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Applying the first principle of mathematical induction, we conclude that S(n) = 2.
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Solve the recurrence:

T(1) = 1
T(n) = T(h—1)+3, n>2

() Expand: T(1) =1, T(2)=T(1)+3=4,T(3)=3+T(n—-2)=7,...
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Formula

(i) Form: S(n) =c¢1 - S(n—1) + ¢ - S(n — 2), subject to some initial conditions.

(i) Solve the characteristic equation: 2 — ¢; - t — ¢, = 0. Let r; and r» denote the
roots.

(@) If ry # ra, solve

p+q = S(1)
p-rn+tq-rn = S(2)
Then, S(n)=p- =" +q - r§~"
(b) Ifry =r =r,solve
p = S()
(p+aq)-r = S(2)

Then, S(n)=p-r"~'+q-(n—1)-r"~!
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(i) c1 =6, ¢ = —5. Characteristic equation: 2 —6 -t +5 = 0.
Solutionis: 1 =1, r» = 5.
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p+q T(1)=5
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Examples of second order recurrences

Example

Solve the recurrence relation

T1) = 5
T2 = 13
T(n) = 6:-T(n—1)-5-T(n—2),n>3

Solution:

(i) c1 =6, ¢ = —5. Characteristic equation: 2 —6 -t +5 = 0.
Solutionis: 1 =1, r» = 5.

(i) Solve the equations:
p+q = T()=5
p-14+qg-5 = T(2)=13
Wegetp=3and g =2.
(i) Accordingly, the solutionis T(n) =3 -1~ +2.57-1 =3 4 2.501,
|
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(i) 1 =8, 0, =—16.
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One More Example

Solve the recurrence relation:

S(1) = 1
S() = 12
Sn) = 8-S(n—-1)—16-S(n—2), n>3
Solution:
(i) c1 =8, ¢ = —16. Characteristic equation: t2 — 8t + 16 = 0. Solution is
rn=rn= 4.

(i) Solve the equations:
p = 1
p-44+qg-4 = 12
Wegetp=1andqg=2.
(iii) Accordingly, the solutionis S(n) =4"~" +2.(n—1)-4""' = (2n—1) .41,
|
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Formula for Divide and Conquer Recurrence

S(1)
S(n)

ko

c-S(2)+g(n), n>2, n=2"

= S(n) = c°97 . ko + Y2199 cloan=i . g(27). (All logarithms are to base 2).
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Note that kg = 1, ¢ = 1and g(i) = 1, Vi. As per the formula,

C(n)

1

n
14+C(=), n>2, n=2"
2

log n X
1Iogn 4 Z 1Iogn—l (1)
i=1
1+ (logn) - 1
1+ logn
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T(n) = 2-T(=)+2-n, n>2 n=2
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Note that kg = 3, ¢ = 2and g(i) = 2 - i, Vi. As per the formula,

log n . .
Ty = 2997.34 3 2090 5. (2
i=

log n
_ 3. 2lr.vgnJr Z olog n+1
i=1
= 3. n+2|°g ) - (log n)
= 3-n+2|°gn-2-logn
E 3-n+n-2-logn, since(alogan:n,a#o)

= 3-n+2-n-logn
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The Master Method

Form

Suppose your recurrence has the following form:

c, ifn<d
nm:{aT@)HMLHn>d

where, a > 0, ¢ > 0, b > 1, d is an integer constant, and f(n) is a complexity function.
Let r = log, a. Then,
(i) If there is a small constant e > 0, such that f(n) € O(n"=¢), then T(n) € ©(n").

(ii) If there is a constant k > 0, such that f(n) € ©(n" - logX n), then
T(n) € ©(n" logh* n).

(iii) If there are small constants ¢ > 0 and § > 1, such that f(n) € Q(n’*¢), and
a-f(g) <d-f(n), for n > d, then T(n) € ©(f(n)).
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Examples

Solve the following recurrences:
Q@ T(n)=4-T(3)+n

Q@ T(n)=2-T(J)+n-logn.

Q@ T(n=T(5)+n

Q T(n)=9-T(§)+n?s.

© T(n)=2-T(+/n)+logn.
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