Advanced Analysis of Algorithms

K. Subramani, LCSEE, West Virginia University October 29, 2013

- 1. Dijkstra's algorithm from Cormen. Cover relaxation and all the associated properties.
- 2. First introduce d[v] and $\delta(v)$.
- 3. Go through the proof of Dijkstra and analysis.
- 4. The MST problem.
- 5. Why does Kruskal produce a spanning tree?
- 6. Prim's algorithm. Is a spanning tree produced? Is the MST produced? Analysis.
- 7. The cut rule and cycle rule.
- 8. Task scheduling to minimize number of machines. (s_i, f_i) . T_i and T_j are said to be non-conflicting if $f_j \leq s_i$ or $f_i \leq s_j$. Rule: Sort the jobs by order of start times. Find the first machine with no task conflicting with this task. If none exists, assign the task to a new machine.
- 9. Scheduling to minimize wait time on a single machine. Examples from book. Smallest job first.
- Scheduling with deadlines and profits. Go through most of the enalysis except the theorem that establishes optimality.