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1 Probability

For our purposes, probability is concerned with the following steps:
1. We conduct an experiment.
2. Experiments are broadly defined—they are simply anything with outcomes.
3. We are interested in a subset of the outcomes:

What is the probability that something in that subset of outcomes occurs? For example, if we roll a
six-sided die (that’s the experiment) we might like to know the probability that we get an odd number
(“odd numbers” is a subset of outcomes).

To speak precisely about experiments, outcomes and probability we need several definitions.
Definition: 1.1 The set of all possible outcomes is called the sample space, or S.
Definition: 1.2 Any subset of S is called an event.

Suppose we toss two coins. Our sample space S = {(h,h),(h,t),(t,h),(t,t)} (h means “heads”; ¢ means
“tails”). We might be interested in the event (a subset of S) {(h, h), (t,t)}; that is, the event in which the coins
match.

Definition: 1.8 Given events E and F, EUF is the union of the two events (with no duplicates).
Definition: 1.4 Given events E and F, ENF (also written EF') is the intersection of the two events.

For example, suppose Ey = {(h, h), (h,t)} and Es = {(h,t)}. E1UE; = {(h,h),(h,t)} (in words: the first coin
comes up “heads”), and EyEs = {(h,t)}.

Definition: 1.5 Events E and F are mutually exclusive if EF = (.

Definition: 1.6 E° = the complement of event E =S — E (or S\ E).

Definition: 1.7 A real-valued function Pr: S — R is called o probability function if:
i. The probability of S, Pr(S) =1.
it. 0 <Pr(E)<1.
iii. If events Ey and Es are mutually exclusive, Pr(E; U Ey) = Pr(E;) + Pr(E>).



Suppose we flip a single coin, so that S = {h,t}. Based on the above definitions, what is the probability we will
get “heads?” The reader may be tempted to answer %, but this is not necessarily correct. What if we are flipping
a strangely shaped or weighted coin, which for some reason tends to land more often on one side than the other?
The definition of probability above states that probabilities may be assigned to events. This is an important
point. It has been said that the assignment of probabilities is more an art than a science. We must be clear about
the fact that we assign probabilities to events based on our experience or intuition about the experiment, and,
based on the definitions above, derive results consistent with our initial assignments.

An alternate view of probability is sometimes used by statisticians. In the alternate view probability is the
“relative frequency” of an event. This view of probability may in some cases conflict the set theoretic (or
“axiomatic”) definition of probability presented above:

n
Pr(A) = lim -4
n—oo N
where n is the number of times the experiment is conducted, and n 4 is the number of times the experiment’s
result is A.
We may define the probability of the union of two events Pr(E U F) in terms of the individual probabilities E

and F':
Pr(EUF) =Pr(E) +Pr(F)—Pr(EF).

The above may be expanded to define the probability of the union of many events in terms of their individual
probabilities [2]:

Theorem: 1.1

Pr(EyUE,...UE,) =Y Pr(E)— Y Pr(E,E,)+...
n=1

i1 <ig

+(=1)" > Pr(EyEi,...E) +...+ (-1)""Pr(E,E;, .. Ey).

i1 <i2<ip

The summation above, >, ;. .. Pr(E; E;, ... E; ), is taken over all () possible subsets of the set {1,2,...n}.
In words, Theorem 1.1 says that the probability of the union of n events is equal to the sum of probabilities of
each of these events, minus the sum of probabilites of pairs of these events, plus the sum of probabilities of these
events in groups of three, and so on alternating up to n [2].

2 Conditional Probability

2.1 Background

Definition: 2.1 Given two events E and F, the conditional probability, which is the probability of E given
F has occurred, is written Pr(E|F).

For example, suppose we roll one fair die (by “fair” we mean the probability of each number between 1 and
6 is equal), so that our sample space S = {1,2,3,4,5,6}. If the event E = {2,4,6} (even numbers) and event
F = {4}, Pr(E) = ; and Pr(F) = §, but what is Pr(E|F)? In this case, it is easy to see that Pr(E|F) = 1.

Suppose we have a deck of cards numbered from 1 to 10; consider the event in which the card drawn is
numbered > 8. We are told that the card drawn is numbered > 5. So, given that the card drawn is > 5, what
is the conditional probability that the card is numbered > 87 We let event E = the card drawn is numbered > 8
and event F' = the card drawn is numbered > 5. So what is the conditional probability of E given F'? We use the
following the definition of conditional probability:

Pr(EF)

Pr(EIF) = 5y



E ={8,9,10}, F = {5,6,7,8,9,10}, and EF = {8,9,10}; therefore Pr(EF) = %, Pr(F) = %, and:
Pr(EF) & 1
Pr(E|F) = — ) _ 30 _ 2
r(EIF) = 5 £ 72

If there are two children in a family, the probability of a child being a boy = %, and we know that one
of the children is a boy, what is the conditional probability both are boys? Our initial sample space S =
{(g,9),(g,b),(b,9), (b,b)}, the event in which one of the children is a boy F = {(g,b), (b, g), (b,b)}, and the event

in which both are boys is E = {(b,b)}; therefore the conditional probability both are boys is given by:

Pr(E|F) = % -

1
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Definition: 2.2 Two events A and B are said to be independent if Pr(A|B) = Pr(A).

As the definition above states, for two independent events A and B, Pr(A|B) = Pr(A). Since Pr(A|B) =
%, we can also say that for two independent events Pr(AB) = Pr(A) - Pr(B) (substituting Pr(A) for

Pr(A|B)). Note that there is a difference between events being mutually exclusive and events being independent
(neither property implies the other):

Mutually Exclusive | Pr(AU B) = Pr(4) + Pr(B)
Independent | Pr(AB) =Pr(A) -Pr(B)

It is not always easy to tell whether two events are independent, and a small change in the statement of the
problem can make the difference. Suppose we roll two fair dice. We define event E; = the sum of the dice is 6

and event F' = the first die rolled shows 4. Pr(F) = £.

Ey = the sum of the dice is 6 = {(1,5),(2,4),(3,3),(4,2),(5,1)} .
So Pr(E;) = 2. Our sample space S = {(1,1),(1,2),...(2,1),(2,2),...(6,6)}—their are 36 different possi-
bilities, so Pr(E F) = %. Events E; and F' are not independent:
Pr(E\F) # Pr(E,) - Pr(F)
1 5 1
36736 6
But if we consider event Es:

E, = the sum of the dice is 7 = {(1,6), (2,5),(3,4), (4,3),(5,2),(6,1)}.

Pr(E;) = ¢, Pr(EyF) = 5, and events E, and F are independent (observe that in this case we can get a sum
of 7 no matter what we roll with the first die; hence the events are independent):

Pr(EyF) = Pr(Es) - Pr(F)
1 11
36 6 6
There are two different notions of independence for an arbitrary set of events:

Definition: 2.3 FEvents E ... E, are said to be independent if, for every subset Ey,Eor, ... Ey,
PI‘(EllEQI - Ekl) = PI‘(Ell)PI'(EQI) - PI‘(Ek/).

Definition: 2.4 Events E; ...E, are said to be pairwise independent if Pr(E,;E;) = Pr(E;)Pr(E;) Vi, j.



Why do we need two different definitions? The following example shows that events may be pairwise indepen-
dent but not independent. Suppose we have an urn, in which are four balls numbered 1 to 4 (S = {1,2,3,4}),
and the probability of choosing any particular ball is 1. We define three events and indicate their probabilities

1
and the probabilities of their intersections:

Event | E={1,2} | F={1,3} | G={1,4} | EF={1}
Probability | Pr(E) = 1 I T | Pr(EF) =1

Event | EG={1} | FG={1} | EFG={1}
Probability | Pr(EG) =1 | P

=
o
2
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=
e
=
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E, F, and G are pairwise independent:

1 11
1722
Pr(EG) = Pr(E) - Pr(QG)
1 11
4722

but not independent (by counterexample):

Pr(EFG) # Pr(E) - Pr(F) - Pr(QG)

(of course independence trivially implies pairwise independence).

2.2 Bayes’ Formula
For two events E and F defined under the same sample space S, anything in E must be in either F' or F’s
complement, and cannot belong to both F' and F’s complement; therefore:

E=EFUEF°.
Since events EF and EF°¢ are (obviously) mutually exclusive,
Pr(E) =Pr(EF) + Pr(EF°)
= Pr(E|F)Pr(F) + Pr(E|F°)Pr(F°)
= Pr(E|F)Pr(F) +Pr(EF°)(E|F°)(1 - Pr(F)).

This is Bayes’ formula (attributed to Bayes but apparently due to Cardan); in words, the probability of E is a
weighted average of: 1) the conditional probability of E, given F' has occurred, and 2) the conditional probability
of E, given F has not occurred, with 1) and 2) weighted according to the probability of F' and F° [2].

For example, we have two urns, A and B:

2 White Balls

7 Black Balls 6 Black Balls

‘ 5 White Balls

A B



”

We flip a fair coin. If the coin shows “heads,” we choose a ball from urn A; if it shows “tails,” we choose from
B. Suppose we have done the experiment and chosen a white ball (W = we chose a white ball; H = our coin
showed heads). What is the conditional probability our coin showed “heads”!?

Pr(HW)

Pr(H|W) = Pr(W)

. Pr(W|H)Pr(H)
- Pr(W|H)Pr(H) + Pr(W|H¢)Pr(H¢)

3 Random Variables

Often we are interested in a function of an experiment’s outputs (where the sample space S = the set of outputs).
Such a function is called a “random variable”:

Definition: 3.1 A real-valued function of the outcome of an experiment is called o random variable.

Definition: 3.2 The cumulative distribution function (CDF ) of the random variable X is defined as F'(b) =
Pr(X <b), —0o < b < 00, such that:

i. F(b) is a non-decreasing function of b.
141. lim(b%,oo) F(b) =0.

3.1 Discrete Random Variables

If we restrict our discussion to integer-valued functions, we are dealing with discrete random variables. For
example, we roll two fair dice. Let random variable X = the sum of the two dice. Since there is only one way to
get a sum of 2, Pr(X = 2) = 5=; Pr(X = 3) = 2, etc. And because we assign probabilities to the values taken
by a random variable, the conditions stated in Definiton 1.7 must be satisfied. To show that they are for this

example, we begin with the first condition, that Pr(S) = 1:

Pr(S) = ZPr(X = i)

1 2 3 4 5 6 5 4 3 2 1

36 36+36+36+36+36+36+36+36 36 36
_14+2+3+4+45+6+5+4+3+2+1 36 _
B 36 36

The other two conditions are also met. All the probabilities are > 0, and mutually exclusive events add in way
described in Definition 1.7.

For a second example, suppose we toss two coins, and the random variable Y = the number of “heads.
Pr(Y =0) = 1, Pr(Y = 1) = 1, and Pr(Y = 2) = 1; therefore the sum of probabilities = 1 (again all
probabilities are > 0 and mutually exclusive events add in the proper way).

1.

»

IThe word conditional is important. Without it the probability our coin showed “heads” is simply %



If we repeatedly toss a single coin, we can define a random variable Z as the number of tosses required to get
“heads.” Let p = the probability we get “heads” in a single toss. The probability we require two tosses will be the
product of the probability we fail the first time and succeed the second. The probably we require n tosses will be
the probability we fail n — 1 times multiplied by the probability we succeed the nth time:

Pr(Z=2)=(1-pp
Pr(Z =3)=(1-p)°p

Pr(Z=n) = (1-p)™ Vp.
Again, the sum of all possible Z values = 1:

o0

> (1-p)p

=0

=p-§:(1—p)i

K3
- b
C1-(1-p)
The simplification above makes use of the following rule for infinite decreasing geometric series, valid for all
|z| < 1; for more on this and other series simplification, see chapter three on summations in [1]:

— 1
k _

We also note that Pr(a < X <b) = F(b) — F(a). What about Pr(X < b)? We can use a limit to express the
strict inequality (“<”) in terms of the definition’s less-than-or-equal (“<”):

=1.

Pr(X <b) = Air%Pr(X <b-h).
—

Definition: 3.3 Given a discrete random variable X that may take on values x1,x2, .. .2k, we define the Prob-
ability Mass Function (PMF) such that:

i. p(x;) >0,i={1,2,...k}.
it. p(x) =0, for all other x values.
iii. Y% plas) =1 (3]

The CDF for a discrete random variable may be expressed in terms of the PMF p(a) as F(a) = >_, ., p(zi
Suppose a random variable X can take on values 1,2 and 3 with probability Pr(X = 1) = 1, Pr(X = 2) =

and Pr(X =3) = %. The graph below illustrates the CDF for X:

W=

Discrete random variables are classified according to their PMF.



3.2 PMPF’s and Examples for Discrete Random Variables

Note—much of the material for the remaining sections was taken directly from [3].

Definition: 3.4 A Bernoulli trial is an experiment with precisely two possible outcomes, “success” and “fail-
ure.” A random variable X that may take on values 0 and 1 (0 indicates “failure”; 1 indicates “success”) is called
a Bernoulli random variable.

The PMF for a Bernoulli random variable X is:
Pr(X =0) =p(0) =1-p;
Pr(X =1) = p(1) = p.

Definition: 3.5 A binomial random variable takes values representing the number of successes in n inde-
pendent Bernoulli trials.

If the probability of success in a single Bernoulli trial is p, and there are n trials, the PMF for a binomial
random variable is:

Note( ; ) , which is the number possible sequences with i successes in n trials, is:

If we sum the PMF of a binomial random variable from 0 to n, we find (as we would expect):

n

£ [
i=0

As an example of the binomial random variable, we conduct an experiment in which 4 fair coins are flipped.
Let X = the number of “heads”. What is the probability X = 2 (we get two “heads”)?

Pr(X = i) = p(i) = (7) Pl — )i

-0 ) () (DO -(3) ()

Or suppose we have an airplane with an even number of engines, and the plane is only able to land if at least
% of the engines are intact. Would we be better off with a 4-engine plane or a 2-engine plane? Does it depend on
the probability of engine failure? Or would we always be better with 4 engines?

Let 1 — p = the probability of engine failure. Then the probability of success for the 4-engine plane (the
probability 2 engines fail plus the probability 1 engine fails plus the probability 0 engines fail) is:

; pPP1-p)* 2+ § pPPA-p)*?+ i p'1-p*
(2) (5) (4)

=6p*(1—p)* +4p°(1 —p) +p*.

And the probability of success for the 2-engine plane is the probability 1 engine fails plus the probability 0
engines fail:



(f) prl-p> "+ (3)1)2(1 -p)*~?

=2p(1—p)+p°.

The 4-engine plane is safer if:
6p>(1 —p)* +4p° (1 —p) +p* > 2p(1 - p) +p°

6p(1 —p)* +4p° 1 —p)+p* > 2—p
3p? —8p +7—-2>0

The 4-engine plane is safer only when the probability of an engine not failing is > 2 . When the probability is
£, the 2-engine plane is actually safer.

Definition: 3.6 The geometric random variable takes values representing the number of Bernoulli trials required
to get the first successful result.

If we conduct n independent Bernoulli trials, the probability that we fail n — 1 times = (1 — p)"~!; the
probability that we succeed in the nth trial = p. Therefore the PMF for the geometric random variable is:

Pr(X =n)=p(n) = (1-p)" 'p.

As we would expect, the sum of probabilities for n > 1 =1:

Y a-prp=p> 1-p*

=pl§0(1—p)’“ =p(ﬁ> =1.

3.3 The Normal (Continuous) Random Variable

Definition: 3.7 if X is a continous random variable, there exists a non-negative function f(zx) defined for
all x € (—o00,00) having the property that for any set B of real numbers:

i. Pr(X € B) = [, f(
i. [7 f(x)dz = 1.
iii. Pr(a <X <b) = [’ f(z)dw
iv. Pr(X =a) =0.

For continous random variables, the cumulative distribution function is:

= /_; f(z)dx



Definition: 3.8 X is a Normal Random Variable with parameters u and o? if:

f(z):( .

oV 2T
Theorem: 3.1 If X is normally distributed with parameters p and o2, then Y = aX + B is normally distributed
with parameters oy + B and a®o?.

) (@120 o < p < 0o

Proof: Suppose a > 0 and the cumulative distribution function of Y is given by
Fy(a) =Pr(Y <a).
Substitute a X + B for Y:
Fy(a) =Pr(aX + 5 <a)

:Xga_ﬂ
a

= Fy (“;5>,

apply the definition of the cumulative distribution function for the normal distribution:

a=pla 20 2
:/ ( )e((wu) 125 g
oo oV 2r
and substitute in v = ax + B:

[ o) o { =i 2 o

Now, since Fy(a) = [*__ fy(v)dv:
= (ot

The right-hand side of this equation is just the normal distribution with parameters ap + B and o®c?. For
similar reasons, we would come to the same conclusion for a < 0. O

ooy 2w

Corollary: 3.1 A continuous random variable Y with a standard normal distribution has parameters yu =0
and 0 = 1 and is given by:

3.4 Expectation (Expected Value)
Definition: 3.9 If X is a random variable, we define the expected value E(X) for discrete X as:

BEX)= Y oop)

z:p(z)>0

and for continuous X as:

E(X)= /oo z - f(z)dz.

—0o0

The expected value is in some qualitative sense an average. It has no mathematical relationship to the average

we are familiar with, but describes what value we expect a random variable to take. For example, if we roll a fair

die, what is the expected value for a random variable X representing the outcome?

1 1 1 1 1 1
E(X)=1-242-243-244-245.246-=
(X) 6+6+6+6+ 6+6

o217

6 2



3.4.1 Expectation of a Bernoulli Random Variable
We can calculate the expected value of a Bernoulli variable according to the definition above:
EX)= Y x-pz)=01-p)+1-p=p.
z-p(z)>0
3.4.2 Expectation of a Binomial Random Variable

The expected value of a binomial random variable is more complicated (recall that for a binomial random variable

with n independent trials Pr(X = i) = (7) pi(1 —p)n~i):

Ifi=0,i (7) p'(1—p)"~ =0, so we have:

E(X) = iz (?) pPA—pt= :1 (ﬁ) p1—p)"t,

i=1 i

and because i! =i - (i — 1)!, we divide by :

We let £ =i — 1 and substitute:
n—1 n—1
=np)_ ( f ) P —p)" " =npp+ (1-p)" " =np.
k=0

So, for a binomial random variable, the expected number of successes in n independent trials is n times the
probability that a single trial is successful.

3.4.3 Expectation of a Geometric Random Variable

We now calculate the expected value of a geometric random variable (recall that for a geometric random variable
Pr(X =i) = p(1 —p)*1). Since at least 1 trial must take place, we begin the summation with n = 1:

o0

E(X) =) np(1-p)"".

n=1

We let ¢ = 1 — p and substitute:

10



o
=p Z ng" ',
n=1

The derivative of ¢, diq(q”) =ng" !

_Oodn_doon_d q)_p_l
_pqu(q) pdq( 1q> pdq(l—q 1-9? p’

n=

So the number of trials we expect to require is equal to the reciprocal of the probability a single trial is
successful.

3.4.4 Expectation of a Normal Random Variable

As stated above, the expected value of a continuous random variable is [ fooo z- f(z)dz. A normal random variable
with parameters u and o2 is defined as:

f@) = (L) o~z /20%)

oV2r

so the expected value of a normal random variable with these parameters is:

o0 ]. 2 /¢ 2
E(X)Z/ x((a 2W>e(_(z_“) /20 >) i

- ! /m o (el /2) g
oV21 J_

Since z = (z — u) + p, we can write:

_ 1! /oo (@—p) (-2 do 4 L /°° (et=te=/20) .
— 0 —co

oV 2w oV 27w

We note that the last term pu—2 ffooo (e(_(m_“)Q/Q‘TQ)) dx = /,Lffooo f(z)dz; we let y = x — p and substitute:

oV 2w

]. oo 2 2 oo
(—y*/20%)
- 27r/_ooy(e )dy+u/_oof(;c)dm.

Since y (e(_y2/2"2)) is an odd function, [%_y (e(_92/2‘72)) dy = 0; therefore:

o
BX)=u [ f@is,
—0o0
and because X is a random variable, the sum of its probabilities taken from —oo to oo must be = 1, so:
EX)=u.

This is why p is commonly called the “mean” value of the normal random variable.

11



3.5 More on Expectation

Expectation may also be defined for a function of a random variable (for example X2, 5X + 6, etc.). Suppose X
is a random variable that can take on values 0,1, or 2, with probabilities Pr(X = 0) = 0.2, Pr(X = 1) = 0.5,
and Pr(X = 2) = 0.3. The expected value of X is:

E(X) =0(0.2) +1(0.5) + 2(0.3) = 0.5+ 0.3 = 0.8.
The expected value of Y, where Y = X2, is:
E(Y) =0%(0.2) + 1%(0.5) +2%(0.3) = 0.5+ 1.2 = 1.7.
Definition: 3.10 In general we define expectation for a real-valued function of a discrete random variable g(X):

Bg(X) = ¥ g@p),

z:p(z)>0

and of a continuous random variable:

Theorem: 3.2 For a random variable X and constants a and b, E(aX +b) =a- E(X) + b.

Proof: For discrete random variables:

BaX+b)= Y. (aw+b)p()

z:p(z)>0
=a ( Z :Up(a:)) +b ( Z p(:z:)) =a-E(X)+b,
z:p(z)>0 z:p(z)>0
and for continuous random variables:
E@X+by5/mmx+mﬂm¢n
:a(/oo a:f(a:)dm) +b</00 f(m)dm)
=a-E(X)+b.

O

Definition: 3.11 We define the nth moment of X for discrete random variables as:

E(X™ = Y a"p@),

z:p(z)>0

and for continuous random variables as

mXﬂzfmﬂ«ﬂ@m.

— 00

Definition: 3.12 We define the variance Var(X) = E[(X — E(X))?].

12



The variance of X measures the expected square of the deviation of X from X’s expected value—in very loose
terminology, the variance represents how much X “varies” from its expected value. As an example, we calculate
the variance of a normal random variable X with parameters u and o2. Since E(X) = p,

Var(X) = El(z — p)’]

. 1% /_ O;(w -’ (e_($_“)2/2"2dx) .

We let y = (z — p)/o and substitute:

Var(z) =

02 /OO 9 ( 9
e~V /¢ ) ,
o . Y Y
and by the integration identity [~ y? (6_1’2/ 2dy) = /27, we have:

Var(X) =o?.
Theorem: 3.3 Given a random variable X,

Var(X) = B(X?) — (E(X))?.

Proof: (here we prove Theorem 3.3 for the continuous case; a similar proof holds for the discrete case) Suppose
X is a continuwous random variable with density function f.

Var(X) = E((X — E(X))?)
= B(X? - 2E(X) - X + E(X)?)
= /OO (22 —2B(X) -z + E(X)?) f(x)dx

— 00

= (/_o; a:2f(a:)dm) — 2E(X) (/_o;x-f(m)dx) + B(X)? (/_O:o f(m)da:)

= E(X?) - 2B(X)(E(X)) + B(X)?
= B(X?) - B(X)2.
O

Definition: 3.13 For probability statements concerning two or more random variables, which we call jointly
distributed random variables, we define the joint cumulative distribution function F as follows. For
random variables X1, Xo,... Xy

F(al,az,...an) :PI‘(Xl Sal,Xg Sag,...Xn San), —0<a; <o0.

For two random variables X and Y, F(a,b) = Pr(X < a,Y < b). We note here but do not prove a very
important theorem, called the Linearity of Expectation Rule:

Theorem: 3.4 Given two random variables X and Y defined for the same sample space S:
ElaX +bY]=a-E[X]+b-E[Y],

where a and b are arbitrary constansts;
Linearity of Expectation also holds for an arbitrary number of random variables X1, Xa,...X,, defined for the
same sample space S:

E[Cle + CQXQ + .. Can] =C1- E[Xl] “+ o - E[XQ] +...Cp- E[Xn] ,

where ¢1,Ca, . .. Cy are arbitrary constants.

13



Note that Theorem 3.4 applies events E[X] and E[Y] regardless of their relationship to each other—they may

or may not be independent (or anything else). This is a very important point, as it makes the theorem very
useful.

We can use Theorem 3.4 to calculate the expected sum when three fair dice are rolled. Suppose X = the sum
of the three dice. Since we have already calculated the expected value for one fair die, which is %,

7
E(X) = E(Xgrst die) + E(Xsecond die) + E(Xthird die) = 3 <§> =_—.
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