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1 Introduction

We have bounded the expected running times of several randomized algorithms in first two chapters. While the
expectation of a random variable (such as a running time) may be small, it may frequently assume values that
are far higher. In analyzing the performance of a randomized algorithm, we often like to show that the behavior
of the algorithm is good almost all the time. For example, it is more desirable to show that the running time
is small with high probability, not just that it has a small expectation. The similar statement: for randomized
algorithms, usually knowing the bound of expected running time is not enough. It is more desirable to show that
the expected running time is small with high probability. To prove this statement, we will begin by examining a
family of stochastic processes that is fundamental to the analysis of many types of randomized algorithms. They
are Occupancy Problems. This motivates the study of general bounds on the probability that a random variable
deviates far from its expectation, enabling us to avoid such custom-made analysis. The probability that a random
variable deviates by a given amount from its expectation is referred to as a tail probability for that deviation.

2 Occupancy Problems

We begin with an example of an occupancy problem. In such problems we envision each of m indistinguishable
objects (”balls”) being randomly assigned to one of n distinct classes (”bins”). In other words, each ball is placed
in a bin chosen independently and uniformly at random. We are interested in questions such as: what is the
maximum number of balls in any bin? what is the expected number of bins with k balls in them?

A Simple Example of Occupancy Problem

1. We have m indistinguishable balls.

2. We have n distinct bins.

3. We throw those m balls independently, uniformly into those n bins.

Questions:

1. What is the expected number of balls in a bin?

2. What is the expected number of bins with k balls in each of it?

Such problem are at the core of the analysis of many randomized algorithms ranging from data structures to
routing in parallel computers. Later, we will encounter a variant of the occupancy problem, known as the coupon
collector’s problem; we also will apply sophisticated techniques to various random variables arising in occupancy
problem. Our discussion of the occupancy problem will illustrate a recurrent tool in the analysis of randomized
algorithms: that the probability of the union of events is no more than the sum of their probabilities, the following
give this theorem and the definition of tail probability.

Definition: 2.1 The probability that a random variable deviates from its expectation is referred to as the tail
probability of that deviation.
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Theorem: 2.1 The probability of the Union of events is no more than the sum of their probabilities.

Pr[
n⋃

i=1

Ei] ≤
n∑

i=1

Pr[Ei]

We will need Theorem (2.1) often in this portion of the occupancy problems. The proof of Theorem (2.1) is
given in Appendix A.

Now, let’s consider the case m = n. For 1 ≤ i ≤ n, let X be the number of balls in the ith bin. Let us try
to make a statement with very high probability, no bins receives more than k balls, for a chosen k. Let Ej(k)
denote the event that bin j has k or more balls in it. The probability that bin j receives exactly i balls is
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n∑
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Let k∗ = d(e lg n)/ lg lg ne. Substitute k∗ into the above equation

Pr[Ej(k∗)] ≤
( e

k∗

)k∗
(

1 +
e

k∗
+

( e

k∗

)2

+ · · ·
)

That is can be simplified as

Pr[Ej(k∗)] ≤
( e

k∗

)k∗ 1
1− e/k∗

Using k∗ = d(e lg n)/ lg lg ne, we get
Pr[Ej(k∗)] ≤ n−2

We invoke the theorem (2.1). Then we have

Pr[
n⋃

j=1

Ej(k∗)] ≤
n∑

j=1

Pr[Ej(k∗)] ≤ 1
n

Thus we established

Theorem: 2.2 With probability at least 1− 1/n, no bin has more than k∗ = (e ln n)/ ln ln n balls in it.

Suppose that m balls are randomly assigned to n bins. We study the probability of the event that they all
land in distinct bins. Consider the assignment of the balls to bins as a sequential process: we throw the first ball
into a random bin, then next ball, and so on. For 2 ≤ i ≤ m, let Ei denote the event that the ith ball lands in a
bin not containing any of the first i− 1 balls. Note that Pr[E1] = 1. From the probability of the intersection for
a collection of events

Pr[
k⋂

i=1

Ei] = Pr[E1]× Pr[E2|E1]× Pr[E3|E1 ∩ E2] · · · Pr[Ek| ∩k−1
i=1 Ei]

We have

Pr[
m⋂

i=2

Ei] = Pr[E2]Pr[E3|E2]Pr[E4|E2 ∩ E3] · · · Pr[Em| ∩m−1
i=2 Ei]

The probability that ith ball lands in an empty bin given that the first i− 1 balls fell into distinct bins is
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Pr[Ei| ∩i−1
j=2 Ej ] = 1− i− 1

n

Making use of the fact that

1− x ≤ e−x

We have

Pr[
m⋂

i=2

Ei] ≤
m∏

i=2

(
1− i− 1

n

)
≤

m∏

i=2

e−(i−1)/n = e−m(m−1)/2n

Corollary: 2.1 For m = d√2n + 1e, the probability that m balls land in distinct bins ≤ 1
e

When m increases beyond this value, the probability drops rapidly. A special case that is popular in mathe-
matics is the birthday problem. The 365 days of the year (ignoring leap years) correspond to 365 bins, and the
birthday of each of m people is chosen independently and uniformly from 365 days. How large must m be before
two people in the same room are likely to share their birthdays? From the Corollary 1.1,

m = d
√

2n + 1e = d√2× 365 + 1e = 28

Thus, when more than 28 people are in the same room, the probability of two people likely to share their
birthdays is (1− 1

e ).

3 The Markov and Chebyshev Inequalities

Theorem: 3.1 (Markov Inequality): Let Y be a random variable assuming only non-negative values. Then
for all t ∈ R+,

Pr[Y ≥ t] ≤ E[Y ]
t

Proof: Let

f(y) = 1, if y ≥ t;

f(y) = 0, otherwise.

For all y, it satisfies

f(y) ≤ y

t

Then we have

Pr[Y ≥ t] = E[f(Y )] ≤ E

[
Y

t

]
=

E[Y ]
t

2

Corollary: 3.1 Let Y be a random variable assuming only non-negative values. Then for all t ∈ R+,

Pr[Y ≥ kE[Y ]] ≤ 1
k
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Proof: Apply Theorem 3.1

Pr[Y ≥ t] ≤ E[Y ]
t

with

t = kE[Y ]

This gives

Pr[Y ≥ kE[Y ]] ≤ E[Y ]
kE[Y ]

=
1
k

2

Theorem: 3.2 (Chebyshev’s Inequality): Let X be a random variable with expectation µX and standard
deviation σX . Then for all t ∈ R+,

Pr[|X − µX | ≥ tσX ] ≤ 1
t2

Proof:
First note that

|X − µX | ≥ tσX

(X − µX)2 ≥ t2σ2
X

The random variable

Y = (X − µX)2

has expectation

E(Y ) = σ2
X

Note that Y ≥ 0, then from Markov Inequality, we have

Pr[Y ≥ t2σ2
X ] ≤ E[Y ]

t2σ2
X

≤ σ2
X

t2σ2
X

=
1
t2

2

4 Randomized Selection

Consider the problem of selecting the kth smallest element in a set S of n element. We assume that the elements of
S are distinct. Let rS(t) denote the rank of an element t (the kth smallest element has rank k) and let S(i) denote
the ith smallest element of S. Thus the problem becomes that we seek to identify S(k). LazySelect algorithm
is introduced. some important properties of independent random variables in order to perform the analysis of
LazySelect algorithm are given in Appendix A .

Thus the idea of the algorithm is to identify two elements a and b in S such that both of the following statements
hold with high probability:

1. The element S(k) that we seek is in P .

2. The set P of elements between a and b is not very large, so that we can sort P inexpensively in step 5.
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Algorithm LazySelect:

Input: A set S of n elements, and an integer k in [1, n].
Output: The kth smallest element of S, S(k).

1: Pick n3/4 elements from S, chosen independently and uniformly at random with replacement; call this multiset
of elements R.

2: Sort R in O(n3/4 log n) steps using any optimal sorting algorithm.
3: Let x = kn−1/4. For l = max{bx − √nc, 1} and h = min{dx +

√
ne, n3/4}, let a = R(l) and b = R(h). By

comparing a and b to every element of S, determine rS(a) and rS(b).
4: if k < n1/4, then P = {y ∈ S|y ≤ b} noted as Pb;

else if k > n− n1/4, let P = {y ∈ S|y ≥ a} noted as Pa;
else if k ∈ [n1/4, n− n1/4], let P = {y ∈ S|a ≤ y ≤ b} noted as Pab;
Check whether S(k) ∈ P and |P | ≤ 4n3/4 + 2. If not, repeat Steps 1− 3 until such a set P is found.

5: By sorting P in O(|P | log |P |) steps, identify P(k−rS(a)+1), which is S(k).

Algorithm 4.1: LazySelect Algorithm

Theorem: 4.1 With probability 1 − O(n−1/4), LazySelect finds S(k) on the first pass through Steps 1-5. The
running time of LazySelect algorithm is 2n + o(n).

Proof:
The time bound is easily established by examining the algorithm; Step 3 requires 2n comparisons, and all other

steps perform o(n) comparisons, provided the algorithm finds S(k) on the first pass through Steps 1−5. We measure
the running time of LazySelect algorithm in terms of the number of comparisons performed on it, therefore, the
running time of LazySelect algorithm is 2n + o(n).

There are three possible ways in which P is chosen

1. Pa, that is P = {y ∈ S|y ≥ a} for k > n− n1/4.

2. Pb, that is P = {y ∈ S|y ≤ b} for k < n1/4.

3. Pab, that is P = {y ∈ S|a ≤ y ≤ b} for k ∈ [n1/4, n− n1/4].

For each case, there are two possibilities in which the algorithm fails:

1. The element S(k) that we seek is not in P .

2. P is too big.

Case Pab:

The first possibility is that the element S(k) that we seek is not in P . We now consider the mode of failure:
a > S(k) because fewer than l of the samples in R are less than or equal to S(k) (so that S(k) /∈ P ). Set

Xi = 1, if R(i) ≤ S(k),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n
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Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Sk. Note that we really do mean the number of samples, and not
the number of distinct elements. The random variables Xi are Bernoulli random variables. Then the expectation
and the variance of a Bernoulli random variable with success probability p obtained by using the theorems in
Appendix A.

µX =
n3/4∑

i=1

µXi =
k

n
(n3/4) = kn−1/4

σ2
X =

n3/4∑

i=1

σ2
Xi

= n3/4

(
k

n

)(
1− k

n

)

Where let f(k) =
(

k
n

) (
1− k

n

)

f(k)′ =
1
n
− 2k

n2
= 0

k =
n

2

f(k)′′ = − 2
n2

< 0

So when k = n
2 , f(k) has maximum value 1

4 , therefore

σ2
X ≤ n3/4

4

Since
l = max{bx−√nc, 1}

X < l

Then we have
X < x−√n

X − x < −√n

| X − x |≥ √
n

The probability of the above is

Pr[| X − x |≥ √
n] = Pr[| X − µX |≥ √

n]

Apply the Chebyshev bound to X and σX ≤ n3/8/2

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

An essentially identical argument shows that

Pr[b < Sk] = O(n−1/4)
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Since the probability of the union of events is at most the sum of their probabilities, the probability that either
of these events occurs (causing S(k) to lie outside P ) is O(n−1/4)

The second possibility of failure occurs when P is too big. To study this, we define kl = max{1, k− 2n3/4} and
kh = min{k +2n3/4, n}. To obtain an upper bound on the probability of this kind of failure, we will be pessimistic
and say that failure occurs if either a < Skl or b > Skh. The analysis is very similar to that above in studying the
first mode of failure, with ki and kh playing the role of k. For k ∈ [n1/4, n − n1/4] and P = {y ∈ S|a ≤ y ≤ b}
(that is Pab); let us show

Pr[a < Skl] = O(n−1/4)

Set

Xi = 1, if R(i) ≤ S(kl),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skl. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X,

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

Let us show

Pr[b > Skh] = O(n−1/4)

Set

Xi = 1, if R(i) ≤ S(kh),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n
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Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skh. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X, we have

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

Case Pb:

For k < n1/4 and P = {y ∈ S|y ≤ b} (that is Pb), The first possibility is that the element S(k) that we seek is
not in P , that is b < S(k). An essentially identical arguments to Case Pab shows that

Pr[b < Sk] = O(n−1/4)

The second possibility of failure occurs when P is too big. let’s show

Pr[a < Skl] = O(n−1/4)

Set

Xi = 1, if R(i) ≤ S(kl),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skl. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X,
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Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

Let us show

Pr[b > Skh] = O(n−1/4)

Set

Xi = 1, if R(i) ≤ S(kh),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skh. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X, we have

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

Case Pa:

For k > n−n1/4 and P = {y ∈ S|y ≥ a} (that is Pa); The first possibility is that the element S(k) that we seek
is not in P , that is a > S(k). An essentially identical arguments to Case Pab shows that

Pr[a > Sk] = O(n−1/4)

The second possibility of failure occurs when P is too big. let’s show

Pr[a < Skl] = O(n−1/4)

Set

Xi = 1, if R(i) ≤ S(kl),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n
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and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skl. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X,

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

Let us show

Pr[b > Skh] = O(n−1/4)

Set

Xi = 1, if R(i) ≤ S(kh),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skh. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X, we have

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

Adding up the probability of all of these failure modes, we find that the probability that LazySelect algorithm
fail to find a suitable set P is O(n−1/4)

2
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A Some important theorems

Some important properties of independent random variables in order to perform the analysis of LazySelect algo-
rithm are given in Appendix A.

Definition: A.1 Set X and Y be two random variables defined on the sample space. The joint distribution
of X and Y is given by

Pr[x, y] = Pr[X = x, Y = y]

Theorem: A.1 The random variable X and Y are independent if

Pr[X = x, Y = y] = Pr[X = x]Pr[Y = y]

Theorem: A.2 If X and Y are the independent random variable, then

E[XY ] = E[X]E[Y ]

Theorem: A.3 Let X1, X2, · · ·Xm be the independent random variables, and X =
∑m

i=1 Xi. Then

σ2
X =

m∑

i=1

σ2
Xi

Proof:
Let µi denote E[Xi], and µ =

∑m
i=1 µi. The variance of X is given by

E[(X − µ)2] = E[(
m∑

i=1

(Xi − µi))2]

Expanding the latter and using linearity of expectations, we obtain

E[(X − µ)2] =
m∑

i=1

E[(Xi − µi)2] + 2
∑

i<j

E[(Xi − µi)(Xj − µj)]

Since all pairs of Xi, and Xj are independent, so are the pairs (Xi − µi), (Xj − µj). Each term in the latter
summation can be replaced by E[(Xi−µi)]E[(Xj−µj)]. Since E[(Xi−µi)] = E[Xi]−µi = 0, the latter summation
vanishes. It follows that

E[(X − µ)2] =
m∑

i=1

E[(Xi − µi)2] =
m∑

i=1

σ2
Xi

2

The proof of Theorem (2.1)
Proof: Base case n = 2

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1E2) ≤ P (E1) + P (E2)

That is

Pr[
n=2⋃

i=1

Ei] ≤
n=2∑

i=1

Pr[Ei]

Suppose for n ≤ k, it satisfies

Pr[
k⋃

i=1

Ei] ≤
k∑

i=1

Pr[Ei]
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For n = k + 1, Then we have

Pr[
k+1⋃

i=1

Ei] = Pr[
k⋃

i=1

Ei ∪ Ek+1] ≤ Pr[
k⋃

i=1

Ei] + Pr[Ek+1]

Since

Pr[
k⋃

i=1

Ei] ≤
k∑

i=1

Pr[Ei]

Therefore

Pr[
k+1⋃

i=1

Ei] ≤
k∑

i=1

Pr[Ei] + Pr[Ek+1] ≤
k+1∑

i=1

Pr[Ei]

Thereom is proved. 2
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