Combinatorial Optimization

K. Subramani, LCSEE, West Virginia University

January 23, 2013

- 1. Given a convex set $S \subseteq \mathbb{R}^n$, convex function, concave function. $f(\lambda \cdot x_1 + (1 - \lambda) \cdot x_2) \leq \lambda \cdot f(x_1) + (1 - \lambda) \cdot f(x_2), x_1, x_2 \in S$ and $0 \leq \lambda \leq 1$. Linear function is both convex and concave. Advantages of concave minimization and convex minimization.
- 2. Size of a number, vector and matrix.
- 3. The classes \mathbf{P} and \mathbf{NP} .
- 4. Polytope A polytope is conv(X) for some set $X \subset \Re^n$.
- 5. Determinant of a square matrix. Singularity.
- 6. Matrix-vector multiplication new form.
- 7. Rank of a matrix. $r(A) \leq \min(m, n)$.
- 8. Inverse of a square matrix.
- 9. System of simultaneous linear equations: $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$. Meaning.
- 10. No solutions, unique solution, infinite number of solutions.
- 11. Gaussian elimination. Elementary row operations. Elementary matrices.
- 12. Infeasibility in linear systems of equalities (certificates).