
Backwards Analysis

Yan Liu
LDCSEE

West Virginia University,
Morgantown, WV

{yanliu@csee.wvu.edu}

1 Randomized Quick Sorting

Consider the following scheme to solve the sorting problem: given n numbers to be sorted, after the ith of n
(1 ≤ i ≤ n), we will make sure that we have i of input numbers in a sorted list. Clearly these i sorted numbers
will partition the ranks of the remaining n− i unsorted numbers into i + 1 intervals. The (i + 1)th step consists
of choosing one of the n − i unsorted numbers uniformly at random, and inserting it into the sorted list. After
n such insertion steps, we are left with a list of all the input numbers, in sorted order. This algorithm can be
viewed as a variant of quicksort algorithm [2].

To perform the insertion step, throughout the algorithm we maintain a pointer for each number yet to be
inserted into the sorted list.After the ith step, the pointer for each uninserted number specifies which of the
i + 1 intervals in the sorted list it would be inserted into, if it were the next to be inserted. The pointers are
bidirectional, so that given an interval we can determine the numbers whose pointers point to it. Suppose we
insert a number x whose pointers point to interval I, thus the work required to update the pointers is proportional
to the number of pointers point to I.

Consider the work done in the ith step when the objects in the input are considered in a random order.
While we could directly analyze this random variable, we introduce a useful tool: backwards analysis. By using
backwards analysis, we imagine that the algorithm is running backwards starting from the sorted list we have at
the end. Thus, in analyzing the ith step, we imagine that we are deleting one of the i numbers in the sorted list
and updating the pointers .The work needs to be done in updating the pointers in this case is the same as if we
had run the algorithm forward. There is a second crucial component to backwards analysis: since the numbers
were added in random order in the original algorithm, in the backwards analysis we may assume that each of the
i numbers in the sorted list is equally likely to be deleted at this step. Since there are i intervals and n − i + 1
pointers remaining after the deletion, The expected number of pointers to be updated at this step is O(n−i

i),
which is O(n

i). By linearity of expectation, we sum the work done over all the steps and obtain a bound of
O

∑
i(

n
i) = O(n log n) on the expectation of the total work.

2 Convex Hull

2.1 Statement of Problem

Given a set S of n points, find the smallest convex set that contains all of the n points. This set is called the
convex hull. See figure 1.

Let conv(S) denote the convex hull of S. We are interested in algorithms for computing conv(S) given S.
The boundary of conv(S) forms a convex polygon whose vertices are a subset of S. In the following lectures, we
shall refer to the polygon as conv(S). The problem of computing a convex hull in the plane is then the following:
given S, we are to compute the polygon bounding conv(S). The output of the algorithm will be given as a list
containing the points of S that appears as vertices of conv(S), in counterclockwise order as they appear on the

1

Figure 1: The convex hull

polygon; the starting point may be arbitrary. For definiteness, we prescribe that the first point in this ordering
is the point in S with the smallest x-coordinate and assume that no three points in S lie on a straight line.

Lemma: 2.1 Finding the convex hull of n points requires Ω(n log n) steps.

Proof: We can use reduction from sorting numbers to the convex hull problem: Translate each number x to
a point in the plane. By mapping x to (x, x2), each integer is mapped to a point on the parabola . Since this
parabola is convex, every point is on the convex hull. Further since neighboring points on the convex hull have
neighboring x values, the convex hull returns the points sorted by x-coordinate, i.e. the original numbers. In order
to sort S, we can implement a simple algorithm as following:

1. For each x, create point (x, x2).

2. Run another algorithm computing convex hull on this point set.

3. From the leftmost point in the hull,read off the points from left to right.

Creating and reading off the points takes O(n) time. Recall that the sorting lower bound of sorting n numbers
is Ω(n log n) [2]. If we could compute convex hull in better than Ω(n log n), we could sort n numbers faster than
Ω(n log n) - which violates our lower bound.

Thus convex hull must take Ω(n log n) time.
2

Let (H,~c) be a bounded linear program, and let h1 and h2 be the two half-planes of H, such that ({h1, h2},~c)
is bounded. Considering the fact that any bounded linear program that is feasible has a unique solution, which
is a vertex of the feasible region, the next lemma investigates how this optimal vertex changes when we add a
half-plane hi.

Lemma: 2.2 Let Ci be the region and vi be the optimal vertex when the first i half-planes have been added. Then
we have:

1. If vi−1 ∈ hi, then vi = vi−1.

2. If vi−1 /∈ hi, then either Ci = ø or vi ∈ `i, where `i is the line bounding hi.

Proof:

1. Let vi−1 ∈ hi. Because Ci = Ci−1

⋂
hi and vi−1 ∈ Ci. Furthermore, the optimal point in Ci cannot be

better than the optimal point in Ci−1, since Ci ⊆ Ci−1. Therefore, vi−1 is the optimal vertex in Ci as well.

2

2. Let vi−1 /∈ hi. Suppose for a contradiction that Ci is not empty and that vi does not lie on `i. Consider
the line segment ¯vi−1vi. We have vi−1 ∈ Ci−1 and, since Ci ⊂ Ci− 1, also vi ∈ Ci−1. Together with the
convexity of Ci−1, this implies that the segment ¯vi−1vi is contained in Ci−1. Since vi−1 is the optimal point
in Ci−1 and the objective function f~c is linear, it follows that f~c(p) increases monotonically along ¯vi−1vi as
p moves from vi to vi−1. Now consider the intersection point q of ¯vi−1vi and `i. This intersection point
exists, because vi−1 /∈ hi and vi ∈ Ci. But he value of the objective function increases along ¯vi−1vi, so
f~c(q) > f~c(vi). This contradicts the definition of vi.

2

2.2 Randomized Algorithm

The randomized algorithm performs the computing as follows:

Randomly permutes the points in the input set S. After the permutation, let pi denote the ith point in this
random ordering, for 1 ≤ i ≤ n. Si is the set {p1, ..., pn}.

The algorithm proceeds through n stages. During ith step, it adds pi to conv(Si−1) and thus forms conv(Si)
after ith step.

Although the algorithm sounds simple, the analysis will be very difficult. In the following section, we shall
analyze the algorithm using a method called backwards analysis with more details of the algorithm.

2.3 Backwards Analysis

We consider that at all times there is a point lies in the interior of the convex hull(e.g. the centroid of conv(S3)
which is a triangle). Call this point p0. After the ith step, we maintain a linked list containing the vertices of
conv(Si) and the edges joining successive edges as well. Let S\Si denote the set of points yet to be added after
the ith step, for 3 ≤ i ≤ n− 1. For each such point p ∈ S\Si, we maintain a bidirectional pointer from p to the
edge of conv(Si) cut by the ray emanating from p0, and passing through p. For this, we say that p cuts this edge
of conv(Si). Thus, given any edge of conv(Si), we can enumerate all points p that cut the edge in time linear in
the number of such points.

When a new point pi is added to the current hull, in constant time we can detect whether it is outside or inside
conv(Si) by using the line segment pip0 and the associated pointer. If it is inside the hull, we delete the pointer
from pi and proceed to step i + 1. Otherwise, we update the linked list representing the polygon bounding the
hull. The vertices of conv(Si−1) are partitioned into three sets by the addition of pi:

1. Vertices of conv(Si−1) that have to be deleted because they are not vertices of conv(Si).

2. Two vertices of conv(Si−1) that become the neighbors of pi on conv(Si). Let us denote these vertices v1

and v2.

3. Vertices of conv(Si−1) that remain in conv(Si) with their incident edges unchanged.

It is easy to see that the end-points of the edge e intersected by pip0 are of type 1 or 2. By marching away from
e in two directions of the linked list, we can detect the vertices of type 1 and 2. This can be accomplished in
time linear in the number of such vertices. In this process, we also detect the point sin S\Si that cut the edges
being deleted, and update their pointers to either the edge piv1 or piv2. This takes constant time for each point
of S\Si to update the pointers (see figure 2).

Since an edge can be deleted only after being created, we can calculate the cost of deleting an edge of conv(Si−1)
instead of adding an edge to conv(Si−1). This is the main idea of Backward Analysis.

Clearly there are only two edges are created at each step, thus the total number of these edge creations/deletions
is at most 2n. Now we imagine running the algorithm backward, and deleting a point of conv(Si\S3) to form
conv(Si−1). Then, the number of pointers updated in the ith step of the original algorithm is the same as the
number deleted in the corresponding step of backward algorithm. We show that the expected number of pointers

3

Figure 2: The addition of pi in the deletion of vertices s and t, and the pointer for q requires updating while that
for r does not

updated is O(n
i), conditioned on any fixed set of points Si\S3 from which we delete a random point in the

backward step. This upper bound holds for any set of i points, thus the conditioning on Si\S3 can be removed.
For a point p ∈ S\Si, let ep be the edge of conv(Si) cut by pip0. The probability that p’s pointer is updated

is exactly the probability that ep is deleted. ep is deleted if one of its two end-points is deleted. This probability
is O(1

i) because that the point being deleted from Si is chosen uniformly from the i − 3 points in Si\S3. Thus,
the expected number of pointers updated is O(n−i

i) = O(n
i − 1) = O(n

i), and the total cost of this step is O(n
i).

We now invoke linearity of expectation to bound the expected running time of the algorithm by O(n log n).

Theorem: 2.1 The expected running time of the above randomized incremental algorithm for computing the
convex hull of n points in the plane is O(n log n).

3 Linear Programming

3.1 Statement of Problem

Let x1, x2, ..., xd denote the d variables in the linear program. Let c1, c2, ..., cd denote the coefficients of these
variables in the objective function, and let Aij, 1 ≤ i ≤ n and 1 ≤ j ≤ d denote the coefficient of xj in the ith
constraint. Matrix (Aij) is denoted by A, the vector c1, c2, ..., cd is denoted by c, and x1, x2, ..., xd is denoted by
~x. A general Linear Programming(LP) problem can be expressed as follows:

maximize ~cT ~x

subject to
~A~x ≤ ~b, for ~x ≥ ~0

where ~b is a column vector of constants.
We use d to denote the number of variables and n to denote the number of constraints. Each of the n constraints

may be thought of as delineating a half-space in d-dimensional space. The intersection of these n half-spaces is

4

Figure 3: The Linear Programming problem

a polyhedron in d-dimensional space. The intersection we refer to as feasible region may be empty or possibly
unbounded.

3.2 Randomized Linear Programming

2DRandomizedLP(H,~c)

Input: A linear program (H,~c), where H is a set of n half-planes and ~c ∈ R2.
Output: A feasible point p that maximizes f~c(p) is reported.
Assumption: Assume that (H,~c) is bounded, feasible. h1, h2 ∈ H are the two certificate half-planes returned
by UnboundedLP, and v2 is the intersection point of `1 and `2.

1: Compute a random permutation h3, ...hn of the remaining half-planes.
2: for (i = 3 to n) do
3: if vi−1 ∈ hi then
4: vi ← vi−1

5: else
6: vi ← the point p on `i that maximizes f~c(p), subject to the constraints h1, ..., hi−1

7: end if
8: end for
9: return vn

Algorithm 3.1: Randomized Linear Programming Algorithm :

Our algorithm for 2-dimensional linear program is incremental. It adds the constraints one by one, and
maintains the optimal vertex of the intermediate feasible regions. To be able to put the half-planes in random
order before we start adding them one by one, we assume that we have a random number generator, Random(k),
which has an integer k as input and generates a random integer between 1 and k in constant time. There are
many ways to compute such a random permutation in linear time.

3.3 Backwards Analysis

The running time of the above randomized algorithm for linear programming depends on certain random choices
made by some subroutine random algorithm. It is not easy to decide the expected running time of this algorithm.

5

Consider a fixed set H of n half-planes. 2DRandomizedLP treats them depending on the permutation chosen
in line 1 of the algorithm. Since there are (n − 2)! possible permutations of n − 2 objects, we shall analyze the
expected running time of the algorithm which is the average running time over all (n− 2)! possible permutations.
The theorem below stated that the expected running time of our randomized algorithm is O(n).

Lemma: 3.1 The 2-dimensional linear programming problem with n constraints can be solved in O(n) randomized
expected time using worst-case linear storage.

Proof:
The running times of UnboundedLP and of RandomPermutation are O(n), the storage needed is linear, so what

remains is to analyze the time needed to add the half-planes h3, ...hn. Adding a half-plane takes constant time
when the optimal vertex does not change. When the optimal vertex does change we need to solve a 1-dimensional
linear program. We now bound the time needed for all these 1-dimensional linear programs.

Let Xi be a random variable, Xi = 1 when vi−1 /∈ hi; otherwise, Xi = 0. Recall that a 1-dimensional linear
program on i constraints can be solved in O(i) time. The total time spent over all half-planes h3, ..., hn is therefore

n∑
i=3

O(i)Xi.

Thus, the expected time for solving all 1-dimensional linear programs is

E[
n∑

i=3

O(i)Xi] =
n∑

i=3

O(i)E[Xi]

where
E[Xi] = 1 · Pr[vi−1 /∈ hi].

To compute the probability of vi−1 /∈ hi, we shall use backwards analysis technique.
Assume that the optimal vertex vn has already been produced. Since vn is a vertex of Cn, it is defined by at

least two of the half-planes. Take a back step on Cn−1 by removing the half-plane hn. We note that the optimum
point change exactly if vn lies in the interior of Cn−1, which is only possible if hn is one of the half-planes that
define vn. Due to the algorithm, hn is randomly chosen from {h3, ..., hn}. Therefore, the probability that hn is
one of the half-planes defining vn is at most 2

n−2 .
Thinking backwards, we find that the probability that we had to compute a new optimal vertex when adding hi

is the same as the probability that the optimal vertex changes when we remove a half-plane from Ci. The latter
event only happens for at most two half-planes is at most 2

i−2 . This probability is derived under the condition that
the first i half-planes are some fixed subset of H. However, since this bound holds for any fixed subset, it holds
unconditionally. Therefore, we have E[Xi] ≤ 2

i−2 . It follows that

E[
n∑

i=3

O(i)Xi] =
n∑

i=3

O(i)E[Xi] =
n∑

i=3

O(i)
2

i− 2
= O(n).

2

References

[1] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge,
England, June 1995.

[2] T. Cormen, C. Leiserson and R. Rivest. Introduction to Algorithms. McGraw-Hill, 1999.

6

