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Carathéodory’s theorem

The following theorem states that a polyhedral cone can be generated by a set of

basic directional vectors.

Theorem 1 Given matrix A ∈ Rm×n where n > m, let convex polyhedral cone

C = {Ax : x ≥ 0}. For any b ∈ C ,

b =
d∑

i=1

ajixji , xji ≥ 0, ∀i

for some linearly independent vectors aj1 ,...,ajd chosen from a1,...,an.
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Basic and Basic Feasible Solution I

Consider the polyhedron set {x : Ax = b, x ≥ 0} where A is a m× n

matrix with n ≥ m and full row rank, select m linearly independent columns,

denoted by the variable index set B, from A. Solve

ABxB = b

for the m-dimension vector xB . By setting the variables, xN , of x

corresponding to the remaining columns of A equal to zero, we obtain a solution

x such that Ax = b. (Here, index set N represents the indices of the remaining

columns of A.)

Then, x is said to be a basic solution to with respect to the basic variable set B.

The variables of xB are called basic variables, those of xN are called nonbasic

variables, and AB is called basis.

If a basic solution xB ≥ 0, then x is called a basic feasible solution, or BFS.

BFS is an extreme or corner point of the polyhedron.
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Basic and Basic Feasible Solution II

Consider the polyhedron set {y : ATy ≤ c} where A is a m× n matrix with

n ≥ m and full row rank, select m linearly independent columns, denoted by the

variable index set B, from A. Solve

AT
By = cB

for the m-dimension vector y.

Then, y is called a basic solution to with respect to the basis AB in polyhedron

set {y : ATy ≤ c}.

If a basic solution AT
Ny ≤ cN , then y is called a basic feasible solution, or BFS

of {y : ATy ≤ c}, where index set N represents the indices of the remaining

columns of A. BFS is an extreme or corner point of the polyhedron.
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Separating hyperplane theorem

The most important theorem about the convex set is the following separating

hyperplane theorem (Figure 1).

Theorem 2 (Separating hyperplane theorem) Let C ⊂ E , where E is either Rn

or Mn, be a closed convex set and let b be a point exterior to C . Then there is a

vector a ∈ E such that

a • b > sup
x∈C

a • x

where a is the norm direction of the hyperplane.
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C

-ab

Figure 1: Illustration of the separating hyperplane theorem; an exterior point b is

separated by a hyperplane from a convex set C .
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Examples

Let C be a unit circle centered at point (1; 1). That is,

C = {x ∈ R2 : (x1 − 1)2 + (x2 − 1)2 ≤ 1}. If b = (2; 0), a = (−1; 1) is

a separating hyperplane vector.

If b = (0;−1), a = (0; 1) is a separating hyperplane vector. It is worth noting

that these separating hyperplanes are not unique.
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Farkas’ Lemma

Theorem 3 Let A ∈ Rm×n and b ∈ Rm. Then, the system

{x : Ax = b, x ≥ 0} has a feasible solution x if and only if that

{y : ATy ≤ 0, bTy > 0 has no feasible solution.

A vector y, with ATy ≤ 0 and bTy > 0, is called a infeasibility certificate for

the system {x : Ax = b, x ≥ 0}.

Example

Let A = (1, 1) and b = −1. Then, y = −1 is an infeasibility certificate for

{x : Ax = b, x ≥ 0}.
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Alternative Systems

Farkas’ lemma is also called the alternative theorem, that is, exactly one of the

two systems:

{x : Ax = b, x ≥ 0}
and

{y : ATy ≤ 0, bTy > 0},
is feasible.
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Geometric interpretation

Geometrically, Farkas’ lemma means that if a vector b ∈ Rm does not belong to

the cone generated by a.1, ..., a.n, then there is a hyperplane separating b from

cone(a.1, ..., a.n), that is,

b �∈ {Ax : x ≥ 0}.
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Proof

Let {x : Ax = b, x ≥ 0} have a feasible solution, say x̄. Then,

{y : ATy ≤ 0, bTy > 0} is infeasible, since otherwise,

0 < bTy = (Ax)Ty = xT (ATy) ≤ 0

since x ≥ 0 and ATy ≤ 0.

Now let {x : Ax = b, x ≥ 0} have no feasible solution, that is,

b �∈ C := {Ax : x ≥ 0}. Since C is a closed convex set (?), by the

separating hyperplane theorem, there is y such that

y • b > sup
c∈C

y • c
or

y • b > sup
x≥0

y • (Ax) = sup
x≥0

ATy • x. (1)

Since 0 ∈ C we have y • b > 0.
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Furthermore, ATy ≤ 0. Since otherwise, say (ATy)1 > 0, one can have a

vector x̄ ≥ 0 such that x̄1 = α > 0, x̄2 = ... = x̄n = 0, from which

sup
x≥0

ATy • x ≥ ATy • x̄ = (ATy)1 · α

and it tends to ∞ as α → ∞. This is a contradiction because

supx≥0 A
Ty • x is bounded from above by (1).
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Farkas’ Lemma variant

Theorem 4 Let A ∈ Rm×n and c ∈ Rn. Then, the system {y : ATy ≤ c}
has a solution y if and only if that Ax = 0, x ≥ 0, cTx < 0 has no feasible

solution x.

Again, a vector x ≥ 0, with Ax = 0 and cTx < 0, is called a infeasibility

certificate for the system {y : ATy ≤ c}.

example

Let A = (1;−1) and c = (1;−2). Then, x = (1; 1) is an infeasibility

certificate for {y : AT y ≤ c}.
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Linear Programming and its Dual

Consider the linear program in standard form, called the primal problem,

(LP ) minimize cTx

subject to Ax = b, x ≥ 0,

where x ∈ Rn.

The dual problem can be written as:

(LD) maximize bTy

subject to ATy + s = c, s ≥ 0,

where y ∈ Rm and s ∈ Rn. The components of s are called dual slacks.
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Rules to construct the dual

obj. coef. vector right-hand-side

right-hand-side obj. coef. vector

A AT

Max model Min model

xj ≥ 0 jth constraint ≥
xj ≤ 0 jth constraint ≤
xj free jth constraint =

ith constraint ≤ yi ≥ 0

ith constraint ≥ yi ≤ 0

ith constraint = yi free
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Primal :

maximize x1 +2x2

subject to x1 ≤ 1

x2 ≤ 1

x1 +x2 ≤ 1.5

x1, x2 ≥ 0.

Dual :

minimize y1 +y2 +1.5y3

subject to y1 +y3 ≥ 1

y2 +y3 ≥ 2

y1, y2, y3 ≥ 0.
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LP Duality Theories

Theorem 5 (Weak duality theorem) Let feasible regions Fp and Fd be

non-empty. Then,

cTx ≥ bTy where x ∈ Fp, (y, s) ∈ Fd.

cTx− bTy = cTx− (Ax)Ty = xT (c− ATy) = xT s ≥ 0.

This theorem shows that a feasible solution to either problem yields a bound on

the value of the other problem. We call cTx− bTy the duality gap.

From this we have important results in the following.



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #03 18

Theorem 6 (Strong duality theorem) Let Fp and Fd be non-empty. Then, x∗ is

optimal for (LP) if and only if the following conditions hold:

i) x∗ ∈ Fp;

ii) there is (y∗, s∗) ∈ Fd;

iii) cTx∗ = bTy∗.

Given Fp and Fd being non-empty, we like to prove that there is x∗ ∈ Fp and

(y∗, s∗) ∈ Fd such that cTx∗ ≤ bTy∗, or to prove that

Ax = b, ATy ≤ c, cTx− bTy ≤ 0, x ≥ 0

is feasible.
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Proof of Strong Duality Theorem

Suppose not, from Farkas’ lemma, we must have an infeasibility certificate

(x′, τ,y′) such that

Ax′ − bτ = 0, ATy′ − cτ ≤ 0, (x′; τ) ≥ 0

and

bTy′ − cTx′ = 1

If τ > 0, then we have

0 ≥ (−y′)T (Ax′ − bτ) + x′T (ATy′ − cτ) = τ(bTy′ − cTx′) = τ

which is a contradiction.

If τ = 0, then the weak duality theorem also leads to a contradiction.
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Theorem 7 (LP duality theorem) If (LP) and (LD) both have feasible solutions

then both problems have optimal solutions and the optimal objective values of the

objective functions are equal.

If one of (LP) or (LD) has no feasible solution, then the other is either unbounded

or has no feasible solution. If one of (LP) or (LD) is unbounded then the other has

no feasible solution.

The above theorems show that if a pair of feasible solutions can be found to the

primal and dual problems with equal objective values, then these are both

optimal. The converse is also true; there is no “gap.”



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #03 21

Optimality Conditions

⎧⎪⎪⎨
⎪⎪⎩
(x,y, s) ∈ (Rn

+,Rm,Rn
+) :

cTx− bTy = 0

Ax = b

−ATy − s = −c

⎫⎪⎪⎬
⎪⎪⎭

,

which is a system of linear inequalities and equations. Now it is easy to verify

whether or not a pair (x,y, s) is optimal.
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For feasible x and (y, s), xT s = xT (c−ATy) = cTx− bTy is called the

complementarity gap.

Since both x and s are nonnegative, xT s = 0 implies that xjsj = 0 for all

j = 1, . . . , n, where we say x and s are complementary to each other.

Xs = 0

Ax = b

−ATy − s = −c,

where X is the diagonal matrix of vector x.

This system has total 2n+m unknowns and 2n+m equations including n

nonlinear equations.
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Theorem 8 (Strict complementarity theorem) If (LP) and (LD) both have feasible

solutions then both problems have a pair of strictly complementary solutions

x∗ ≥ 0 and s∗ ≥ 0 meaning

X∗s∗ = 0 and x∗ + s∗ > 0.

Moreover, the supports

P ∗ = {j : x∗
j > 0} and Z∗ = {j : s∗j > 0}

are invariant for all pairs of strictly complementary solutions.

Given (LP) or (LD), the pair of P ∗ and Z∗ is called the (strict) complementarity

partition. {x : AP ∗xP ∗ = b, xP ∗ ≥ 0, xZ∗ = 0} is called the primal optimal

face, and {y : cZ∗ −AT
Z∗y ≥ 0, cP ∗ −AT

P ∗y = 0} is called the dual

optimal face.
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An Example

Consider the primal problem:

minimize x1 +x2 +1.5 · x3

subject to x1 + x3 = 1

x2 + x3 = 1

x1, x2, x3 ≥ 0;
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The dual problem is

maximize y1 +y2

subject to y1 +s1 = 1

y2 +s2 = 1

y1 +y2 +s3 = 1.5

s ≥ 0.

P ∗ = {3} and Z∗ = {1, 2}



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #03 26

Sketch of Proof of Strict Complementarity Theorem

Let z∗ be the optimal objective value of LP and LD in the standard form. For any

j, consider the problem

LP (j) minimize −xj

subject to Ax = b, cTx ≤ z∗, x ≥ 0.

Clearly, any feasible solution of LP (j) is an optimal solution of LP. If LP (j) has

a feasible solution with strictly negative objective value, we denote the solution by

x̄j (that is, x̄j is an optimal solution for LP with x̄j
j > 0). Otherwise, the minimal

value of LP (j) must be zero.

Now consider the dual of LP (j)

LD(j) maximize bTy − z∗τ

subject to ATy − cτ ≤ −ej , τ ≥ 0,
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where ej is the vector all zeros except one 1 at its jth position. Any optimal

solution, (ȳ, τ̄), for LD(j) must have zero objective value:

bT ȳ − z∗τ̄ = 0.

Either τ̄ = 0 (which case gives a homogeneous dual solution), or τ̄ > 0 (which

case gives an optimal dual solution by scaling), one can proceed to construct an

optimal solution (ȳj , s̄j) for LD with s̄jj > 0.

Take the average of x̄j and (ȳj, s̄j), respectively. Then, this pair will be a strictly

complementary solution pair for LP and LD.


