Quiz II – Solution

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
ksmani@csee.wvu.edu

1 Solution

Let us associate the decision variable x_i with job J_i , where

$$x_i = 1$$
, if J_i is processed by $A = 0$, otherwise.

The state of the system is characterized by the decisions on the current variables and the current times spent on machine A and machine B.

We define m[i, j, k] to be the minimum time taken to distribute jobs J_1, J_2, \ldots, J_i assuming that we have at most time j to expend on machine A and at most time k to expend on machine B. Using this notation, we are interested in the value of m[n, M, W], where

$$M = \sum_{i=1}^{n} a_i$$
$$W = \sum_{i=1}^{n} b_i$$

We further define c[i, j, k] to be the time taken on machine A to realize m[i, j, k] and likewise d[i, j, k] to be the corresponding time taken on machine B. Clearly, $m[i, j, k] = \max\{c[i, j, k], d[i, j, k]\}$.

There are only two cases to consider for the decision on variable x_i .

- 1. $x_i = 1$ This means that J_i has been thrown to A. Hence, $c[i, j, k] = c[i, j a_i, k] + a_i$ and $d[i, j, k] = d[i, j a_i, k]$. The corresponding cost is denoted by m_a ; hence $m_a = \max\{c[i, j a_i, k] + a_i, d[i, j a_i, k]\}$.
- 2. $x_i = 0$ This means that J_i has been thrown to B. Hence, $c[i, j, k] = c[i, j, k b_i]$ and $d[i, j, k] = d[i, j, k b_i] + b_i$. The corresponding cost is denoted by m_b ; hence $m_b = \max\{c[i, j, k b_i], d[i, j, k b_i] + b_i\}$.

Finally, we can formulate the recurrence for m[i, j, k] as follows:

$$m[i, j, k] = \min\{m_a, m_b\}$$

Remark: 1.1 At least one of the arrays m, c, d, x can be eliminated!

Remark: 1.2 Convert the discussion above into a proper algorithm, implementable on a computer. The initialization steps are crucial! (5 points)