Dynamic Programming for Number Problems

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV

ksmani@csee.wvu.edu

1 Introduction

Dynamic Programming is a general technique to systematically compute solutions to problems, which are char-
acterized by a large number of decision variables. The following issues are key in dynamic programming:

1. Existence of decision variables - Typically, there are n binary (0/1) decision variabes;

2. Existence of a “State” - The state of the system at a particular point in time is characterized by the decisions
taken on the decision variables at that time and the subsequent change in problem parameters;

3. Existence of optimal sub-structure - Let us say that decisions on some variables z1, zg,...z; have been
made to reach the current state A. As a result the original problem is transformed into a new problem
with changes in its parameters. The optimal sub-structure property states that the rest of the decisions i.e.
decisions on the the variables z;11,..., 2z, still have to constitute an optimal decision with respect to the
new problem.

We now observe these features in 2 problems that are commonly tackled through Dynamic Programming.
Section §2 discusses the Partitioning problem, while Section §3 discusses the 0/1 Knapsack problem.

2 Partitioning

Partitioning is concerned with splitting a set into 2 parts with equal sums. In general, the addition operator, can
be replaced by any other group operator.

2.1 Statement of Problem
Given a set A = {aq,az,...,a,}, such that a; > 0, is there a subset S C A, such that
Sa- 3
a€S acA-S
Observe that if E?:l a; = M is an odd number the answer is immediately “no”, since an odd number cannot

be broken into two integral parts. In fact, the sum of the elements in the two subsets S and A — S must equal %

2.2 Casting as a Dynamic Program
Associate a decision variable x; with each a;, where

r = 1, if a; €8
= 0, Zf aigS

Thus, a sequence of decisions have to be made on variables z; through z,,. The state of the system is characterized
by % — ZaES a i.e. the space available for moving new numbers into S.

We define m[i, j] to be T (true), if some subset of the elements in {a1,a3...,a;} has elements that add up
to j. In this notation, m[n, %] is the answer to our question, i.e. the answer to the input problem is “yes” if and
only if m[n, 2] is T.

The key observation is that m[i, j] can be true if and only if one of the following holds:

e m[i—1,j]is T. Clearly if there is a subset of the first i — 1 elements that sums to j, the same subset can be
used as the subset of the first 7 elements that sums to j. This corresponds to the case of assigning z; = 0;

e ml[i— 1,7 —a;]is T. If a; is to be included in the subset of {a1,as,...,a;} that sums to j, then there must
exist some subset of the first ¢ — 1 elements that sums to j — a;. This corresponds to the case of assigning
Ty — 1.

Proceeding this way, we can build a table m[1..n, 0..2f] and check whether m[n, %] is T.

3 0/1 Knapsack

3.1 Statement of Problem

Given a set of objects O = {01, 02, ...,0,}, with associated profits {p1,pa,...,pn} and weights {wq, wa,..., w,}
and a knapsack of capacity M, decide which objects are to be placed in the knapsack, so as to maximize the
profit, while respecting the capacity constraint.

3.2 Casting as a Dynamic Program

We associate a decision variable z; with object o;, such that

x; = 1, if object o; is in the knapsack

= 0, otherwise.

Once again a sequence of decisions have to be made on the variables. Observe that if z; = 0, then the
new subproblem is characterized by the set {o02,03,...,0,}, M,0 while if z; = 1, the new sub-problem is
{02,03,...,0,}, M, pq i.e. the profit has increased by py, while the available space has decreased by M — py.

Once again, we define m[i, j| to be the maximum profit that can be realized by packing some subset of the
first i objects, into a knapsack of capacity M. Using this notation, clearly the entry m[n, M] is what we seek.
The crucial observation is that

m[laj] = max{m[i - 17j]7 m[z -1,5- wl] +pl}
The point is that if the decision on o; is to exclude it, then we solve a sub-problem m[i — 1, j]; if we choose to
include it, then our profit increases by p;, but now the available capacity has decreased by w;.
Proceeding thus, we build the table m[l..n,0..M] and output m[n, M].
4 Conclusion

Also read the solution to Quiz II.

