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yb+(A - ~)P = Yb+i.p-r~·l P 
< y' b + (A' + r~'l - ~')P - r~'lP 

since (y" ).." + fJ.l-"l - J.l.0 ) is feasi ble for the minimum in (5.3), and (y, i) is an 
optimum solution. We conclude that 

proving that (y.)., /.L) is an integral optimum solution fo r the minimum in (S .2). 
o 

The following statements are straightforward consequences of the definition 
of TDI-systems: A system Ax = b. x ~ 0 is TOI if min \yb : yA :: c} has an 
integral optimum solution y for each integral vector c for which the minimum is 
finite . A system Ax :5 b. x ~ 0 is TDI if min{yb : yA ~ c. Y ~ O} has an 
integral optimum solution y for each integral vector c for which the minimum is 
finite . One may ask whether there are matrices A such that Ax :5 b. x ~ 0 is 
TDI for each integral vector b. It will tum out thaI these matrices are exactly the 
totally unimodular matrices. 

5.4 Totally Unimodular Matrices 

Definition S.IS. A matrix A is totally unimodular if each sub<ieterminant of A 
is 0, + 1, or-I. 

In particular, each entry of a totaHy unimodular matrix must be 0, + 1, or - I. 
The main result of this section is: 

Theorem S.19. (Hoffman and Kruskal {1956]) An integral matrix A is totally 
unimodular ifand only if the polyhedron {x : Ax :5 b, .f ::: O} is integral for each 
integral vector b. 

Proof: Let A be an m x n·matnx and P := Ix : Ax ~ b. x :: OJ. Observe that 
the minimal faces of P are vertices. 

To prove necessity. suppose that A is totally unimodular. Let b be some integral 
vector and x a vertex of P. x is the solution of A'x = b' for some subsystem 

A'x :5 b' of ( ~I ) x < ( ~ ) . with A' being a nonsingular n x n·matnx. 

Since A is totally unimodular, I del A'l = I . so by Cramer's rule x = (A') - lb' is 
integral. 

We now prove sufficiency. Suppose that the vertices of P are integral for each 
integral vector b. Let A' be some nonsingular k x k·submatrix of A. We have 
to show I del A'l = I . W.l.o.g., A' contains the elements of the first k rows and 
columns of A. 
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Fig. 5.2. 

Consider the integral m x m-matrix 8 consisting of the first k and the last 
m - k. columns of ( A I ) (see Figure 5.2). Obviously, I del BI = I del A'I. 

To prove I del 8 1 = I, We shall prove that B- 1 is integral . Since det B del S-I 
= I, this implies that I del BI = I, and we are done. 

Let; E {I .. .. , m); we prove that B-I c; is integral. Choose an integral vector 
y such that z := y + a -l ei ::: O. Then b := Hz = By + Cj is integral. We add 
zero components to i in order to obtain z' with 

(A I lz' ~ Bz ~ b. 

Now Z" , consisting of the first n components of z', belongs to P . Furthermore, 
n linearly independent constraints are satisfied with equality, namely the first k 

and the last n - k inequalities of ( ~ 1 ) z" ~ O. Hence 'l." is a vertex of P. 

By our assumption zIT is integral. But then z' must also be integral: its first n 

components are the components of z", and the last m components are the slack 
variables b - Az" (and A and b are integral). So z is also integral, and hence 
B-1e; = z - y ' is integral. 0 

The above proof is due to Veinott and Dantzig [1968). 

Corollary 5.20, An integral matrix A is totally unimodular if and only if for all 
integral vectors band c both optima in the LP duality equation 

max {cx : Ax :5 b, x ~ OJ = min {yb : y ~ 0, y A ~ c\ 

are a/rained by integral vectors (if they are fini te). 

Proof: This follows from 
that the transpose of a Iota 

Let us rcfonnulatc tbes 

Corollary 5.21. An integ,. 
system Ax :5 b, x ::: 0 is 1 

Proof: If A (and thus Al 
Theorem min {yb : yA ::: 
vector b and each integral 
words, the system Ax :5 h, 

To show the converse, ! 
b. Then by Corollary 5.14, 
each integral vector b. By . 

This is not the only WI 

a certain system is TOl 11 
this will be used several tin 

Lemma 5.22. Let Ax .::s b 
bE RM. Suppose that for eI. 

optimum solution, it has on. 
components of y. form a tOl 

Proof: Let c E Z~, and let 
OJ sllcn that the rows of A 
totally unimodular matrix A 

min{yb ; y A ~ 

where 17' consists of the con 
the inequality ":5" of (S.4). 
the LP on the left-hand side 
follows from the fact that ) 
the LP on the right-hand sill 

Since A' is totally unim 
optimum solution (by the He 
with zeros we obtain an inti 
completing the proof. 

A very useful criterion f 

Theorem S.23. (Ghouila-H 

unimodular if and only if fm 
R2 such that 


