
Minimum Spanning Trees

Yan Liu
LDCSEE

West Virginia University,
Morgantown, WV

{yanliu@csee.wvu.edu}

1 Statement of Problem

Let G =< V,E > be a connected graph with real-valued edge weights: w : E → R, having n vertices and m
edges. A spanning tree in G is an acyclic subgraph of G that includes every vertex of G and is connected; every
spanning tree has exactly n− 1 edges. A minimum spanning tree (MST) is a spanning tree of minimum weight
which is defined to be the sum of the weights of all its edges. Our problem is to find the MST of G.

2 Minimum Spanning Forests

Some algorithms we present here will deal with subgraphs that are not necessarily connected. Thus, we introduce
the definition of minimum spanning forest.

1. A forest F is an acyclic subgraph of G that consists of a collection of disjoint trees in G.

2. A spanning forest F is a forest whose trees are spanning trees for the connected components of the graph
G.

3. A minimum spanning forest F = (V,E′) is a subgraph of G(V, E) such that the sum of all the weights w(e)
for all the edges e in E′ is minimal.

3 Deterministic Algorithms

3.1 Kruskal’s Algorithm

Algorithm MST:

Input: G(V,E)
Output: T, the MST

1: T ← empty graph
2: for (i = 1to |V |) do
3: Let e be the minimum weight edge in G that does not form a cycle with T. T ← T

⋃{e}
4: end for

Algorithm 3.1: Kruskal’s Algorithm

The only difference between these two algorithms is that Kruskal’s Algorithm doesn’t require that the edge e
to be connected to the evolving tree T , which makes T be a forest other than a tree. The Kruskal’s Algorithm

1

also runs in O(m log n) time.

3.2 Boruvka’s Algorithm

There is another greedy strategy for MST called Boruvka’s algorithm, which also runs in O(m log n) time.
Later we will show that using randomization in conjunction with the algorithm leads to a linear-time algorithm.
Boruvka’s algorithm is based on the following lemma.

Lemma: 3.1 Let v ∈ V be any vertex in G. The MST for G must contain the edge (v, w) that is the minimum
weight edge incident on v.

Proof: Suppose that (v, w), the minimum weight edge incident on v is not contained in the MST T of G,
then we must have another edge (v, u) in T such that vertex v can be covered in T . By adding (v, w) into T , we
will form a path of cycle in T which passes v. Since (v, w) is the minimum weight edge incident on v, we can
remove (v, u) and thus keep (v, w) in T ′, resulting in that the weights of T ′ is less than that of T . This reaches
the contradiction with that T is the MST of G. Therefore, the MST for G must contain the edge (v, w). 2

Definition: 3.1 The basic idea in Boruvka’s algorithm is to contract simultaneously the minimum weight edges
incident on each of the vertices in G. In a contraction, only the minimum weight edge needs to be retained out
of any set of multiple edges. The process of contracting the minimum weight edge for each vertex in the graph is
called the Boruvka phase.

A good implementation of a Boruvka phase is the following:

1. mark the edges to be contracted;

2. determine the connected components formed by the marked edges;

3. replace each connected component by a single vertex;

4. finally, eliminate the self-loops and multiple edges created by these contractions.

Lemma: 3.2 The set of edges marked for contraction during a Boruvka phase induces a forest in G.

Proof: From the steps listed above, we can compute the running time of implementing such a Boruvka phase.
Step 1 takes O(m+n) time; in step 2 and step 3 , we may use a Depth-First Search (DFS) [2] to find the connected
components and create a new vertex that correspond to each connected component, and associate each vertex with
that new vertex, all these take O(m + n) time; finally, step 4 takes O(m) time. Thus, the whole process of a
Boruvka phase needs O(m + n) time. 2

Lemma: 3.3 The set of edges marked for contraction during a Boruvka phase induces a forest in G.

Proof: By Lemma 3.1, each of the edges marked for contraction must be one of the edges in the MST of G.
During each Boruka phase, the edges we marked is a subgraph of the MST of G. Therefore, these edges might
not be connected, but must be acyclic. This makes them form a forest of G. 2

We claim that the graph G′ obtained from the Boruvka Phase has at most n
2 vertices. This is because that

each contracted edge can be the minimum incident edge on at most two vertices. The number of marked edges
is thus at least n

2 . Since each vertex chooses exactly one edge to mark, it is easy to verify that each marked edge
must eliminate a distinct vertex. The number of edges in G′ is no more than m since no new edges are created
during this process. By Lemma 3.1, we know that each of the contracted edges must belong to the MST of G.
In fact, the forest induced by the edges marked for contracting is a subgraph of the MST.

Lemma: 3.4 Let G’ be the graph obtained from G after a Boruvka phase. The MST of G is the union of the
edges marked for contraction during this phase with the edges in the MST of G’.

2

Proof: By Lemma 3.3, we know that during each Boruvka phase, the edges we marked is a forest of G, and
these edges belong to the MST of G. Each marked edge eliminate a distinct vertex of G, thus the uncovered
vertices are still remained in G’. The union of the MST of G’ with these marked edges will cover all the vertices
with no cycle. Furthermore, since the MST of G’ will also be induced by Boruvka phases, the MST of G’ is also
a subgraph of the MST of G. Therefore, the union of the edges marked for contraction during this phase with the
edges in the MST of G’ is the MST of G. 2

Algorithm MST:

Input: G(V,E)
Output: T , the MST

1: T ← empty graph
2: for each v in V do
3: Let e be the minimum weight edge in G that is incident on v
4: T ←T + {e}
5: end for
6: G′ ← G with all edges in T contracted
7: T ′ ← recursively compute the minimum spanning tree of G′

8: return T + T ′

Algorithm 3.2: Boruvka’s Algorithm

Boruvka’s algorithm reduces the MST problem in an n-vertex graph with m edges to the MST problem in
an (n

2)-vertex graph with at most m edges. The time required for the reduction is only O(m + n). The worst
case running time is O(m log n).

4 Heavy Edges and MST Verification

Before describing how randomization can be used to decrease the running time of Boruvka’s algorithm, we develop
a technical lemma on random sampling of edges from graph G.
Let F be any forest in graph G and consider any pair of vertices (u, v) ∈ V . Let wF (u, v) denote the maximum
weight of any edge along the unique path in F from u to v. If there is no path exists, then wF (u, v) = ∞. Note
that if an edge (u, v) exists in G, the normal weight of this edge is denoted as w(u, v).

Definition: 4.1 An edge (u, v) ∈ E is said to be F-heavy if w(u, v) > wF (u, v). The edge (u, v) is said to be
F-light if w(u, v) ≤ wF (u, v).

In particular, all the edges in F must be F-light. An edge (u, v) is F-heavy if the forest F contains a path from
u to v using only edges of weight smaller than that of (u, v) itself.

Lemma: 4.1 Let F be any forest in graph G. If an edge (u,v) is F-heavy, then it does not lie in the MST of G.
The converse is not true.

Proof: By the definition of F-heavy edges, we know that F must contain a path from u to v using the edges of
weight smaller than (u,v). Suppose (u,v) belongs to the MST of G, then by replacing (u,v) with the existed path
in F from u to v into the MST, we can obtain another MST of G with the smaller weights. Therefore, there is
contradiction thus (u,v) cannot lie in the MST of G. However, F may contain isolated vertex, say u. There is
no path existed in F from any other vertex to u. By the definition, wF (u, vi) = ∞, vi ∈ Vu and (u, vi) is F-light.
It is easy to see that for a certain edge not in the MST of G, it might be F-light. Thus, the converse is not true. 2

A verification algorithm for the MST can be viewed as taking as input a tree T in a graph G, and checking
that the only T -light edges are the edges in T itself. This is equivalent to verifying T is the MST. There exists
linear-time verification algorithms that can be adapted to identify all F-heavy and F-light edges with respect to
any forest F. The performance of these algorithms are summarized in the following theorem.

3

Theorem: 4.1 Given a graph G and a forest F, all F-heavy edges in G can be identified in time O(n+m).

5 Random Sampling for MSTs

In order to reduce the number of edges in the graph, we will use the fact that a random subgraph of G has a
”similar” minimum spanning tree. To be precise, consider a (random) graph G(p) obtained by independently
including each edge of G in G(p) with probability p. The graph G(p) has n vertices and expected number of
edges mp. Note that there is no guarantee that G(p) is connected.

Let F be the minimum spanning tree for G(p). We expect very few edges in G to be F-light such that F would
be a good approximation to the MST of G. This expectation is explained in details in the lemma presented
below. First we recall some probability definition and theory.

Definition: 5.1 Let X1, X2, ..., Xn be independent random variables whose common distribution is the geometric
distribution with parameter p,. The random variable X = X1 + X2 + ... + Xn denotes the number of coin flips
needed to obtain n HEADS. The random variable X has the negative binomial distribution with parameters
n and p. The density function for this distribution is defined only for x = n, n + 1, n + 2...:

Pr[X = x] =
(

x− 1
n− 1

)
pnqx−n

The Characteristics are: E[X] = n
p , var[X] = nq

p2 , and G(z) = (pz
(1−qz))

n.

Definition: 5.2 For independent variables X and Y, we say that random variable X stochastically dominates
variable Y if, for all z ∈ R, Pr[X > z] ≥ Pr[Y > z].

Proposition: 5.1 Let X and Y be random variables with finite expectations. If X stochastically dominates Y,
then E[X] ≥ E[Y]; equality holds if and only if X,Y are identically distributed.

Lemma: 5.1 Let X have the negative binomial distribution with parameters n1 and p, and Y have the negative
binomial distribution with parameters n2 and p. For n1 ≥ n2, X stochastically dominates Y.

Proof: Without loss of generality, we assume that z is a positive integer.

Pr[X > z] = 1− Pr[X ≤ z] = 1− (Pr[X = z] + Pr[X = z − 1] + .. + Pr[X = n1])

Pr[Y > z] = 1− Pr[Y ≤ z] = 1− (Pr[Y = z] + Pr[Y = z − 1] + .. + Pr[Y = n2])

For n1 ≥ n2,

(Pr[X = z] + Pr[X = z − 1] + .. + Pr[X = n1]) ≤ (Pr[Y = z] + Pr[Y = z − 1] + .. + Pr[Y = n2]).

Therefore,
Pr[X > z] ≥ Pr[Y > z].

2

Lemma: 5.2 Let F be the minimum spanning forest in the random graph G(p) obtained by independently in-
cluding each edge of G with probability p. Then the number of F-light edges in G is stochastically dominated by a
random variable X that has the negative binomial distribution with parameters n and p. In particular, the expected
number of F-light edges in G is at most n

p .

Proof: Let e1, e2 be the edges of G arranged in order of increasing weight. Suppose that we construct G(p) by
traversing the list of edges in this order, flipping a coin with probability of HEADS equal to p for each edge, and
including an edge ei in G(p) if the ith coin flip turns up HEAD.

The minimum spanning forest F for G(p) can be constructed online during this process as following:

4

1. Initially F is empty.

2. At step i, after the coin is flipped for ei = (u, v), if ei is chosen for G(p), then ei is considered for inclusion
in F.

3. The edge is added to F if and only if u and v belong to different connected parts of F.

Given the order of the examination of the edges, by the definition of F-light edge, an edge is F-light when examined
if and only if its end-points lie in different connected components.

The crucial observations are:

1. the F-lightness of ei depends only on the outcome of the coin flips for the edges preceding it in the ordering.

2. edges are never removed from F during this process;

3. and the edge ei is F-light at the end if and only if it is F-light at the start of step i.

Define phase k as starting after the forest F has k − 1 edges and continuing until it has k edges. Every edge that
is F-light during this phase has probability p of being included in G(p), and hence of being added to F. The phase
ends exactly when an F-light edge ia added to G(p) for the first time during the phase. It follows that the number
of F-light edges considered during this phase has the geometric distribution with parameter p.

Suppose the forest F grows in size from 0 to s. Then the total number of F-light edges processed till the end of
phase s is distributed as the sum of s independent geometrically distributed random variables, each with parameter
p. To account for the F-light edges processed after that but not chosen for G(p), we continue flipping coins until
a total of n HEADS have appeared. The total number of coin flips is a random variable which has the negative
binomial distribution with parameters n and p. Since s is at most n−1, it follows that the total number of F-light
edges is stochastically dominated by the random variable which represents the total number of coin flips. The
expected number of F-light edges is bounded from above by the expectation of this random variable, which is n

p . 2

6 The Linear-Time MST Algorithm

The randomized linea time MST algorithm interleaves Boruvka phases that reduce the number of vertices with
random sampling phases that reduce the number of edges. After a random sampling phase, the minimum spanning
forest F of the sampled edges is computed using recursion, and the verification algorithm is used to eliminate
all but the F-light edges. Then, the MST with respect to the residual F-light edges is computed using another
recusive invocation of the algorithm. This is summarized in the following Algorithm MST.

Linear time algorithm :

Input: Weighted, undirected graph G(V,E) with n vertices and m edges.
Output: Minimum spanning forest F for G.

1: Using three applications of Boruvka phases interleaved with simplication of the contracted graph, compute a
graph G1 with at most n

8 vertices and let C be the set of edges contracted during the three phases. If G is
empty then exit and return F = C.

2: Let G2 = G1(p) be a randomly sampled subgraph of G1, where p = 1
2 .

3: Recursively applying Algorithm MST , compute the minimum spanning forest F2 of the graph G2.
4: Using a linear-time verification algorithm, identify the F2-heavy edges in G1 and deleted them to obtain a

graph G3.
5: Recursively applying Algorithm MST , compute the minimum spanning forest F3 of the graph G3.
6: Return forest F = C

⋃
F3.

Algorithm 6.1: Algorithm MST

5

Theorem: 6.1 The expected running time of Algorithm MST is O(n + m).

Proof: Let T (n,m) denote the expected running time of Algorithm MST for a graph G(V,E) with n vertices
and m edges. Consider the cost of various steps in this algorithm for such input.

1. At step 1, the three invocations of Boruvka algorithm, which runs in O(n + m) time, run in deterministic
time O(n + m). After this step, a graph G1 with at most n

8 vertices and m edges is produced.

2. At step 2, the algorithm performs a random sampling to produce the graph G2 = G1(1
2) with n

8 vertices and
an expected number of edges equal to m

2 . This step also takes O(m + n) time.

3. Finding the minimum spanning forest of G2 in step 3 has the expected running time of T (n
8 , m

2).

4. The linear-time algorithm verification in step 4 runs in time O(n + m) and produces a graph G3 with at
most n

8 vertices and an expected number of edges at most n
4 , by Lemma 5.2.

5. Finding the minimum spanning forest of G3 in step 3 has the expected running time of T (n
8 , n

4).

6. Finally, O(n) time is needed for step 6.

Adding up all these steps give us the recurrence:

T (n,m) ≤ T (
n

8
,
m

2
) + T (

n

8
,
n

4
) + c(n + m)

for some constant c.
A solution satisfying this recurrence is 2c(n + m). We have base case of n = 1 and m = 0: T (1, 0) = O(1).

Suppose that T (n
8 , m

2) ≤ 2c(n
8 + m

2) and T (n
8 , n

4) ≤ 2c(n
8 + n

4), then by induction:

T (n,m) ≤ T (
n

8
,
m

2
) + T (

n

8
,
n

4
) + c(n + m)

T (n,m) ≤ 2c(
n

8
+

m

2
) + 2c(

n

8
+

n

4
) + c(n + m)

T (n,m) ≤ 2c(
n

4
+

n

4
+

m

2
) + c(n + m))

T (n,m) ≤ 2c(n + m)

This implies that the expected running time of the MST algorithm is O(n + m). 2

References

[1] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge,
England, June 1995.

[2] T. Cormen, C. Leiserson and R. Rivest. Introduction to Algorithms. McGraw-Hill, 1999.

6

