T(n-1) + 3, n \ge 2.$
(iii)
F(1) = 1
F(2) = 1
$F(n) = F(n-1) + F(n-2), n \ge 3$

Solving recurrences

Two methods

Subramani Proofs and Recursion

Solving recurrences

Two methods

(i) Expand-Guess-Verify (EGV).

Solving recurrences

Two methods

- (i) Expand-Guess-Verify (EGV).
- (ii) Formula.

Consider the recurrence:

 $\begin{array}{rcl} S(1) & = & 2 \\ S(n) & = & 2 \cdot S(n-1), \ n \geq 2. \end{array}$

Consider the recurrence:

 $\begin{array}{rcl} S(1) & = & 2 \\ S(n) & = & 2 \cdot S(n-1), \ n \geq 2. \end{array}$

(i) Expand: S(1) = 2,

Consider the recurrence:

 $\begin{array}{rcl} S(1) & = & 2 \\ S(n) & = & 2 \cdot S(n-1), \ n \geq 2. \end{array}$

(i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$,

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$
- (i) Expand: S(1) = 2, $S(2) = 2 \cdot 2 = 4$, $S(3) = 2 \cdot S(2) = 8$,

Consider the recurrence:

S(1) = 2 $S(n) = 2 \cdot S(n-1), n \ge 2.$

(i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$

- $\begin{array}{rcl} S(1) & = & 2 \\ S(n) & = & 2 \cdot S(n-1), \ n \geq 2. \end{array}$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$

- $\begin{array}{rcl} S(1) & = & 2 \\ S(n) & = & 2 \cdot S(n-1), \ n \geq 2. \end{array}$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify:

- $\begin{array}{rcl} S(1) & = & 2 \\ S(n) & = & 2 \cdot S(n-1), \ n \geq 2. \end{array}$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction!

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

LHS = 2

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

 $RHS = 2^1$

EGV

Example

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

 $RHS = 2$
 $= 2$

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 2 \\ S(n) & = & 2 \cdot S(n-1), \ n \geq 2. \end{array}$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$

 $RHS = 2$
 $= 2$

Since LHS=RHS, the basis is proven.

Consider the recurrence:

- $\begin{array}{rcl} S(1) & = & 2 \\ S(n) & = & 2 \cdot S(n-1), \ n \geq 2. \end{array}$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$
$$RHS = 2^{1}$$
$$= 2$$

Since LHS=RHS, the basis is proven. INDUCTIVE STEP: Assume that $S(k) = 2^k$.

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$
$$RHS = 2^{1}$$
$$= 2$$

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$.

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$
$$RHS = 2^{1}$$
$$= 2$$

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$
$$RHS = 2^{1}$$
$$= 2$$

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

$$S(k + 1) =$$

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, ...$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$
$$RHS = 2^{1}$$
$$= 2$$

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

 $S(k+1) = 2 \cdot S(k)$, by definition

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$
$$RHS = 2$$
$$= 2$$

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

$$S(k + 1) = 2 \cdot S(k)$$
, by definition
= $2 \cdot 2^k$, by inductive hypothesi

EGV

Example

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, \dots$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

$$LHS = 2$$
$$RHS = 2$$
$$= 2$$

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

$$S(k + 1) = 2 \cdot S(k)$$
, by definition
= $2 \cdot 2^k$, by inductive hypothesis
= 2^{k+1}

Consider the recurrence:

- S(1) = 2 $S(n) = 2 \cdot S(n-1), n > 2.$
- (i) Expand: $S(1) = 2, S(2) = 2 \cdot 2 = 4, S(3) = 2 \cdot S(2) = 8, ...$
- (ii) Guess: $S(n) = 2^n$
- (iii) Verify: Using Induction! BASIS: n = 1

LHS	=	2
RHS	=	2 ¹
	=	2

Since LHS=RHS, the basis is proven.

INDUCTIVE STEP: Assume that $S(k) = 2^k$. We need to show that $S(k + 1) = 2^{k+1}$. Observe that,

 $S(k+1) = 2 \cdot S(k), \text{ by definition}$ $= 2 \cdot 2^k, \text{ by inductive hypothesis}$ $= 2^{k+1}!$

Applying the first principle of mathematical induction, we conclude that $S(n) = 2^{n}$.

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand: T(1) = 1,

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$,

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$, $T(3) = 3 + T(n-2) = 7$,

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand: T(1) = 1, T(2) = T(1) + 3 = 4, T(3) = 3 + T(n-2) = 7, ...

EGV (contd.)

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$, $T(3) = 3 + T(n-2) = 7$, ...
(ii) Guess: $T(n) = 3 \cdot n - 2$.

EGV (contd.)

Example

Solve the recurrence:

$$T(1) = 1$$

 $T(n) = T(n-1) + 3, n \ge 2.$

(i) Expand:
$$T(1) = 1$$
, $T(2) = T(1) + 3 = 4$, $T(3) = 3 + T(n-2) = 7$, ...

- (ii) Guess: $T(n) = 3 \cdot n 2$.
- (iii) Verify: Somebody from class!

Formula approach

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power.

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n-1).

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n - 1). For example, $S(n) = c \cdot S(n - 1) + g(n)$.

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n - 1). For example, $S(n) = c \cdot S(n - 1) + g(n)$. The recurrence is called homogeneous, if g(n) = 0, for all n.

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n - 1). For example, $S(n) = c \cdot S(n - 1) + g(n)$. The recurrence is called homogeneous, if g(n) = 0, for all n.

Formula for Linear first-order recurrence

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n - 1). For example, $S(n) = c \cdot S(n - 1) + g(n)$. The recurrence is called homogeneous, if g(n) = 0, for all n.

Formula for Linear first-order recurrence

$$S(1) = k_0$$

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n - 1). For example, $S(n) = c \cdot S(n - 1) + g(n)$. The recurrence is called homogeneous, if g(n) = 0, for all n.

Formula for Linear first-order recurrence

$$S(1) = k_0$$

$$S(n) = c \cdot S(n-1) + g(n)$$

Definition

A general linear recurrence has the form:

$$S(n) = f_1(n) \cdot S(n-1) + f_2(n) \cdot S(n-2) + \dots + f_k(n) \cdot S(n-k) + g(n)$$

Note

The above formula is called linear, because the S() terms occur only in the first power. It is called first-order, if S(n) depends only on S(n - 1). For example, $S(n) = c \cdot S(n - 1) + g(n)$. The recurrence is called homogeneous, if g(n) = 0, for all n.

Formula for Linear first-order recurrence

$$S(1) = k_0$$

 $S(n) = c \cdot S(n-1) + g(n)$

 $\Rightarrow S(n) = c^{n-1} \cdot k_0 + \sum_{i=2}^n c^{n-i} \cdot g(i).$

Linear first-order recurrence

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Linear first-order recurrence

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 =$

Linear first-order recurrence

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

As per the formula, $k_0 = 2$, g(n) =

Linear first-order recurrence

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Linear first-order recurrence

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

Linear first-order recurrence

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) =$$

Linear first-order recurrence

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) = 2^{n-1} \cdot 2 + \sum_{i=2}^{n} 2^{n-i} \cdot 0$$

Linear first-order recurrence

Example

$$S(1) = 2$$

 $S(n) = 2 \cdot S(n-1), n \ge 2.$

$$S(n) = 2^{n-1} \cdot 2 + \sum_{i=2}^{n} 2^{n-i} \cdot 0$$

= 2^{n}

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 =$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

As per the formula, $k_0 = 4$, g(n) =

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) =$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$
$$= 2^{n+1} + 3 \sum_{i=2}^{n} 2^{n-i}$$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

= $2^{n+1} + 3 \sum_{i=2}^{n} 2^{n-i}$
= $2^{n+1} + 3 \cdot [2^{n-2} + 2^{n-3} + \dots + 2^{0}]$

Example

Solve the recurrence:

$$S(1) = 4$$

 $S(n) = 2 \cdot S(n-1) + 3, n \ge 2.$

$$S(n) = 2^{n-1} \cdot 4 + \sum_{i=2}^{n} 2^{n-i} \cdot 3$$

= $2^{n+1} + 3 \sum_{i=2}^{n} 2^{n-i}$
= $2^{n+1} + 3 \cdot [2^{n-2} + 2^{n-3} + \dots + 2^{0}]$
= $2^{n+1} + 3 \cdot [2^{n-1} - 1].$

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

Subramani Proofs and Recursion

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

(i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p+q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p+q = S(1)$$
$$p \cdot r_1 + q \cdot r_2 = S(2)$$

Then, $S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p + q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$
Then, $S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$
b) If $r_1 = r_2 = r$, solve
$$p = S(1)$$

$$(p + q) \cdot r = S(2)$$

Second Order homogeneous Linear Recurrence with constant coefficients

Formula

- (i) Form: $S(n) = c_1 \cdot S(n-1) + c_2 \cdot S(n-2)$, subject to some initial conditions.
- (ii) Solve the characteristic equation: $t^2 c_1 \cdot t c_2 = 0$. Let r_1 and r_2 denote the roots.
 - (a) If $r_1 \neq r_2$, solve

$$p + q = S(1)$$

$$p \cdot r_1 + q \cdot r_2 = S(2)$$
Then, $S(n) = p \cdot r_1^{n-1} + q \cdot r_2^{n-1}$
b) If $r_1 = r_2 = r$, solve
$$p = S(1)$$

$$(p + q) \cdot r = S(2)$$
Then, $S(n) = p \cdot r^{n-1} + q \cdot (n-1) \cdot r^{n-1}$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Solution:

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Solution:

(i)
$$c_1 = 6$$
, $c_2 = -5$.

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Solution:

(i) $c_1 = 6$, $c_2 = -5$. Characteristic equation:

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Solution:

(i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 - 6 \cdot t + 5 = 0$.

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Solution:

(i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 - 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

Example

Solve the recurrence relation

$$T(1) = 5$$

$$T(2) = 13$$

$$T(n) = 6 \cdot T(n-1) - 5 \cdot T(n-2), n \ge 3$$

Solution:

- (i) $c_1 = 6$, $c_2 = -5$. Characteristic equation: $t^2 6 \cdot t + 5 = 0$. Solution is: $r_1 = 1$, $r_2 = 5$.
- (ii) Solve the equations:

$$p+q = T(1) = 5$$

 $p \cdot 1 + q \cdot 5 = T(2) = 13$

We get p = 3 and q = 2.

(iii) Accordingly, the solution is $T(n) = 3 \cdot 1^{n-1} + 2 \cdot 5^{n-1} = 3 + 2 \cdot 5^{n-1}$.

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

Solution:

Example

Solve the recurrence relation:

$$\begin{array}{rcl} S(1) & = & 1 \\ S(2) & = & 12 \\ S(n) & = & 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n > 3 \end{array}$$

Solution:

(i)
$$c_1 = 8, c_2 = -16.$$

Example

Solve the recurrence relation:

$$\begin{array}{rcl} S(1) & = & 1 \\ S(2) & = & 12 \\ S(n) & = & 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n > 3 \end{array}$$

Solution:

(i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 - 8t + 16 = 0$.

Example

Solve the recurrence relation:

$$S(1) = 1$$

$$S(2) = 12$$

$$S(n) = 8 \cdot S(n-1) - 16 \cdot S(n-2), n > 3$$

Solution:

(i)
$$c_1 = 8$$
, $c_2 = -16$. Characteristic equation: $t^2 - 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.

Example

Solve the recurrence relation:

$$\begin{array}{rcl} S(1) & = & 1 \\ S(2) & = & 12 \\ S(n) & = & 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n > 3 \end{array}$$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$
$$p \cdot 4 + q \cdot 4 = 12$$

Example

Solve the recurrence relation:

$$\begin{array}{rcl} S(1) & = & 1 \\ S(2) & = & 12 \\ S(n) & = & 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n > 3 \end{array}$$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$
$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

Example

Solve the recurrence relation:

$$\begin{array}{rcl} S(1) & = & 1 \\ S(2) & = & 12 \\ S(n) & = & 8 \cdot S(n-1) - 16 \cdot S(n-2), \ n > 3 \end{array}$$

Solution:

- (i) $c_1 = 8$, $c_2 = -16$. Characteristic equation: $t^2 8t + 16 = 0$. Solution is $r_1 = r_2 = 4$.
- (ii) Solve the equations:

$$p = 1$$
$$p \cdot 4 + q \cdot 4 = 12$$

We get p = 1 and q = 2.

(iii) Accordingly, the solution is $S(n) = 4^{n-1} + 2 \cdot (n-1) \cdot 4^{n-1} = (2n-1) \cdot 4^{n-1}$.

Divide and Conquer Recurrence

Formula for Divide and Conquer Recurrence

Divide and Conquer Recurrence

Formula for Divide and Conquer Recurrence

$$S(1) = k_0$$

$$S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m$$

Divide and Conquer Recurrence

=

Formula for Divide and Conquer Recurrence

$$\begin{split} S(1) &= k_0\\ S(n) &= c \cdot S(\frac{n}{2}) + g(n), \ n \geq 2, \ n = 2^m \\ \geqslant S(n) &= c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i). \end{split}$$

Divide and Conquer Recurrence

Formula for Divide and Conquer Recurrence

$$S(1) = k_0$$

$$S(n) = c \cdot S(\frac{n}{2}) + g(n), \ n \ge 2, \ n = 2^m$$

 $\Rightarrow S(n) = c^{\log n} \cdot k_0 + \sum_{i=1}^{\log n} c^{\log n-i} \cdot g(2^i)$. (All logarithms are to base 2).

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$$

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$$

Note that $k_0 =$

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$$

Note that $k_0 = 1, c =$

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$$

Note that $k_0 = 1$, c = 1 and g(i) =

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), \ n \ge 2, \ n = 2^{m}$$

Note that $k_0 = 1$, c = 1 and g(i) = 1, $\forall i$.

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$$

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

= 1 + (log n) \cdot 1

Solve the recurrence:

$$C(1) = 1$$

$$C(n) = 1 + C(\frac{n}{2}), n \ge 2, n = 2^{m}$$

$$C(n) = 1^{\log n} \cdot 1 + \sum_{i=1}^{\log n} 1^{\log n - i} \cdot (1)$$

= 1 + (\log n) \cdot 1
= 1 + \log n

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$$

Note that $k_0 = 3$, c = 2 and $g(i) = 2 \cdot i$, $\forall i$.

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n-i} \cdot 2 \cdot (2^i)$$
$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n+1}$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n-i} \cdot 2 \cdot (2^i)$$

= $3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n+1}$
= $3 \cdot n + 2^{\log n+1} \cdot (\log n)$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

= $3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$
= $3 \cdot n + 2^{\log n + 1} \cdot (\log n)$
= $3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$$

$$T(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n-i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n+1}$$

$$= 3 \cdot n + 2^{\log n+1} \cdot (\log n)$$

$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

$$= 3 \cdot n + n \cdot 2 \cdot \log n,$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$$

$$(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n)$$

$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

$$= 3 \cdot n + n \cdot 2 \cdot \log n, \text{ since } (a^{\log a} = n, a \neq 0)$$

Solve the recurrence:

$$T(1) = 3$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + 2 \cdot n, \ n \ge 2, \ n = 2^{m}$$

$$(n) = 2^{\log n} \cdot 3 + \sum_{i=1}^{\log n} 2^{\log n - i} \cdot 2 \cdot (2^{i})$$

$$= 3 \cdot 2^{\log n} + \sum_{i=1}^{\log n} 2^{\log n + 1}$$

$$= 3 \cdot n + 2^{\log n + 1} \cdot (\log n)$$

$$= 3 \cdot n + 2^{\log n} \cdot 2 \cdot \log n$$

$$= 3 \cdot n + n \cdot 2 \cdot \log n, \text{ since } (a^{\log a} = n, a \neq 0)$$

$$= 3 \cdot n + 2 \cdot n \cdot \log n$$

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \le d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \le d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where,

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \le d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function.

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \le d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function. Let $r = \log_b a$.

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \le d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function. Let $r = \log_b a$. Then,

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \le d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function. Let $r = \log_b a$. Then,

(i) If there is a small constant $\epsilon > 0$, such that $f(n) \in O(n^{r-\epsilon})$, then $T(n) \in \Theta(n^{r})$.

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \le d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function. Let $r = \log_b a$. Then,

- (i) If there is a small constant $\epsilon > 0$, such that $f(n) \in O(n^{r-\epsilon})$, then $T(n) \in \Theta(n^{r})$.
- (ii) If there is a constant $k \ge 0$, such that $f(n) \in \Theta(n^r \cdot \log^k n)$, then $T(n) \in \Theta(n^r \log^{k+1} n)$.

Form

Suppose your recurrence has the following form:

$$T(n) = \begin{cases} c, & \text{if } n \le d \\ a \cdot T(\frac{n}{b}) + f(n), & \text{if } n > d \end{cases}$$

where, a > 0, c > 0, b > 1, d is an integer constant, and f(n) is a complexity function. Let $r = \log_b a$. Then,

- (i) If there is a small constant $\epsilon > 0$, such that $f(n) \in O(n^{r-\epsilon})$, then $T(n) \in \Theta(n^r)$.
- (ii) If there is a constant $k \ge 0$, such that $f(n) \in \Theta(n^r \cdot \log^k n)$, then $T(n) \in \Theta(n^r \log^{k+1} n)$.
- (iii) If there are small constants $\epsilon > 0$ and $\delta > 1$, such that $f(n) \in \Omega(n^{r+\epsilon})$, and $a \cdot f(\frac{n}{b}) \le \delta \cdot f(n)$, for $n \ge d$, then $T(n) \in \Theta(f(n))$.

Example

Example

Example

$$\bullet T(n) = 4 \cdot T(\frac{n}{2}) + n$$

Example

$$\bullet T(n) = 4 \cdot T(\frac{n}{2}) + n$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + n \cdot \log n$$

Example

$$\bullet T(n) = 4 \cdot T(\frac{n}{2}) + n$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + n \cdot \log n.$$

3
$$T(n) = T(\frac{n}{3}) + n$$
.

Example

$$\bullet T(n) = 4 \cdot T(\frac{n}{2}) + n.$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + n \cdot \log n.$$

3
$$T(n) = T(\frac{n}{3}) + n.$$

$$T(n) = 9 \cdot T(\frac{n}{3}) + n^{2.5}.$$

Example

$$\bullet T(n) = 4 \cdot T(\frac{n}{2}) + n.$$

$$T(n) = 2 \cdot T(\frac{n}{2}) + n \cdot \log n.$$

3
$$T(n) = T(\frac{n}{3}) + n.$$

•
$$T(n) = 9 \cdot T(\frac{n}{3}) + n^{2.5}$$
.

$$T(n) = 2 \cdot T(\sqrt{n}) + \log n.$$