# Propositional Logic - Basics

K. Subramani<sup>1</sup>

<sup>1</sup> Lane Department of Computer Science and Electrical Engineering West Virginia University

14 January and 16 January, 2013



| Why Logic? |  |  |  |
|------------|--|--|--|
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |

# Why Logic?

(i) The Law!

# Why Logic?

- (i) The Law!
- (ii) Mathematics.

# Why Logic?

- (i) The Law!
- (ii) Mathematics.

# Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

# Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

#### Definition

Statement (or Atomic Proposition) -

### Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

#### Definition

Statement (or Atomic Proposition) - A sentence that is either **true** or **false**.

#### Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

#### Definition

Statement (or Atomic Proposition) - A sentence that is either **true** or **false**.

#### Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

#### Definition

Statement (or Atomic Proposition) - A sentence that is either true or false.

#### Example

(i) The board is black.

### Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

#### Definition

Statement (or Atomic Proposition) - A sentence that is either **true** or **false**.

- (i) The board is black.
- (ii) Are you John?

#### Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

#### Definition

Statement (or Atomic Proposition) - A sentence that is either **true** or **false**.

- (i) The board is black.
- (ii) Are you John?
- (iii) The moon is made of green cheese.

### Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

#### Definition

Statement (or Atomic Proposition) - A sentence that is either **true** or **false**.

- (i) The board is black.
- (ii) Are you John?
- (iii) The moon is made of green cheese.
- (iv) This statement is false.

#### Why Logic?

- (i) The Law!
- (ii) Mathematics.
- (iii) Computer Science.

#### Definition

Statement (or Atomic Proposition) - A sentence that is either **true** or **false**.

- (i) The board is black.
- (ii) Are you John?
- (iii) The moon is made of green cheese.
- (iv) This statement is false. (Paradox).



Motivation

# Motivation

To make compound statements from simple ones.

#### Motivation

To make compound statements from simple ones. Basic Connectives are **conjunction** (AND) ( $\land$ ), **disjunction** (OR) ( $\lor$ ), **Negation** (NOT) ('), **implication** (IF) ( $\rightarrow$ ) and **Equivalence** (IF AND ONLY IF) ( $\leftrightarrow$ ).

#### Motivation

To make compound statements from simple ones. Basic Connectives are **conjunction** (AND) ( $\land$ ), **disjunction** (OR) ( $\lor$ ), **Negation** (NOT) ('), **implication** (IF) ( $\rightarrow$ ) and **Equivalence** (IF AND ONLY IF) ( $\leftrightarrow$ ). Two special symbols in propositional logic:

#### Motivation

To make compound statements from simple ones. Basic Connectives are **conjunction** (AND) ( $\land$ ), **disjunction** (OR) ( $\lor$ ), **Negation** (NOT) ('), **implication** (IF) ( $\rightarrow$ ) and **Equivalence** (IF AND ONLY IF) ( $\leftrightarrow$ ). Two special symbols in propositional logic:  $\top$  for **true** and  $\bot$  for **false**.

# Semantics |

| Definition |  |  |
|------------|--|--|
|            |  |  |
|            |  |  |
|            |  |  |

# Definition

A propositional formula has a syntax and a semantics.

#### Definition

A propositional formula has a syntax and a semantics. Semantics refers to the meaning of a formula.

#### Definition

A propositional formula has a syntax and a semantics. Semantics refers to the meaning of a formula. Meaning is given by the truth values true and talse, where  $true \neq talse$ .

#### Definition

A propositional formula has a syntax and a semantics. Semantics refers to the meaning of a formula. Meaning is given by the truth values **true** and **false**, where **true**  $\neq$  **false**. An interpretation *I* assigns to every propositional variable, a single truth value.

#### Definition

A propositional formula has a syntax and a semantics. Semantics refers to the meaning of a formula. Meaning is given by the truth values **true** and **false**, where **true**  $\neq$  **false**. An interpretation *I* assigns to every propositional variable, a single truth value.

$$I: \{P \rightarrow \mathsf{true}, \ Q \rightarrow \mathsf{false}, \ldots\}.$$

# Conjunction

# Semantics of Conjunction

| Α | В | $A \wedge B$ |
|---|---|--------------|
| Т | Т | Т            |
| Т | F | F            |
| F | Т | F            |
| F | F | F            |

# Disjunction

# Semantics of Disjunction

| Α | B | $A \vee B$ |
|---|---|------------|
| Т | Т | Т          |
| Т | F | T          |
| F | Т | Т          |
| F | F | F          |
|   |   |            |

# Negation



# Implication

# Semantics of Implication

| В | $A \rightarrow B$ |
|---|-------------------|
| Т | Т                 |
| F | F                 |
| Т | Т                 |
| F | Т                 |
|   | T<br>F<br>T       |

# Implication

#### Semantics of Implication

| Α | В | $A \rightarrow B$ |
|---|---|-------------------|
| Т | Т | Т                 |
| Т | F | F                 |
| F | Т | T                 |
| F | F | Т                 |

#### Note

Note that  $A \to B$  is the same as  $A' \lor B$ . A is called the antecedent and B is the consequent of the implication.

# Equivalence



# Equivalence

# Semantics of Equivalence

| Α | В | $A \leftrightarrow B$ |
|---|---|-----------------------|
| Т | Т | T                     |
| Т | F | F                     |
| F | Т | F                     |
| F | F | Т                     |
|   |   |                       |

#### Note

Note that A  $\leftrightarrow$  B is the same as  $(A \to B) \land (B \to A)$ .