
Complexity Theory

Complexity Theory
VU 181.142, SS 2013

5. NP-Completeness

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI

Technische Universität Wien

16 April, 2013

Reinhard Pichler 16 April, 2013 Page 1

Complexity Theory

Outline

5. NP-Completeness
5.1 Some Variants of Satisfiability
5.2 CIRCUIT SAT
5.3 NOT-ALL-EQUAL-SAT
5.4 1-IN-3-SAT
5.5 Some Graph Problems
5.6 3-COLORABILITY
5.7 HAMILTON-PATH, etc.
5.8 Summary

Reinhard Pichler 16 April, 2013 Page 2

Complexity Theory 5. NP-Completeness 5.1. Some Variants of Satisfiability

Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

intractable: SAT, 3-SAT

tractable: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

restricted (but still intractable) versions of SAT

CIRCUIT SAT

Not-all-equal SAT (NAESAT)

(MONOTONE) 1-IN-3-SAT

strongly related problem: HITTING SET

Reinhard Pichler 16 April, 2013 Page 3

Complexity Theory 5. NP-Completeness 5.1. Some Variants of Satisfiability

Some Variants of Satisfiability

We have already encountered several versions of satisfiability problems:

intractable: SAT, 3-SAT

tractable: 2-SAT, HORNSAT

We shall encounter further intractable versions of satisfiability problems:

restricted (but still intractable) versions of SAT

CIRCUIT SAT

Not-all-equal SAT (NAESAT)

(MONOTONE) 1-IN-3-SAT

strongly related problem: HITTING SET

Reinhard Pichler 16 April, 2013 Page 4

Complexity Theory 5. NP-Completeness 5.1. Some Variants of Satisfiability

Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by
transformations which eliminate certain features of the language but still
preserve NP-completeness.

Restricting SAT to formulae in CNF and a further restriction to 3-SAT
are typical examples. Generally, k-SAT (i.e., formulae are restricted to
CNF with exactly k literals in each clause) is NP-complete for any k ≥ 3.

Here is another example of narrowing an NP-complete language:

Proposition

3-SAT remains NP-complete even if the Boolean expressions ϕ in 3-CNF
are restricted such that

each variable appears at most three times in ϕ and

each literal appears at most twice in ϕ.

Reinhard Pichler 16 April, 2013 Page 5

Complexity Theory 5. NP-Completeness 5.1. Some Variants of Satisfiability

Narrowing NP-complete languages

An NP-complete language can sometimes be narrowed down by
transformations which eliminate certain features of the language but still
preserve NP-completeness.

Restricting SAT to formulae in CNF and a further restriction to 3-SAT
are typical examples. Generally, k-SAT (i.e., formulae are restricted to
CNF with exactly k literals in each clause) is NP-complete for any k ≥ 3.

Here is another example of narrowing an NP-complete language:

Proposition

3-SAT remains NP-complete even if the Boolean expressions ϕ in 3-CNF
are restricted such that

each variable appears at most three times in ϕ and

each literal appears at most twice in ϕ.

Reinhard Pichler 16 April, 2013 Page 6

Complexity Theory 5. NP-Completeness 5.1. Some Variants of Satisfiability

Proof

The reduction consists in rewriting an arbitrary instance ϕ of 3-SAT in
such a way that the forbidden features are eliminated.

Consider a variable x appearing k > 3 times in ϕ.

(i) Replace the first occurrence of x in ϕ by x1, the second by x2, and
so on where x1, . . . , xk are new variables.

(ii) Add clauses (¬x1 ∨ x2), (¬x2 ∨ x3), . . . , (¬xk ∨ x1) to ϕ.

Let ϕ′ be the result of systematically modifying ϕ in this way. Clearly, ϕ′

has the desired syntactic properties.

Now ϕ is satisfiable iff ϕ′ is satisfiable:
For each x appearing k > 3 times in ϕ, the truth values of x1, . . . , xk are
the same in each truth assignment satisfying ϕ′.

Reinhard Pichler 16 April, 2013 Page 7

Complexity Theory 5. NP-Completeness 5.2. CIRCUIT SAT

Boolean Circuits

Syntax of Boolean circuits

A Boolean circuit is a directed graph C = (V ,E) where
V = {1, 2, . . . , n} is the set of gates and
C is acyclic (with i < j for all edges (i , j) ∈ E).

All gates i have a sort s(i) ∈ {true, false,∧,∨,¬} ∪ {x1, x2, . . .}.
– If s(i) ∈ {true, false}∪ {x1, x2, . . .}, the indegree of i is 0 (inputs).
– If s(i) = ¬ then the indegree of i is 1.
– If s(i) ∈ {∨,∧} then the indegree of i is 2.

Gate n is the output of the circuit.

Remark. {x1, x2, . . .} are variables whose value can be true or false.

Reinhard Pichler 16 April, 2013 Page 8

Complexity Theory 5. NP-Completeness 5.2. CIRCUIT SAT

Boolean Circuits

Semantics

Let C be a Boolean circuit and let X (C) denote the set of variables
appearing in the circuit C . A truth assignment for C is a function
T : X (C)→ {true, false}.
The truth value T (i) for each gate i is defined inductively:

If s(i) = true, T (i) = true and if s(i) = false, T (i) = false.

If s(i) = xj ∈ X (C), then T (i) = T (xj).

If s(i) = ¬, then T (i) = true if T (j) = false, else T (i) = false
where (j , i) is the unique edge entering i .

If s(i) = ∧, then T (i) = true if T (j) = T (j ′) = true else
T (i) = false where (j , i) and (j ′, i) are the two edges entering i .

If s(i) = ∨, then T (i) = true if T (j) = true or T (j ′) = true else
T (i) = false where (j , i) and (j ′, i) are the two edges entering i .

T (C) = T (n), i.e. the value of the circuit C .

Reinhard Pichler 16 April, 2013 Page 9

Complexity Theory 5. NP-Completeness 5.2. CIRCUIT SAT

CIRCUIT SAT

CIRCUIT SAT

INSTANCE: Boolean circuit C with variables X (C)

QUESTION: Does there exist a truth assignment
T : X (C)→ {true, false} such that T (C) = true?

Theorem

CIRCUIT SAT is NP-complete.

Proof of NP-Membership

Consider the following NP-algorithm:

1 Guess a truth assignment T : X (C)→ {true, false}.
2 Check that T (C) = true holds.

Reinhard Pichler 16 April, 2013 Page 10

Complexity Theory 5. NP-Completeness 5.2. CIRCUIT SAT

Proof of NP-Hardness

We prove the NP-hardness by a reduction from SAT: Let an arbitrary
instance of SAT be given by a Boolean formula ϕ over the variables
X = {x1, . . . , xk}. We construct the following Boolean circuit C (ϕ):

The variables X (C) in C (ϕ) are precisely the variables X .

For every subexpression ψ of ϕ, C (ϕ) contains a gate g(ψ). The
output gate of C (ϕ) is the gate g(ϕ).

The sort and the incoming arcs of each gate g(ψ) in C (ϕ) are
defined inductively:

• If ψ is a variable xi then g(ψ) is an input gate of sort s(g(ψ)) = xi
• If ψ = ¬ψ′ then s(g(ψ)) = ¬ with an incoming arc from g(ψ′).
• If ψ = ψ1 ∧ ψ2 (resp. ψ = ψ1 ∨ ψ2), then s(g(ψ)) = ∧ (resp.

s(g(ψ)) = ∨) with incoming arcs from g(ψ1) and g(ψ2).

Reinhard Pichler 16 April, 2013 Page 11

Complexity Theory 5. NP-Completeness 5.2. CIRCUIT SAT

Reduction from SAT to 3-SAT

Motivation

We have already seen how an arbitrary propositional formula ϕ can
be transformed efficiently into a sat-equivalent formula ψ in 3-CNF.

This transformation (first into CNF and then into 3-CNF) is intuitive
and clearly works in polynomial time. However, the log-space
complexity of this transformation is not immediate.

We now give an alternative transformation by reducing
CIRCUIT SAT to 3-SAT. In total, we thus have:

SAT≤L CIRCUIT SAT≤L 3-SAT

Reinhard Pichler 16 April, 2013 Page 12

Complexity Theory 5. NP-Completeness 5.2. CIRCUIT SAT

Reduction from CIRCUIT SAT to 3-SAT

Let an arbitrary instance of CIRCUIT SAT be given by a Boolean circuit
C . We construct the following instance ϕ(C) of SAT (ϕ is in CNF with
some clauses smaller than 3. The transformation into 3-CNF is obvious):

The formula ϕ(C) uses all variables of C . Moreover, for each gate g of
C , ϕ(C) has a new variable g and the following clauses.

1 If g is a variable gate x : (g ∨ ¬x), (¬g ∨ x). [g ↔ x]

2 If g is a true (resp. false) gate: g (resp. ¬g).

3 If g is a NOT gate with a predecessor h:
(¬g ∨ ¬h), (g ∨ h). [g ↔ ¬h]

4 If g is an AND gate with predecessors h, h′:
(¬g ∨ h), (¬g ∨ h′), (g ∨ ¬h ∨ ¬h′). [g ↔ (h ∧ h′)]

5 If g is an OR gate with predecessors h, h′:
(¬g ∨ h ∨ h′), (g ∨ ¬h′), (g ∨ ¬h). [g ↔ (h ∨ h′)]

6 If g is also the output gate: g .

Reinhard Pichler 16 April, 2013 Page 13

Complexity Theory 5. NP-Completeness 5.3. NOT-ALL-EQUAL-SAT

NAESAT

Not-all-equal SAT (NAESAT)

INSTANCE: Boolean formula ϕ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to ϕ,
such that the 3 literals in each clause do not have the same truth value?

Remark. Clearly NAESAT ⊂ 3-SAT.

Theorem

NAESAT is NP-complete.

Reinhard Pichler 16 April, 2013 Page 14

Complexity Theory 5. NP-Completeness 5.3. NOT-ALL-EQUAL-SAT

NAESAT

Proof of NP-Hardness

Recall the Boolean formula ϕ(C) resulting from the reduction of
CIRCUIT SAT to 3-SAT. For all one- and two-literal clauses in the
resulting CNF-formula ϕ(C), we add the same literal z (possibly twice)
to make them 3-literal clauses.

The resulting formula ϕz(C) fulfills the following equivalence:

ϕz(C) ∈ NAESAT ⇔ C ∈ CIRCUIT SAT.

“⇒” If a truth assignment T satisfies ϕz(C) in the sense of NAESAT,
so does the complementary truth assignment T .
Thus, z is false in either T or T which implies that ϕ(C) is satisfied by
either T or T . Thus C is satisfiable.

Reinhard Pichler 16 April, 2013 Page 15

Complexity Theory 5. NP-Completeness 5.3. NOT-ALL-EQUAL-SAT

NAESAT

Proof of NP-Hardness (continued)

“⇐” If C is satisfiable, then there is a truth assignment T satisfying
ϕ(C). Let us then extend T for ϕz(C) by assigning T (z) = false.

By assumption, T is a satisfying truth assignment of ϕ(C) and, therefore,
also of ϕz(C). Hence, in no clause of ϕz(C) all literals are false.
It remains to show that in no clause of ϕz(C) all literals are true:

(i) Clauses for true/false/NOT/variable gates contain z that is false.

(ii) For AND gates the clauses are: (¬g ∨ h ∨ z), (¬g ∨ h′ ∨ z),
(g ∨ ¬h ∨ ¬h′) where in the first two z is false, and in the third all
three cannot be true as then the first two clauses would be false.

(iii) For OR gates the clauses are: (¬g ∨ h ∨ h′), (g ∨ ¬h′ ∨ z),
(g ∨ ¬h ∨ z) where in the last two z is false, and in the first all
three cannot be true as then the last two clauses would be false.

Reinhard Pichler 16 April, 2013 Page 16

Complexity Theory 5. NP-Completeness 5.4. 1-IN-3-SAT

1-IN-3-SAT

1-IN-3-SAT

INSTANCE: Boolean formula ϕ in 3-CNF

QUESTION: Does there exist a truth assignment T appropriate to ϕ,
such that in each clause, exactly one literal is true in T ?

MONOTONE 1-IN-3-SAT

INSTANCE: Boolean formula ϕ in 3-CNF, s.t. the clauses in ϕ contain
only unnegated atoms.

QUESTION: Does there exist a truth assignment T appropriate to ϕ,
such that in each clause, exactly one literal is true in T ?

Theorem

Both 1-IN-3-SAT and MONOTONE 1-IN-3-SAT are NP-complete.

Reinhard Pichler 16 April, 2013 Page 17

Complexity Theory 5. NP-Completeness 5.4. 1-IN-3-SAT

1-IN-3-SAT

Remarks

Clearly 1-IN-3-SAT ⊂ NAESAT ⊂ 3-SAT. The instances of these
3 problems are the same, namely 3-CNF formulae. However, the
positive instances of 1-IN-3-SAT are a proper subset of NAESAT,
which in turn are a proper subset of the positive instances of 3-SAT.

Note that the NP-completeness of any of these 3 problems does not
immediatetely imply the NP-completeness of any of the other
problems, since it is a priori not clear if further constraining the
positive instances makes things easier or harder.

MONOTONE 1-IN-3-SAT is a special case of 1-IN-3-SAT, i.e.,
the instances of the former are a proper subset of the latter while
the question remains the same. The NP-hardness of the special case
immediately implies the NP-hardness of the general case.

Reinhard Pichler 16 April, 2013 Page 18

Complexity Theory 5. NP-Completeness 5.4. 1-IN-3-SAT

Proof of the NP-hardness of 1-IN-3-SAT

We prove the NP-hardnes by a reduction from 4-SAT:
Let ϕ be an arbitrary instance of 4-SAT, i.e., ϕ is in 4-CNF.
We construct an instance ψ of 1-IN-3-SAT as follows:

For every clause l1 ∨ l2 ∨ l3 ∨ l4 in ϕ, let a1, a2, a3, a4, b1, b2, c1, c2, d be 9
fresh propositional variables. Then ψ contains the following 7 clauses:

(1) l1 ∨ a1 ∨ b1 (4) l3 ∨ a3 ∨ b2

(2) l2 ∨ a2 ∨ b1 (5) l4 ∨ a4 ∨ b2 (7) b1 ∨ b2 ∨ d
(3) a1 ∨ a2 ∨ c1 (6) a3 ∨ a4 ∨ c2

Idea. Suppose that in a truth assignment T of ϕ all literals in the clause
l1 ∨ · · · ∨ l4 are false:
By (1) – (3): If l1 and l2 are false, then b1 must be true.
By (4) – (6): If l3 and l4 are false, then b2 must be true.
However, by (7), it is not allowed that both b1 and b2 are true.

Reinhard Pichler 16 April, 2013 Page 19

Complexity Theory 5. NP-Completeness 5.4. 1-IN-3-SAT

Proof of the NP-hardness of MONOTONE 1-IN-3-SAT

We show how an arbitrary instance ϕ of 1-IN-3-SAT can be transformed
into an equivalent instance ψ of MONOTONE 1-IN-3-SAT:

Let X = {x1, . . . , xn} be the variables in ϕ. Then the variables in ψ are
X ∪ {x ′i | 1 ≤ i ≤ n} ∪ {a, b, c}. In ϕ, we replace every negative literal of
the form ¬xi (for some i) by the unnegated atom x ′i .

Moreover, for every i ∈ {1, . . . , n}, we add the following 3 clauses:

(1) xi ∨ x ′i ∨ a
(2) xi ∨ x ′i ∨ b
(3) a ∨ b ∨ c

Idea. These three clauses guarantee that in a legal 1-in-3 assignment of
ψ, the variables xi and x ′i have complementary truth values. Hence, x ′i
indeed encodes ¬xi .

Reinhard Pichler 16 April, 2013 Page 20

Complexity Theory 5. NP-Completeness 5.4. 1-IN-3-SAT

HITTING SET

HITTING SET

INSTANCE: Set T = {t1, . . . , tp}, family (Vi)1≤i≤n of subsets of T , i.e.:
for all i ∈ {1, . . . , n}, Vi ⊆ T .

QUESTION: Does there exist a set W ⊆ T , s.t. |W ∩ Vi | = 1 for all
i ∈ {1, . . . , n}? (A set W with this property is called a “hitting set”).

Corollary

HITTING SET is NP-complete.

Proof of the NP-hardness

By reduction from MONOTONE 1-IN-3-SAT: Let an instance of
MONOTONE 1-IN-3-SAT be given by the 3-CNF formula ϕ over the
variables X . We define the following instance of HITTING SET:

T = X . Moreover, suppose that ϕ contains n clauses. Then there are n
sets (Vi)1≤i≤n. If the i-th clause in ϕ is l1 ∨ l2 ∨ l3, then Vi = {l1, l2, l3}.

Reinhard Pichler 16 April, 2013 Page 21

Complexity Theory 5. NP-Completeness 5.5. Some Graph Problems

Some Graph Problems

We have already proved the NP-completeness of the following graph
problems:

INDEPENDENT SET

CLIQUE

VERTEX COVER

We shall now show the following results:

3-COLORABILITY is NP-complete.

HAMILTON-PATH ≤L HAMILTON-CYCLE ≤L TSP(D)

Reinhard Pichler 16 April, 2013 Page 22

Complexity Theory 5. NP-Completeness 5.5. Some Graph Problems

INDEPENDENT SET

INSTANCE: Undirected graph G = (V ,E) and integer K .

QUESTION: Does there exist an independent set I of size ≥ K ?
i.e., I ⊆ V , s.t. for all i , j ∈ I with i 6= j , [i , j] 6∈ E .

CLIQUE

INSTANCE: Undirected graph G = (V ,E) and integer K .

QUESTION: Does there exist a clique C of size ≥ K ?
i.e., C ⊆ V , s.t. for all i , j ∈ I with i 6= j , [i , j] ∈ E .

VERTEX COVER

INSTANCE: Undirected graph G = (V ,E) and integer K .

QUESTION: Does there exist a vertex cover N of size ≤ K ?
i.e., N ⊆ V , s.t. for all [i , j] ∈ E , either i ∈ N or j ∈ N.

Reinhard Pichler 16 April, 2013 Page 23

Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILITY

Decision Problems

3-COLORABILITY

INSTANCE: Undirected graph G = (V ,E)

QUESTION: Does G have a 3-coloring? i.e., an assignment of one of 3
colors to each of the vertices in V such that any two vertices i , j
connected by an edge [i , j] ∈ E do not have the same color?

k-COLORABILITY (for fixed value k)

INSTANCE: Undirected graph G = (V ,E)

QUESTION: Does G have a k-coloring? i.e., an assignment of one of k
colors to each of the vertices in V such that any two vertices i , j
connected by an edge [i , j] ∈ E do not have the same color?

Reinhard Pichler 16 April, 2013 Page 24

Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILITY

Complexity

Theorem

The k-COLORABILITY-problem is NP-complete for any fixed k ≥ 3.
The 2-COLORABILITY-problem is in P.

Proof

NP-Membership of k-COLORABILITY:
1. Guess an assignment f : V → {1, . . . , k}
2. Check for every edge [i , j] ∈ E that f (i) 6= f (j).

P-Membership of 2-COLORABILITY: (w.l.o.g., G is connected)
1. Start by assigning an arbitrary color to an arbitrary vertex v ∈ V .
2. Suppose that the vertices in S ⊂ V have already been assigned a color.
Choose x ∈ S and assign to all vertices adjacent to x the opposite color.

G is 2-colorable iff step 2 never leads to a contradiction.

Reinhard Pichler 16 April, 2013 Page 25

Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILITY

NP-Hardness Proof of 3-COLORABILITY

By reduction from NAESAT: Let an arbitrary instance of NAESAT be
given by a Boolean formula ϕ = c1 ∧ . . . ∧ cm in 3-CNF with variables
x1, . . . , xn. We construct the following graph G (ϕ):

Let V = {a} ∪ {xi ,¬xi | 1 ≤ i ≤ n} ∪ {li1, li2, li3 | 1 ≤ i ≤ m},
i.e. |V | = 1 + 2n + 3m.

For each variable xi in ϕ, we introduce a triangle [a, xi ,¬xi],
i.e. all these triangles share the node a.

For each clause ci in ϕ, we introduce a triangle [li1, li2, li3]. Moreover,
each of these vertices lij is further connected to the node corresponding
to this literal, i.e.: if the j-th literal in ci is of the form xα (resp. ¬xα)
then we introduce an edge between lij and xα (resp. ¬xα)

Reinhard Pichler 16 April, 2013 Page 26

Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILITY

Example

The 3-CNF formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ ¬x4) is reduced to
the following graph:

a

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

l12 l13

l11

l22 l23

l21

Reinhard Pichler 16 April, 2013 Page 27

Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILITY

Example

The 3-CNF formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ ¬x4) is reduced to
the following graph:

a

x1 ¬x1 x2 ¬x2 x3 ¬x3 x4 ¬x4

l12 l13

l11

l22 l23

l21

Let red = false and green = true. The above 3-coloring corresponds to
T (x1) = T (¬x2) = T (¬x3) = T (¬x4) = true.

Reinhard Pichler 16 April, 2013 Page 28

Complexity Theory 5. NP-Completeness 5.6. 3-COLORABILITY

Correctness of the Problem Reduction

Proof (continued)

“⇐” Suppose that G has a 3-coloring with colors {0, 1, 2}. W.l.o.g., the
node a has the color 2. This induces a truth assignment T via the colors
of the nodes xi : if the color is 1, then T (xi) = true else T (xi) = false.
We claim that T is a legal NAESAT-assignment. Indeed, if in some
clause, all literals had the value false (resp. true), then we could not use
the color 0 (resp. 1) for coloring the triangle [li1, li2, li3], a contradiction.

“⇒” Suppose that there exists an NAESAT-assignment T of ϕ.
Then we can extract a 3-coloring for G from T as follows:

(i) Node a is colored with color 2.

(ii) If T (xi) = true, then color xi with 1 and ¬xi with 0 else vice versa.

(iii) From each [li1, li2, li3], color two literals having opposite truth values
with 0 (true) and 1 (false). Color the third with 2.

Reinhard Pichler 16 April, 2013 Page 29

Complexity Theory 5. NP-Completeness 5.7. HAMILTON-PATH, etc.

HAMILTON-PATH

INSTANCE: (directed or undirected) graph G = (V ,E)

QUESTION: Does G have a Hamilton path?
i.e., a path visiting all vertices of G exactly once.

HAMILTON-CYCLE

INSTANCE: (directed or undirected) graph G = (V ,E)

QUESTION: Does G have a Hamilton cycle?
i.e., a cycle visiting all vertices of G exactly once.

TSP(D)

INSTANCE: n cities 1, . . . , n and a nonnegative integer distance dij

between any two cities i and j (such that dij = dji), and an integer B.

QUESTION: Is there a tour through all cities of length at most B?
i.e., a permutation π s.t.

∑n
i=1 dπ(i)π(i+1) ≤ B with π(n + 1) = π(1).

Reinhard Pichler 16 April, 2013 Page 30

Complexity Theory 5. NP-Completeness 5.7. HAMILTON-PATH, etc.

Complexity

Theorem

HAMILTON-PATH, HAMILTON-CYCLE, and TSP(D) are
NP-complete.

Proof

We shall show the following chain of reductions:

HAMILTON-PATH ≤L HAMILTON-CYCLE ≤L TSP(D)

It suffices to show NP-membership for the hardest problem:
1. Guess a tour π through the n cities.
2. Check that

∑n
i=1 dπ(i)π(i+1) ≤ B with π(n + 1) = π(1).

Likewise, it suffices to prove the NP-hardness of the easiest problem.
The NP-hardness of HAMILTON-PATH (by a reduction from 3-SAT) is
quite involved and is therefore omitted here (see Papadimitriou’s book).

Reinhard Pichler 16 April, 2013 Page 31

Complexity Theory 5. NP-Completeness 5.7. HAMILTON-PATH, etc.

HAMILTON-PATH vs. HAMILTON-CYCLE

HAMILTON-PATH ≤L HAMILTON-CYCLE

(We only consider undirected graphs). Let an arbitrary instance of
HAMILTON-PATH be given by the graph G = (V ,E). We construct
an equivalent instance G ′ = (V ′,E ′) of HAMILTON-CYCLE as follows:

Let V ′ := V ∪ {z} for some new vertex z and E ′ := E ∪ {[v , z] | v ∈ V }.
G has a Hamilton path ⇔ G ′ has a Hamilton cycle

“⇒” Suppose that G has a Hamilton path π starting at vertex a and
ending at b. Then π ∪ {z} is clearly a Hamilton cycle in G ′.

“⇐” Let C be a Hamilton cycle in G ′. In particular, C goes through z .
Let a and b be the two neighboring nodes of z in this cycle. Then
C \ {z} is a Hamilton path (starting at vertex a and ending at b) in G .

Reinhard Pichler 16 April, 2013 Page 32

Complexity Theory 5. NP-Completeness 5.7. HAMILTON-PATH, etc.

HAMILTON-CYCLE vs. TSP(D)

HAMILTON-CYCLE ≤L TSP(D)

Let an arbitrary instance of HAMILTON-CYCLE be given by the graph
G = (V ,E). We construct an equivalent instance of TSP(D) as follows:

Let V = {1, . . . , n}. Then our instance of TSP(D) has n cities.
Moreover, for any two cities i 6= j , the distance is defined as

dij =

{
1 if [i , j] ∈ E
2 otherwise

Finally, we set B = n.

Clearly, there is no tour through all cities of length < B = n.
Moreover, the Hamilton cycles in G are precisely the tours of length B.
Hence, G has a Hamilton cycle ⇔ there exists a tour of length ≤ B.

Reinhard Pichler 16 April, 2013 Page 33

Complexity Theory 5. NP-Completeness 5.8. Summary

Summary of Reductions
SAT

4-SAT

1-in-3-SAT

MON 1-in-3-SAT

HITTING SET

3-SAT

INDEPENDENT SET

VERTEX COVER CLIQUE

CIRCUIT-SAT

NAESAT

HAM.-PATH

HAM.-CYCLE

TSP(D)

3-COL

Reinhard Pichler 16 April, 2013 Page 34

Complexity Theory 5. NP-Completeness 5.8. Summary

Learning Objectives

The concept of NP-completeness and its characterizations in terms
of succinct certificates.

You should now be familiar with the intuition of NP-completeness
(and recognize NP-complete problems)

Basic techniques to prove problems NP-complete

A basic repertoire of NP-complete problems (in particular, versions
of SAT and some graph problems) to be used in further
NP-completeness proofs.

Reductions, reductions, reductions, . . .

Reinhard Pichler 16 April, 2013 Page 35

