
1

SUBSET-SUM is NP-Complete
• The SUBSET-SUM problem:

– Instance: We are given a set S of positive integers, and a
target integer t.

– Question: does there exist a subset of S adding up to t?
• Example: {1, 3, 5, 17, 42, 391}, target 50

– The subset sum problem is a good problem to use when proving NP-
completeness for problems defined on sets of integers.

– We will show that 3-SAT <P SUBSET-SUM.
• So: We are given an arbitrary 3-SAT formula and we wish to

derive a set S of integers and a target integer t.
– Then we prove that 3-SAT is satisfiable iff a subset of S adds up to t.

3-SAT =P SUBSET-SUM
• Idea: we use “bit descriptions” that essentially

describe the construction of the 3-SAT formula.
– The integers in S will be derived from this description.
– As before, we assume that there are m Boolean variables

and n clauses.
– Our description uses bit fields that represent different

aspects of the 3-SAT formula: it has two lines for each
logic variable:

• One line specifies which clauses use the true version of a
variable.

• Another line describes which clauses use the false version of
the variable.

2

– For every variable ui we create a line Ti corresponding
to the true value of ui and another line Fi for the false
value of ui as follows:

1 2 1 2...
...

0 0 0 1 0 0
0 0 0 1 0 0

...

i m n

i

i

u u u u c c c

T
F

There is a 1 under cj in row Ti iff
the jth clause contains ui.
(Similarly for the Fi row).

– Example description for:
() ()1 3 4 1 2 4u u u u u u∨ ¬ ∨ ¬ ∧ ¬ ∨ ∨ ¬

1 2 3 4 1 2

1

1

2

2

3

3

4

4

1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 1 1 1

u u u u c c
T
F
T
F
T
F
T
F

3

– We will get the numbers for S by considering the rows
to be integers.

– When adding the integers we do not want any
complicating carry-over into the next column so we
consider the entries to be numbers in a higher base.

• A base corresponding to a three bit integer would do (an
octal number) but for simplicity, each number is considered
to be a base-10 digit.

– The selection of the required subset from S will
designate a subset of lines from the description.

– This selection must be forced to choose either a Ti line
or an Fi line (not both) for each value of i.

• This means that the target integer t will start with m 1’s.

– What about the sums of entries in the columns for the
clauses?

• Looking at the description lines we see that the sum in a
column could be 1, 2, or 3.

• We want the target number to have a specific value so we
append more lines (integers) to the array to give the selection
mechanism a chance to get a subset with a specific target sum.

– We will show that this does not destroy our ability to do an
appropriate selection from the Ti, Fi rows.

• For every clause column, we need two more integers: one with
a 1 and another with a 2 in that column and 0 everywhere else

• Make the target have a 4 in the digits for the clause columns.
– Note: For any column, the nonzero digits in all integers add up to at

most 6 (so our base-10 simplification will never see a carry-over).

4

– Going back to our example:

() ()1 3 4 1 2 4u u u u u u∨ ¬ ∨ ¬ ∧ ¬ ∨ ∨ ¬

1 2 3 4 1 2

1

1

2

2

3

3

4

4

1

1

2

2

1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 1 1 1

1 0 0 0 0 1 0
2 0 0 0 0 2 0
1 0 0 0 0 0 1
2 0 0 0 0 0 2

Target : 1 1 1 1 4 4

u u u u c c
T
F
T
F
T
F
T
F
S
S
S
S

• Suppose the formula were satisfiable:
– We need to show that there is a subset of S with target sum t.

– Choose integer from the Ti, Fi rows corresponding to true literals,
giving sums of 1 in the literal-digit positions.

– Using only the Ti, Fi rows, we get sums that are 1, 2, or 3 in the
clause columns.

– Choose appropriate “slack integers” (from the S1i and S2i rows to
make those sums equal to 4).

– The final sum matches the target in all digits, as required.

5

• Suppose a set of integers sum to the target:
– We need to show that we can get a satisfying

assignment of the given 3-SAT formula.

– There must be exactly one integer (i.e. row) selected
from each pair of the Ti, Fi rows, or there is no way to
get a 1 in the initial columns of the target.

– The selection thus defines the obvious assignment to
variables, but is it a satisfying assignment?

– For each clause, the “slack integers” in the chosen set
can only add up to at most 3 in that clause column.

– There must be at least one 1 contributed from some
integer corresponding to the Ti, Fi rows.

– That corresponds to a true literal in that clause and the
formula is satisfied.

• Finishing our Proof that SUBSET-SUM is NP-
Complete:
– Since 3-SAT is NP-complete, we have just

demonstrated that SUBSET-SUM is NP-hard.
– But is it in NP? Yes, because:

• We have a certificate: the subset achieving the target sum.
• A verification algorithm would verify that the numbers

specify a subset and furthermore that they add up to the
target.

– Finally:
• SUBSET-SUM is NP-hard + SUBSET-SUM in NP è

SUBSET-SUM is NP-complete.

6

Coin-Changing is NP-Hard
• Prove by reduction from SUBSET-SUM.

– We want to prove:
SUBSET-SUM <P COIN-CHANGING.

– We are given an arbitrary instance of subset-sum:
• s1, s2,…, sn and a target t.

– We want to create a particular coin changing problem
by specifying:

• the number of coin denominations, the value of each
denomination and a payout value S.

– Recall that each coin can be used more than once in the payout.

– Let M be equal to max{s1, s2,…, sn}.
– For every number si create two coins Ci and Ni:

• We use a strategy that is similar to our previous proof, but most
of the numbers in the array are in “base-2n” instead of base-10.

• The first column is special and will work in base-2nM.

• Intuition:
– Choosing coin Ci means putting si into the subset.
– Choosing coin Ni means not putting si into the subset.
– Our payout value S will be the target sum t.
– The column sums will be: t for the first column with 1 for all the others.

1

2 2 ... 2 ... 2
... ...

...
0 ... 1 ... 0

0 0 ... 1 ... 0
...

i n

i i

i

base nM base n base n base n
s s s

C s
N

− − − −

7

– Show:
• If there exists a subset with sum t then it is possible to pay

out the sum with < n coins.

– Proof:
• If si is chosen then take coin Ci, otherwise take coin Ni.
• So, the sum in the first column is t as required and all other

columns sum to 1.

– Show:
• If it is possible to pay out the sum S with < n coins, then there

exists a subset with sum t.

– Proof:
• Since there are < n coins, there is never a carry-over into an

adjacent column (consider the base of the entries).
• So from every pair Ci, Ni exactly one is chosen.

– This is the only possibility that will ensure that the column sums are
all ones after the first column.

• We construct a subset of the s1, s2,…, sn as follows: si is
selected to be in the subset iff Ci was chosen.

– We will get a first column sum of t.

8

– Since SUBSET-SUM is NP-complete and since we have just
shown that SUBSET-SUM <P COIN-CHANGING we can
deduce that COIN-CHANGING is NP-hard.

– As a certificate we can use the set of coins paying out the sum.
– For verification we could:

• Check to verify that the certificate contains only valid coins.
• Check that the number of coins is < n.
• Check the sum.

– So:
• COIN-CHANGING is in NP.

– Finally:
• COIN-CHANGING is NP-complete.

