Advanced Analysis of Algorithms

K. Subramani, LCSEE, West Virginia University

October 22, 2013

1. Optimal binary search trees.

- (a) Let key_i have search probability p_i . Let c_i be the number of comparisons to find key_i . Then we want to minimize $\sum_{i=1}^{n} c_i \cdot p_i$.
- (b) The binary search tree problem. Give one simple two node example from book.
- (c) Brute-force running time.
- (d) Formulation of recurrence.
- (e) Running time and space complexities. Focus on $O(n^4)$.
- 2. Traveling Salesman problem.
 - (a) Input representation.
 - (b) Hamilton tour.
 - (c) Example from book, Figure 3.16.
 - (d) Brute-force.
 - (e) Define $D[v_i][A]$. Use book for some examples.
 - (f) The general recurrence is given by:

$$D[v_i][A] = \min_{j:v_j \in A} (W[i][j] + D[v_j][A - \{v_i, v_j\}, \text{ if } A \neq \emptyset$$
$$= W[i][1], \text{ if } A = \emptyset$$

- (g) The entry of interest if $A[v_1][\{v_2, v_3, \ldots, v_n\}].$
- (h) Copy salient parts of the algorithm from book.
- (i) Analysis.

(j)
$$T(n) = \sum_{k=1}^{n-2} (n-1-k) \cdot k \cdot \binom{n-1}{k}$$

(k) How to keep track of the optimal tour.