SUBSET-SUM is NP-Complete

• The SUBSET-SUM problem:

- Instance: We are given a set S of positive integers, and a target integer t.
- Question: does there exist a subset of S adding up to t?
 - Example: {1, 3, 5, 17, 42, 391}, target 50
 - The subset sum problem is a good problem to use when proving NPcompleteness for problems defined on sets of integers.
- We will show that 3-SAT \leq_P SUBSET-SUM.
 - So: We are given an arbitrary 3-SAT formula and we wish to derive a set *S* of integers and a target integer t.
 - Then we prove that 3-SAT is satisfiable iff a subset of S adds up to t.

$3-SAT =_P SUBSET-SUM$

- Idea: we use "bit descriptions" that essentially describe the construction of the 3-SAT formula.
 - The integers in S will be derived from this description.
 - As before, we assume that there are *m* Boolean variables and *n* clauses.
 - Our description uses bit fields that represent different aspects of the 3-SAT formula: it has two lines for each logic variable:
 - One line specifies which clauses use the true version of a variable.
 - Another line describes which clauses use the false version of the variable.

- For every variable u_i we create a line T_i corresponding to the true value of u_i and another line F_i for the false value of u_i as follows:

– Example description for:

$$(u_1 \vee \neg u_3 \vee \neg u_4) \land (\neg u_1 \vee u_2 \vee \neg u_4)$$

	u_1	u_2	u_3	u_4	C_1	c_2
T_1	1	0	0	0	1	0
F_1	1	0	0	0	0	1
T_2	0	1	0	0	0	1
F_2	0	1	0	0	0	0
T_3	0	0	1	0	0	0
F_3	0	0	1	0	1	0
T_4	0	0	0	1	0	0
F_4	0	0	0	1	1	1

- We will get the numbers for S by considering the rows to be integers.
- When adding the integers we do not want any complicating carry-over into the next column so we consider the entries to be numbers in a higher base.
 - A base corresponding to a three bit integer would do (an octal number) but for simplicity, each number is considered to be a base-10 digit.
- The selection of the required subset from S will designate a subset of lines from the description.
- This selection must be forced to choose either a T_i line or an F_i line (not both) for each value of *i*.
 - This means that the target integer t will start with m 1's.

- What about the sums of entries in the columns for the clauses?
 - Looking at the description lines we see that the sum in a column could be 1, 2, or 3.
 - We want the target number to have a specific value so we append more lines (integers) to the array to give the selection mechanism a chance to get a subset with a specific target sum.
 - We will show that this does not destroy our ability to do an appropriate selection from the T_i , F_i rows.
 - For every clause column, we need two more integers: one with a 1 and another with a 2 in that column and 0 everywhere else
 - Make the target have a 4 in the digits for the clause columns.
 - Note: For any column, the nonzero digits in all integers add up to at most 6 (so our base-10 simplification will never see a carry-over).

– Going	back	to our	example:
---------	------	--------	----------

Going back to our example.		u_1	u_2	u_3	u_4	c_1	c_2
	T_1	1	0	0	0	1	0
	F_1	1	0	0	0	0	1
	T_2	0	1	0	0	0	1
	F_{2}	0	1	0	0	0	0
$(u_1 \lor \neg u_3 \lor \neg u_4) \land (\neg u_1 \lor u_2 \lor \neg u_4)$	T_3	0	0	1	0	0	0
	F_3	0	0	1	0	1	0
	T_4	0	0	0	1	0	0
	F_4	0	0	0	1	1	1
	$S1_1$	0	0	0	0	1	0
	$S2_1$	0	0	0	0	2	0
	$S1_2$	0	0	0	0	0	1
	$S2_2$	0	0	0	0	0	2
	Target :	1	1	1	1	4	4

- Suppose the formula were satisfiable:
 - We need to show that there is a subset of *S* with target sum t.
 - Choose integer from the T_i , F_i rows corresponding to true literals, giving sums of 1 in the literal-digit positions.
 - Using only the T_i , F_i rows, we get sums that are 1, 2, or 3 in the clause columns.
 - Choose appropriate "slack integers" (from the SI_i and $S2_i$ rows to make those sums equal to 4).
 - The final sum matches the target in all digits, as required.

- Suppose a set of integers sum to the target:
 - We need to show that we can get a satisfying assignment of the given 3-SAT formula.
 - There must be exactly one integer (i.e. row) selected from each pair of the T_i , F_i rows, or there is no way to get a 1 in the initial columns of the target.
 - The selection thus defines the obvious assignment to variables, but is it a satisfying assignment?
 - For each clause, the "slack integers" in the chosen set can only add up to at most 3 in that clause column.
 - There must be at least one 1 contributed from some integer corresponding to the T_i , F_i rows.
 - That corresponds to a true literal in that clause and the formula is satisfied.
- Finishing our Proof that SUBSET-SUM is NP-Complete:
 - Since 3-SAT is NP-complete, we have just demonstrated that SUBSET-SUM is NP-hard.
 - But is it in NP? Yes, because:
 - We have a certificate: the subset achieving the target sum.
 - A verification algorithm would verify that the numbers specify a subset and furthermore that they add up to the target.
 - Finally:
 - SUBSET-SUM is NP-hard + SUBSET-SUM in NP → SUBSET-SUM is NP-complete.

Coin-Changing is NP-Hard

- Prove by reduction from SUBSET-SUM.
 - We want to prove: SUBSET-SUM \leq_P COIN-CHANGING.
 - We are given an arbitrary instance of subset-sum:
 - s_1, s_2, \dots, s_n and a target t.
 - We want to create a particular coin changing problem by specifying:
 - the number of coin denominations, the value of each denomination and a payout value S.
 - Recall that each coin can be used more than once in the payout.
 - Let M be equal to $\max\{s_1, s_2, \dots, s_n\}$.
 - For every number s_i create two coins C_i and N_i :
 - We use a strategy that is similar to our previous proof, but most of the numbers in the array are in "base-2n" instead of base-10.
 - The first column is special and will work in base-2nM.

	base - 2nM	base-2n		base-2n	 base – 2n
		S_1		S _i	 S _n
			•••		
C_i	S _i	0		1	 0
N_i	0	0		1	 0

- Intuition:
 - Choosing coin C_i means putting s_i into the subset.
 - Choosing coin N_i means <u>not</u> putting s_i into the subset.
 - Our payout value *S* will be the target sum *t*.
 - The column sums will be: *t* for the first column with 1 for all the others.

- Show:
 - If there exists a subset with sum *t* then it is possible to pay out the sum with ≤ n coins.
- Proof:
 - If s_i is chosen then take coin C_i , otherwise take coin N_i .
 - So, the sum in the first column is t as required and all other columns sum to 1.

- Show:
 - If it is possible to pay out the sum *S* with ≤ *n* coins, then there exists a subset with sum *t*.
- Proof:
 - Since there are ≤ n coins, there is never a carry-over into an adjacent column (consider the base of the entries).
 - So from every pair C_i , N_i exactly one is chosen.
 - This is the only possibility that will ensure that the column sums are all ones after the first column.
 - We construct a subset of the $s_1, s_2, ..., s_n$ as follows: s_i is selected to be in the subset iff C_i was chosen.
 - We will get a first column sum of *t*.

- Since SUBSET-SUM is NP-complete and since we have just shown that SUBSET-SUM ≤_P COIN-CHANGING we can deduce that COIN-CHANGING is NP-hard.
- As a certificate we can use the set of coins paying out the sum.
- For verification we could:
 - Check to verify that the certificate contains only valid coins.
 - Check that the number of coins is $\leq n$.
 - Check the sum.
- So:
 - COIN-CHANGING is in NP.
- Finally:
 - COIN-CHANGING is NP-complete.