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since (y*, A* + [u*] — u*) is feasible for the minimum in (5.3), and (J, ) is an
optimum solution. We conclude that

yb+(h—=w)f < yb+ (A" —u")p,

proving that (y, A, i) is an integral optimum solution for the minimum in (5.2).
(m]

The following statements are straightforward consequences of the definition
of TDI-systems: A system Ax = b, x > 0 is TDI if min{yb : yA > c} has an
integral optimum solution y for each integral vector ¢ for which the minimum is
finite. A system Ax < b, x > 0 is TDI if min{yb : yA > ¢, y > 0} has an
integral optimum solution y for each integral vector ¢ for which the minimum is
finite. One may ask whether there are matrices A such that Ax < b, x > 0 is

TDI for each integral vector b. It will turn out that these matrices are exactly the
totally unimodular matrices.

5.4 Totally Unimodular Matrices

Definition 5.18. A4 matrix A is totally unimodular if each subdeterminant of A
is 0, +1, or —1.

In particular, each entry of a totally unimodular matrix must be 0, 41, or —1,
The main result of this section is:

Theorem 5.19. (Hoffman and Kruskal [1956]) An integral matrix A is totally

unimodular if and only if the polyhedron {x : Ax < b, x = 0} is integral for each
integral vector b,

Proof: Let A be an m x n-matrix and P := (x : Ax < b, x > 0}. Observe that
the minimal faces of P are vertices.

To prove necessity, suppose that A is totally unimodular. Let b be some integral
vector and x a vertex of P. x is the solution of A'x = b’ for some subsystem

A b
A'x < b of ( J )x < ( 5 ), with A’ being a nonsingular n x n-matrix.
Since A is totally unimodular, | det A’| = 1, so by Cramer's rule x = (A')7'¥ is

integral.
We now prove sufficiency. Suppose that the vertices of P are integral for each
integral vector b. Let A’ be some nonsingular k x k-submatrix of A, We have

to show |det A'| = 1. W.l.o.g., A’ contains the elements of the first k rows and
columns of A
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Fig. 5.2.

Consider the integral m x m-matrix B consisting of the first X and the last
m — k columns of ( A [ ) (see Figure 5.2). Obviously, |det B| = | det A"|.

To prove | det B| = 1, We shall prove that B~ is integral. Since det B det B~
= |, this implies that |det B| = 1, and we are done.

Leti € {1,..., m}; we prove that B~'¢; is integral. Choose an integral vector
y such that z := y+ B~'¢; > 0. Then b := Bz = By + ¢; is integral. We add
zero components to z in order to obtain z’ with

(A 1) = Bz =b

1

Now z”, consisting of the first n components of z', belongs to P. Furthermore,
n linearly independent constraints are satisfied with equality, namely the first k

7" < 0. Hence z" is a vertex of P.

and the last n — k inequalities of (

By our assumption z” is integral. But then z’ must also be integral: its first n
components are the components of z”, and the last m components are the slack
variables b — Az" (and A and b are integral). So z is also integral, and hence
B~'e; =z — y is integral. o

The above proof is due to Veinott and Dantzig [1968].

Corollary 5.20. An integral matrix A is totally unimodular if and only if for all
integral vectors b and ¢ both optima in the LP duality equation

max{cx:Ax <b, x>0} = min{yb:y >0, yA > ¢}

are attained by integral vectors (if they are finite).
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