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1 Introduction

In this chapter we describe some basic randomization techniques with an underlying algebraic flavor. We begin by
describing Freivalds’ technique for the verification of identities involving matrices and polynomials. We describe
how this generalizes to the Schwartz-Zippel technique for identities involving multivariate polynomials and we
illustrate this technique by applying it to the problem of detecting the existence of perfect matchings in graphs.

Most of these techniques and their applications involve a fingerprinting mechanism, which can be described
as follows. Consider the problem of deciding the equality of two elements x and y drawn from a large universe
U. Under any ”reasonable” model of computation, testing the equality of z and y then has a deterministic
complexity of at least log|U|. An alternative approach is to pick a random mapping from U into a significantly
smaller universe V in such a way that there is a good chance that x and y are identical if and only if their images
are identical. The images of z and y are their fingerprints, and their equality can be verified in log|V| time by
comparing the fingerprints.

2 Fingerprinting and Freivalds’ Technique

We illustrate fingerprinting by describing a technique for verifying matrix multiplication. The fastest known
algorithm for matrix multiplication runs in time O(n?®7%), which improves significantly on the obvious O(n®)
time algorithm but has the disadvantage of being extremely complicated. Suppose we are given an implementation
of this algorithm and would like to verify its correctness. Since program verification is a difficult task, a reasonable
goal might be to verify the correctness of the output produced on specific executions of the algorithm.

Given n x n matrices A,B, we can calculate matrix C = AB in O(n?%7%). The problem: if you are given
A, B, and C over the field F, we would like to verify if indeed AB = C. We would like to avoid computing A - B,
since doing so (in O(n?) time) defeats the purpose. The following technique, known as Freivalds’ technique (see
algorithm 2.1), provides an elegant solution which takes O(n?) time with bounded error probability.

1: Choose a random vector ¥ € {0,1}"; each component of ¥ is chosen independently and uniformly at random
from {0, 1}, the additive and multiplicative identities of the field F.

2: Compute X = Bf, ¥ = AX = ABF, Z = Ct in O(n?) time.

3: If ¥ = Z then AB=C

Algorithm 2.1: Freivalds’ Algorithm

Theorem: 2.1 Let A,B and C be n x n matrices over F such that AB # C. Then for ¥ chosen uniformly at
random from {0,1}":

Pr[y = Z|AB # C] = Pr[ABF = CF|AB # C| <
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Proof: Let D = AB — C, D # Z where Z is the 0-matriz.

Permute D so that the first row has non-zero entries and all non-zero occur before zeros. We can do this
without aﬁectmg correctness.

Let d be the first row in D, the first entry n Df is AT

Pr[d”#] # 0 is a lower bound on Pr[DF] = 0.

Now the inner product, d’¢=0 if and only if ry = #

By the principle of deferred decisions, the right hand side of the above expression has a predetermined value v,
which is 0 or 1 with uniform probability.

Consequently Pr[f; =v] < 1.

O

3 Verifying Polynomial Identities

In this section we show that Freivalds’ technique applies to the verification of identities involving polynomials.
Two polynomials P(z) and Q(z) are said to be equal if they have the same coefficients for corresponding powers
of z. Verifying identities of integers, or, in general, strings over any fixed alphabet, is a special case since we can
represent any string of length n as a polynomial of degree n. This is achieved by treating the k** element in the
string as the coefficient of the k** power of a symbolic variable.

3.1 Verifing Polynomial Identities (Univariate)

We first consider the polynomial product verification problem:

Given polynomials Py (z), Py(z), P3s(x) € F[X] where F is a field,
verify that P;(z) X Ps(z) = P3(z).

Assume that the polynomials P; (z) and Pz(x) are of degree at most n; then P3(z) cannot have degree exceed-
ing 2n. Polynomials of degree n can be multiplied in O(nlogn) time using Fast Fourier Transforms, whereas the
evaluation of a polynomial at a fixed point requires O(n) time.

Theorem: 3.1 Let Q(x) be a polynomial of degree d over field .7-' Let S C F be a finite subset of F. Letr € S

be chosen uniformly at random, then Pr[Q(r) =0 | Q(z) # 0] < \s\

Proof: From the fundamental theorem of theorem of algebra, we know that a polynomial of degree d has at most
d roots.

Let Q( ) = Pi(z) x Py(z) — P3(x). Thus, for verifying that P;(z) x Pa2(z) = P3( ), we draw a random point ¥
from S and say “yes”, if Q(F) = 0. Clearly, the probablity of error is at most 2 ‘S‘ where n represents the degree

of both Py (z) and Py(z).
The extension of the univariate case to the multi-variate case is known as the Schwartz-Zippel theorem.

Theorem: 3.2 Let Q(x1,...,Tn) € Flz1,...,x,] be a multivariate of total degree d. Fiz any finite set S C F, and
let 11, ..., be chosen independently and uniformly at random form S. Then

d

Pr[Q(rl,...,rn) =0 | Q(mla 51.”) 7é 0] S |S|

Proof: We provide an inductive proof, based on the number of distinct variables. If n = 1, the Schwartz-Zippel
theorem follows from Theorem (3.1). Assume that the theorem is true for a multivariate polynomial with at most
n — 1 distinct variables. Consider the polynomial Q(z1, .., zy) and factor out z1. Thus, we can write

k

Q(xla “Jmn) = ZX{Qz('TQJ “‘J'Z-n)J

=0



where k is the largest exponent of 1 in Q. We assume that x; affects Q, so that k > 0. The coefficient of z¥, viz.
Qy 1s not identically 0, by our choice of k. Since the total degree of Qy, is at most d — k, the induction hypotheis
implies that the probability of Qk(r1,72,... ,7,) =0 is at most %.

Suppose that Qr(re,73,... ,1,) # 0. Consider the following univariate polynomial:

k
q(z1) = inQi(rg,Tg,... 2 Tn)
=0

The polynomial q(z1) is not identically zero, since the coefficient of ¥ is Qi (r2,73,...,r,). The base case now
implies that the probability that q(r1) = Q(r1,72,... ,7y) evaluates to 0 is at most % We have thus shown that
d—k
PI‘[Qk(TQ,Tg,... ,T’n)ZO] S —_—
||
k
Pr[Q(Tl'r27"' ,Tn):0|Qk(7'2,T'3,... ,rn)#O] < E

Use “A Probabilistic Identity” on the Class Website the conclude the hypothesis of the theorem. O

4 Perfect Matchings in Graphs

Consider a bipartite graph G(U,V, E) with the independent sets of vertices U = uy,...,un, and V = vy, ..., 5. A
matching is a collection of edges M C E such that each vertex occurs at most once in M. A perfect matching
is a matching of size n. Each perfect matching M in G can be viewed as a permutation from U into V. More
precisely, the perfect matchings in G can be put into a one-to-one correspondence with the permutations in S,
(Sy is the permutation group on n elements), where the matching corresponding to a permutation 7 € S,, is given
by the pairs (u;, vr(;)), for 1 <i < n.

Theorem (4.1) called Edmonds’ Theorem establishes a connection between determinants and matchings.

Theorem: 4.1 Let A be the n X n matriz obtained from G(U,V, E) as follows:

Aij = T (’U.l',’Uj)EE
= 0 (ujv) ¢ E

Define the multivariate polynomial Q(x1,%2,...,x,) as being equal to det(A). Then, G has a perfect matching
if and only if Q # 0.

Proof: The determinant of A is given by det(A) = 3 g 89n(7) A1 r(1); A2,x(2)s - An,n(n)- (Check this our
in any book on Abstract Algebra!) Since each indeterminate x;; occurs at most once in A, there can be no
cancellation of the terms in the summation. Therefore the determinant is not identically zero if and only if there
is a permutation © for which the corresponding term in the summation is non-zero. The latter happens if and
only if each of the entries A;,n(i), for 1 < i < n, is non-zero. This is equivalent to having a perfect matching in
G. O

5 Verifying Equality in Strings

5.1 Problem

The problem of testing the equality of two strings we present here can be reduced to that of verifying polynomial
identities which we have seen in the previous lectures. However, the new type of fingerprint introduced here has
important benefits when extended to the pattern matching problem discussed later. The string equality verifica-
tion problem can be described as the following;:



Suppose that Alice maintains a large database of information. Bob maintains a second copy of the database.
Periodically they must compare their databases for consistency. Denote Alice’s data by the sequence of bits
(a1, a2, ...,a,) and Bob’s by the sequence (b1, ba, ...,b,). The very simple deterministic strategy for checking the
consistency will be transmitting of n bits between them. Furthermore, it is obvious to see that any deterministic
consistency check that transmits fewer than n bits will fail if any adversary could decide which bits of either
database to modify.

5.2 Randomized Strategy

The randomized strategy we present is to detect an inconsistency with high probability while transmitting far
fewer than n bits of data. To reach the high probability of detection, we use the following fingerprint mechanism:

1. Interpret the data as n-bit integers a and b, by defining a = Y. | @;2"" ' and b= 31 | b;2°" 1.
2. Define the fingerprint function F,(z) = z mod p for a prime p.

3. Alice transmits F,(a) to Bob, who will compare it with F},(b).

4. In case F,(a) # F,(b), then it can be concluded that a # b.

We shall now show that if Fj,(a) # F,(b), then the probability that a # b is small. From this strategy, we can
see that the bits needed to be transmitted will be reduced to O(log p), which is much smaller than n for a small
prime p. However, this strategy can be easily foiled by an adversary for any fixed choice of p since, for any p and
b, there exist many choices of a for which a = b(mod p). Therefore, we get around this problem by choosing p at
random.

Theorem: 5.1 For any number k, let w(k) be the number of distinct primes less than k. w(k) is asymptotically
k
m-
Proof: See [2]. O
Let ¢ = |a — b|, c is a non-negative integer. The fingerprint defined above fails only when ¢ # 0 and p divides
c. Let N =27, since a < N and b < N, we know that ¢ < N.

Lemma: 5.1 The number of distinct prime divisors of any number less than 2™ is at most n.

Proof: Each prime number is greater than 1. If N = 2" has more than t distinct prime divisors, then N > 2t.

O

Choose a threshold 7 that is larger than n = log N. The number of primes smaller than 7 is 7(7) ~ . Of
these, at most n can be divisors of ¢ and cause our fingerprint strategy to fail. Therefore, we pick a random prime
p smaller than 7 for defining F,. The number of bits needed for transmission is O(log 7). Choose T = tnlogtn,

for large t. Then we can easily conclude that:

Theorem: 5.2

Pr[F,(a) = Fp(b)|a # b] < % =0(

Proof: Since the probability is taken over the random choice of p, it is easy to see that Pr[Fp(a) = Fp(b)|a #
b < =7 We also know that 7(T) ~ o= and T = tnlogtn, therefore,

b

t

n nlnT Int (Intn + Inlogtn)

7(r)  tnlogtn tlogtn tlogtn




1 Inlogtn 1
= = 0(;).

Tt tlogtn 't

O
Thus, we get an error probability of at most O(), and the number of bits to be transmitted is O(log ¢ +logn).
Choosing t = n gives us an excellent strategy for this problem.

6 Pattern Matching
6.1 Problem

Pattern Matching is a typical problem of that finding an occurrence (if any) of a given pattern in the text. Here,
a text is a string X = x125...x, and a pattern is a string Y = y1y2..y,», both over a fixed finite alphabet ¥, such
that m <n.

In the following lectures, without loss of generality, we restrict ourselves to the case ¥ = {0,1}. The pattern
occurs in the text if there is a j € 1,2,...,n —m + 1 such that for 1 <4 <m, xj4i—1 = y;.

6.2 Monte Carlo Algorithm

We can simply solve this problem by giving an algorithm of O(nm) running time by trivially trying for a match
at all possible locations i. The best deterministic algorithm to solve this problem has running time O(n + m).
However, this algorithm is extremely complicated and difficult to implement. Here we describe a very simple
Monte Carlo algorithm which also runs in expected time of O(n +m); later, we will convert this into a Las Vegas
algorithm.

Define X(j) = ;% j+1.-2j—m+1 as the substring of length m in X that starts at position j. A match occurs if
there exists a j, for 1 < j <n—m+1, we have Y = X(j). Now, instead of finding any match, we change the
problem into finding the smallest value of j such that X(j) =Y. This makes the solution unique. To find such a
match, we use a fingerprint function F' and compare F(Y') with each F(X(j)). An error occurs if F(Y) = F(X(j))
but Y # X (j). Therefore, we would like to use a function F' that has a small probability of error and can be
efficiently computed. The function we choose is as below:

For any string Z € {0,1}™, interpret Z as an m-bit integer and define F,(Z) = Z mod p.

Assume that p is chosen uniformly at random from the set of primes smaller than a threshold 7. Suppose
that we interpret the strings ¥ and X(j) as m-bit integers, and then compare F,(Y") and F,(X(j)), the only
possible error will occur when we get F,(Y) = F,(X (j)) while Y # X(j). By Theorem (1.2) , we can bound the
probability of such a false match as follows:

. : m mlogT
Pr{F,(Y) = F(X())Y # X(§)] < — = 0(——)
w(T) T
Then, the probability that a false match occurs for any of the at most n values of j is O((nmlog)/7). By
choosing 7 = n?mlog(n?m), we will get:

nmlog(nzmlog(n2m))) _ 0(1 n M) = O(l)

n?mlog(n?m) n  nlog(n?m) n

Prla false match occurs] = O

Our Monte Carlo algorithm just simply compares the F,(Y") with all F,(X (j)) and output the first j for which
a match occurs. The computation of expected running time of this algorithm is as claimed.



For1<j<n—-m+1,
X(j+1) = 2[X(j) = 2" 'z5] + Tjsm.
From this, we can find that
Fp(X(j +1)) = 2[F,(X (7)) — 2" "] + @jm mod p.

We can see that given F,(X (j)), the incremental cost of computing F,(X (j+1)) is O(1). Furthermore, since each
x; is either 0 or 1, there is no extra computation needed for division or multiplication. Thus, the total running
time required for this algorithm is O(n + m).

Theorem: 6.1 The Monte Carlo algorithm for pattern matching requires O(n + m) expected time and has a
probability of error of O(%)
6.3 Las Vegas Algorithm

In our Las Vegas algorithm, when a false match occurs, we detect it and abandon the whole process and then use
the O(nm) running time deterministic algorithm to find the match. The expected running time of this algorithm
is :

T(n) = (1~ )O(n +m) + - O(wm) = O(n +m) +O(m) = Oln +m).

An alternative version of the Las Vegas algorithm restarts the entire algorithm with a new random choice of p
whenever a false match occurs. The probability of restarting once is %, thus the probability of restarting more
than ¢ times is bounded by # Therefore, the variance of running time between restarting ¢ times and ¢+ 1 times
is bounded by #O(n +m), which decreases exponentially while ¢ increases. Compared to this algorithm, the first
approach has a relatively high probability of % of being forced to use the O(nm) time algorithm and hence has

a high variance in the running time.
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