Final - Due Tuesday 12/12/2000

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
ksmani@csee.wvu.edu

1 Asymptotic Notation

- 1. Is n = O(0.2831n)? (5 pts.)
- 2. What is the asymptotic relationship between n^2 and $n \cdot \log^5 n$? (5 pts.)

2 Divide and Conquer

1. Let A[1...n] be an array of n distinct numbers. A pair (i,j) is called an inversion pair if i < j and A[i] > A[j]. For example, the array A = [2,3,8,6,1] has 5 inversion pairs, viz. (1,5) (since A[1] = 2 > A[5] = 1), (2,5), (3,4), (3,5) and (4,5). Design a Divide and Conquer algorithm that determines the number of inversion pairs in an array of size n. Provide an analysis of the running time. (20 pts.)

3 Greedy

- 1. Consider the problem of making change for n cents using the least number of coins.
 - (a) Describe a greedy procedure to make change consisting of quarters, dimes, nickels and pennies. Prove that your algorithm is correct. (15 pts.)
 - (b) Give a set of coin denominations for which the greedy strategy fails (10 pts.)

4 Dynamic Programming

1. Assume that n programs are to be stored on two tapes T_1 and T_2 . Let l_i be the length of tape needed to store the i^{th} program. Assume that $\sum_{i=1}^n l_i \leq L$, where L is the length of each tape. A program may be stored on on either T_1 or T_2 . If S_1 is the set of programs on T_1 , then the worst-case access time for a program is proportional to $\max\{\sum_{i\in S_1} l_i, \sum_{i\notin S_1} l_i\}$. Formulate a dynamic programming algorithm to determine the worst case access time of an optimal assignment. Analyze the running time of your algorithm. (25 pts.)

5 Graph Algorithms

1. In class, we studied two algorithms for the All-Pairs shortest path problem. In both cases, we assumed that a negative weight cycle did not exists in the graph. Modify either algorithm to provide a test to detect negative weight cycles. (Note: Do not use Bellman-Ford; it works only for single-source shortest paths.) (20 pts.)