Dynamic Programming for Number Problems

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
ksmani@csee.wvu.edu

1 Introduction

Dynamic Programming is a general technique to systematically compute solutions to problems, which are characterized by a large number of decision variables. The following issues are key in dynamic programming:

- 1. Existence of decision variables Typically, there are n binary (0/1) decision variables;
- 2. Existence of a "State" The state of the system at a particular point in time is characterized by the decisions taken on the decision variables at that time and the subsequent change in problem parameters;
- 3. Existence of optimal sub-structure Let us say that decisions on some variables $x_1, x_2, \ldots x_i$ have been made to reach the current state A. As a result the original problem is transformed into a new problem with changes in its parameters. The optimal sub-structure property states that the rest of the decisions i.e. decisions on the the variables x_{i+1}, \ldots, x_n still have to constitute an optimal decision with respect to the new problem.

We now observe these features in 2 problems that are commonly tackled through Dynamic Programming. Section §2 discusses the *Partitioning* problem, while Section §3 discusses the 0/1 *Knapsack* problem.

2 Partitioning

Partitioning is concerned with splitting a set into 2 parts with equal sums. In general, the addition operator, can be replaced by any other group operator.

2.1 Statement of Problem

Given a set $A = \{a_1, a_2, \dots, a_n\}$, such that $a_1 \geq 0$, is there a subset $S \subseteq A$, such that

$$\sum_{a \in S} a = \sum_{a \in A - S} a$$

Observe that if $\sum_{i=1}^{n} a_i = M$ is an odd number the answer is immediately "no", since an odd number cannot be broken into two integral parts. In fact, the sum of the elements in the two subsets S and A - S must equal $\frac{M}{2}$.

2.2 Casting as a Dynamic Program

Associate a decision variable x_i with each a_i , where

$$x_i = 1, if a_i \in S$$

= 0, if $a_i \notin S$

Thus, a sequence of decisions have to be made on variables x_1 through x_n . The state of the system is characterized by $\frac{M}{2} - \sum_{a \in S} a$ i.e. the space available for moving new numbers into S.

We define m[i, j] to be **T** (true), if some subset of the elements in $\{a_1, a_2, \ldots, a_i\}$ has elements that add up to j. In this notation, $m[n, \frac{M}{2}]$ is the answer to our question, i.e. the answer to the input problem is "yes" if and only if $m[n, \frac{M}{2}]$ is **T**.

The key observation is that m[i,j] can be true if and only if one of the following holds:

- m[i-1, j] is **T**. Clearly if there is a subset of the first i-1 elements that sums to j, the same subset can be used as the subset of the first i elements that sums to j. This corresponds to the case of assigning $x_i = 0$;
- $m[i-1, j-a_i]$ is **T**. If a_i is to be included in the subset of $\{a_1, a_2, \ldots, a_i\}$ that sums to j, then there must exist some subset of the first i-1 elements that sums to $j-a_i$. This corresponds to the case of assigning $x_i = 1$.

Proceeding this way, we can build a table $m[1..n, 0..\frac{M}{2}]$ and check whether $m[n, \frac{M}{2}]$ is T.

3 0/1 Knapsack

3.1 Statement of Problem

Given a set of objects $O = \{o_1, o_2, \ldots, o_n\}$, with associated profits $\{p_1, p_2, \ldots, p_n\}$ and weights $\{w_1, w_2, \ldots, w_n\}$ and a knapsack of capacity M, decide which objects are to be placed in the knapsack, so as to maximize the profit, while respecting the capacity constraint.

3.2 Casting as a Dynamic Program

We associate a decision variable x_i with object o_i , such that

$$x_i = 1$$
, if object o_i is in the knapsack $= 0$, otherwise.

Once again a sequence of decisions have to be made on the variables. Observe that if $x_1 = 0$, then the new subproblem is characterized by the set $\{o_2, o_3, \ldots, o_n\}, M, 0$ while if $x_i = 1$, the new sub-problem is $\{o_2, o_3, \ldots, o_n\}, M, p_1$ i.e. the profit has increased by p_1 , while the available space has decreased by $M - p_1$.

Once again, we define m[i,j] to be the maximum profit that can be realized by packing some subset of the first i objects, into a knapsack of capacity M. Using this notation, clearly the entry m[n, M] is what we seek. The crucial observation is that

$$m[i,j] = \max\{m[i-1,j], m[i-1,j-w_i] + p_i\}$$

The point is that if the decision on o_i is to exclude it, then we solve a sub-problem m[i-1,j]; if we choose to include it, then our profit increases by p_i , but now the available capacity has decreased by w_i .

Proceeding thus, we build the table m[1..n, 0..M] and output m[n, M].

4 Conclusion

Also read the solution to Quiz II.