Tail Inequalities

Wafi AlBalawi and Ashraf Osman
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
{wafi,osman@csee.wvu.edu}

1 Routing in a Parallel Computer

A network of parallel processors is typically modeled by a directed graph G = (N, E). The nodes N represent
the processing elements and the edges £ model the communication links between the processing elements. All
communication between processors occurs in synchronous steps. Each link can carry at most one unit message
(packet) in one step. During a step, a processor can send at most one packet to each of its neighbors. Each
processor is uniquely identified by a number between 1 and N.

1.1 Permutation Routing Problem

The problem we address is known as the permutation routing problem .

Each processor initially contains a packet destined for some processor in the network. We denote the packet
originating at node ¢ destined for node d(i) by v;. Also, we assume that each node is the destination of exactly
one packet i.e. the d(i)’s, for 1 <4 < N, form a permutation of {1,..., N}.

The route followed by a packet v; from its source i to destination d(i) forms a sequence of communication
links/edges. During its transmission, a packet may have to wait at an intermediate node because the node is
“busy” transmitting another packet. We assume that each node contains a separate queue for each of its links
and it follows FIFO (first in first out) queuing discipline to route its packets.

We focus on a class of algorithms that are especially simple to implement in parallel computer hardware called
oblivious algorithms. An oblivious algorithm for the permutation routing routing problem satisfies the following
property: the route followed by v; depends on d(i) alone, and not on d(j) for any j # i. Oblivious routing
algorithms are attractive for thier simplicity of implementation: the communication hardware at each node in the
network can determine the next link on its route, simply by looking at the source and destination information
carried by a packet.

Theorem: 1.1 For any deterministic oblivious permutation routing algorithm on a network of N nodes each of

out-degree d, there is an instance of permutation routing requiring 2 (%) steps [1].

We shall focus on Boolean Hypercube networks which is a popular network for parallel processing. The hy-
percube network contains N = 2" processing elements/nodes and is connected in the following manner. If
(i0y-++yin—1) and (jo,...,Jn—1) are the (ordered) binary representations of node i and node j respectively, then
there exists a directed edge e;; € E and a directed edge e;; € E if and only if (i0,...,in—1) and (jo,...,Jn—1)
differ in exactly one position. Note that the maximum number of transitions is bounded by d = log (2") = n

000 001

100 — 101

‘ 010

011

F
L 2

110 111

F 3
L 2

Figure 1: An example of a hypercube

1: Given that the source and destination addresses are n-bit vectors, consider the following simple choice of
route to send v; from i to the node o(i):

2: Scan the bits of (i) from left to right, and compare them with the address of the current location of v;.

3: Send v; out of the current node along the edge corresponding to the left most bit in which the current position
and o (i) differ.

Algorithm 1.1: Bit Fixing Algorithm

1.2 Bit Fixing Strategy

We describe a simple routing strategy where each packet takes a route depending only on its source and destination
nodes. We call this the bit fizing strategy as shown in algorithm 1.1.
The strategy is best explained through an example. In order to go from (1,1,0,1) to (0,0,0,0), the packet

takes the following path:
(]'7 17 07 1) _> (07 1707]') _> (07 0707]') _> (07 0707 0)'

Note that the number of transitions required by the bit-fixing algorithm to route between arbitrary nodes of the
hypercube is bounded from above by n = log(N).

1.3 Randomized Oblivious Routing

We now study a randomized oblivious routing algorithm and show that it takes considerably fewer number of

steps (expected) than Q(y/&). This algorithm is a two-phase process as shown below in algorithm 1.2.

1: Pick a random intermediate destination o(i) from {1,...,N}.
2: Packet v; travels to node (7).
3: Packet v; travels from (i) on to its destination d(7).

Algorithm 1.2: Randomized Oblivious Routing Algorithm

Both phases use the bit fixing algorithm to determine the routes. Since each packet chooses its intermediate
destination independently of the remaining packets, the scheme is oblivious. Note that since o(i) come from
independent distributions, it is possible that o (i) = o(j) for i # j; thus o, is not a permutation.

Lemma: 1.1 Let the route of v; follow the sequence p; = (e1,...,ex). Let S be the set of packets (other than v;)
whose routes pass through at least one of {e1,...,er}. Then, the delay incurred by v; is at most |S|.

To prove this lemma, we need to prove the following points:

o If the bit fixing algorithm is used to route a packet v; from i to d(i) and v; from j to d(j), then their routes
do not rejoin after they separate.

e The lag of packet v; is at most |S|.

Proof: Let k be the node at which the two paths separate and [be the node at which they rejoin. Note that the
route determined by the bit fizing scheme for v; and v; from k to | depends only on the bit representations of k
and I, therefore v; and v; must follow the same route. A contradiction to the assumption that k is the last node
before the paths separate.

Let p; = (e1,...,ex) be the path followed by v;. We define the lag of any packet v relative to p; as t — j if it
is ready to follow edge e; at time t. The lag of v; is initially zero, and the delay incurred by v; is its lag when it
traverses er,. We will show that each step at which the lag v; increases by one can be charged to a distinct member
of S.

We shall charge the increase of lag of v; from l tol + 1 to a packet leaving p; with a lag of l. There ezists a
packet with the lag of | preceding v; in the queue else the lag of v; would not have increased.

Let t' be the last time step at which any packet in S has a lag l. Note that there are only a finite number
of time steps. There is a packet v demanding e;r at t' such that t' — j' = 1. Since v demands ej, a packet w
actually travels on ej at time t'. w must leave p; at time t' or else it would demand ej 1 at time t' + 1 implying
some packet must actually follow ej 11 at time t' + 1 violating the mazimality of I. Now, w never returns to p;.
Therefore, we charge every increase in lag to a packet in S at most once. O

Now we carry out the analysis of the expected time to transfer all the packets. Define a random variable
H;; =1if p; and p; share at least one edge, and 0 otherwise. It follows that the total delay incurred by v; is at
most Y7, Hij. Therefore,

Upper Bound < 37| Hij.

Since, the routes of various packets are chosen independently at random, the H;;’s are independent Poisson
trials for j # i. Thus, to bound the dealy of packet v; from above using the Chernoff bound, it is enough to
obtain an upper bound on the 2?21 H;;. To do this we first bound £ [2?21 H”}

For an edge e of the hypercube, let the random variable T'(e) be the number of routes that pass through e. If
pi = (e1,-..,ex), then

n k
> Hy < T(e). (1)
j=1 i=1

This follows from the fact that the total delay is bound by the total number of routes that pass through this
route, and therefore

k

> T(e)

i=1

E Zn:H <E
j=1

Since, all edges in the hypercube are symmetric, E[T(e;)] = E[T (ey,)] for any two edges e; and e,,. The total

number of edges in the directed graph is Nn counting n edges per node. The expected length of each route is &

2
(See Appendix §A.) and hence the expected length of the total route length summed over all packets is % In

other words,

IS

E[T(e)] =

) 2
S

for all e € E. Then, it follows from (1) that

Note that the routes of the packets are chosen independently at random. Therefore, for a fixed ¢ and j # i, the
H;;’s are independent Poisson trials. We may then apply the Chernoff bound to obtain the following probabilistic
bound on Y7_, Hj; with = §:

FF (p,6) < 27 (1+0m

Pr {i: H;; > GTL} <276,

j=1

It must be noted that the Chernoff bound may not be applied to Ele T'(e;), since T'(e;) are not independent
variables (and in fact are not Possion trials). We use the quantity Zle T'(e;) only to obtain an upper bound on

E [2?21 Hij], and then apply Chernoff bound to 2?21 H;j, which is the sum of independent variables.

Since, the total number of packets is N = 2", the probability that any of them experiences a delay exceeding 6n
is less than 2™ x 2767 = 2752 Adding the length of the route to the delay gives 7n as the number of steps taken
by v; in phase 1. It follows that:

Theorem: 1.2 With probability at least 1 — 275", the packet v; reaches t; in Tn or fewer steps.

The Phase 2 of this scheme is identical to Phase 1, if the roles of the destination and source are interchanged.
The above analysis is hence valid for the second phase also. Therefore, the probability that any packet fails to
reach its target in either phase is less than 2 x 275" which is less than 27" = % Combining these facts, we have:

Theorem: 1.3 With a probability at least 1 — (%), every packet reaches its destination in 14n or fewer steps.

2 Wiring Problem

In this section, we consider an application of the Chernoff bound to the global wiring problem in gate arrays.

A gate-array is a two-dimensional \/n X /n array of gates abutting each other, arranged at regularly spaced
points in the plane. The gates are numbered from 1 through n. A logic circuit is implemented on such an array
by connecting together some of the gates using wires. The maximum number of wires crossing any gate boundary
is minimized, under the following restrictions:

1. Manhattan routing — two cells can be connected if and only if they are adjacent horizontally or vertically;
in other words, diagonal connections are not allowed.

2. Every wire connecting a pair of cells can have at most one 90-degree bend.

A net is a set of gates to be connected by a wire. Wires run over the array in ”Manhattan” form, i.e., they
run parallel to the axes of orientation of the gate-array. For instance, in Figure 2, n is 9 and we have 4 wires each
of which connects a pair of gates. Each gate is represented as a square with thin lines defining the boundaries.
Each net connects a pair of gates, and has the same number marking its end-points. Note that in some cases a
gate contains the end-point of more than one net.

In practice, the wiring problem is usually accomplished in two sequential phases: global wiring and detailed wiring.
In the global wiring phase, we only specify which gates a wire will pass over in connecting its end-points. Thus, in

Figure 2: A gate — array with 9 gates

Figure 2, the global route for net 4-4 passes through the three gates in the right-most column of the array. This
is followed by the detailed wiring phase, in which the exact positions of the wires along their routes are specified
- in our example, we would specify that the wire for net 4-4 lies to the right of the wire for net 3-3 as it leaves
the top-right gate, and so on. Here we only concern ourselves with the global wiring phase.

The boundary between adjacent gates in an array has a fixed physical dimension and can therefore accomodate
only a prescribed maximum number of wires, say w. We want to find an assignment of global routes to all the nets
in the wiring problem, such that no more than w nets pass through any boundary. Let wg denote the maximum
number of wires through any boundary b in solution S. Therefore, ws = max, ws(b). Our goal is to minimize
wg over all solutions S. We can phrase the problem as an integer programming problem as follows:

2.1 Integer Programming

For each wire (net) i, define two indicator variables X;p and X;; as follows:

Xio = 1, and
Xi

I
o

if wire 7 is routed first horizontally and then vertically

Xio = 0, and
Xi1 = 1, if wire ¢ is routed first vertically and then horizontally

Recall that only one bend is allowed in a wire.
Let Tyo denote the set of wires ¢ that cross the gate boundary b if i is routed horizontally first. Similarly, let
Ty, denote the set of wires that cross b if the wires are routed vertically first. This is defined as follows:

Tyo = (i]i crosses b, if X;0 =1)

Tp1 = (i|i crosses b, if X;; = 1)

Then, we formulate the integer programming of the problem as shown in algorithm 2.1.

It can be shown that the global wiring problem is NP-complete. Consequently, the integer programming
formulation does not admit an efficient solution (unless P=NP). Our approach to the problem is to relax the
integrality constraints using linear programming and solve the resultant linear program.

The objective is to minimize w under the following conditions:

Vi: Xi0,Xs1 € {0, 1}
Vi : XiO + X,’l =1
Vb Y X+ » Xy < w
i€Tho i€Tp

Algorithm 2.1: Integer Program for Wiring Problem

2.2 Linear Programming

This is done by relaxing the integrality constraints X;o € {0, 1} to X;o € [0,1]. Therefore,

Vi X0, Xi1 € {0, 1}

is replaced with the pairs of inequalities

Vi:0< Xy <1

The other constraints remain the same. We then use the solution of the linear program to compute an
approzimate solution to the integer program. Let us denote the variables corresponding to the optimal solution
of the linear program by X,O and X,l Note that the X,O s and Xd s may be fractional values and therefore are
not directly usable. In order to use them, we need a rounding procedure that converts fractional values to {0, 1}
values. In the next section, we shall study one such technique called Randomized Rounding.

2.3 Randomized Rounding

Randomized rounding technique is simply rounding up the real answer with a probability equal to the value of
the real variable.Thus, .
PI“ [Xlo =] = XiO
Similarly, X .
Pr [le = 1] = Xil =1- XiO

Let X0, X;1 denote the corresponding rounded values. Then we express the randomized rounding algorithm
as shown in algorithm 2.2.

1: Independently, for each i, set X;o to 1 and X;1 to 0 with probability X;o
2: Otherwise, set X;9 to 0 and X;; to 1.

Algorithm 2.2: Randomized Rounding Algorithm

While the above procedure maintains net feasibility, it could result in a solution that does not minimize w.
Let wo denote the optimum solution of w for the integer program, Theorem (2.1) will prove that the randomized
rounding will obtain a close solution to the optimum solution with high probability.

Theorem: 2.1 Let € be a real number, 0 < € < 1, then with probability 1 — €, the global wiring S produced by
randomized rounding satisfies

<é @, —)) < (@, —
ws SO+ AT(@, 5-)) Swoll + AT (@, 5-))

Proof: We establish that following the rounding process, with probability at least 1 — €, no boundary in the
array has more than ©(1 + AT (&, 5-)) wires passing through it. We will do so by showing that for any particular
boundary b, the probability that w,(b) > &(1 + AT (0, 5=) is at most 5=; then, since a \/n X \/n array contains
fewer than 2n boundaries, we can sum this probability of failure over all the boundaries b to get an upper bound
of € on the failure probability.

Consider a boundary b; since the solutions of the linear program satisfy its constraints, we have
Z Xio + Z Xi <o (2)
1€Tho 1€Tp1
The number of wires passing through b in the solution S is
ws(b) = Z Xio + Z Xir. (3)
i€Tpo i€Tp

But X o and_yil are Poisson trials with probabilities Xio and Xil, respectively. Further, X and X are each
independent of X jo and X j1 for i # j. Therefore, ws(b) is the sum of independent Poisson trials and, by (2) and

(3);

Blws®)] = Y. E[Xwnl+ > E[Xa]

1€Tho 1€Tp1
= E Xio + E X <w
1€Tho 1€Tp1

Now by applying Chernoff Bound, which states that for any positive p and €, a deviation of & = AT (u,¢)
suffices to keep Pr[X > (1 + d)u] below €. Therefore,

€ €
P b W14+ AT (@, —)] < —
ws(8) > 61+ AY(@,)] <
Since, for any particular boundary b, the probability that w,(b) > &(1+ A1 (&, 5=) is at most 5=; and there are
fewer than 2n boundaries, we can sum this probability of failure over all the boundaries b to get an upper bound

on the failure probability.

The probability of union of events is less than or equal to the summation of probabilities, then, the upper bound
of failure is 5~ % 2n = €. Therefore, with probability 1 — €, the global wiring S produced by randomized rounding
satisfies

€

ws < O(1+ AT (@, 5-)) <wo(l+A% (@,)

n n

A Expected Route Length of The Bit-Fixing Strategy

Given: A hypercube network which contains N = 2" processing elements.
Required: To calculate the expected number of edges in a route using bit fixing strategy.

Each packet starts from a fixed node and could have as its destination any of the N = 2" nodes of the
hypercube, chosen uniformly at random. The crucial observation is that the length of the route from a source
node to its randomly chosen destination is equal to the number of bit flips in the vector representation of these
two nodes!

Accordingly, if the number of bit changes is 1, then there will be n different routes to choose from (depending
on the bit location). if the number of bit changes is 2, then there will be (%) different routes to choose from and
so on. This is illustrated in the following table .

Number of bit changes | Number of different routes | Number of edges traversed
0 0 0
1 n 1
2 (2) 2
3 () 3
n () n

Let X be a random variable that indicates the number of edges traversed in a route, i.e. the length of the
_ 1 _ Number of routes with i edges
route. Pr[X =i] =

Number of all routes
Observe that the total num]?a

er of all routes originating from a given vertex is given by:

n

>

=0

where (1), represente the number of routes of length 7. Using binomial identities, we conclude that the total
number of routes = 2".

Therefore, the expected number of edges traversed is given by:

E[X] = Xn:z x PriX = i]

0. +1.(M+2.5)+...+n.(})
an

n
2
In the above proof, we used the binomial identity:

Zi x (M) =n2"t
i=0

This follows from the expansion of the binomial as follows:

(a+b)" = a"+(Ha" o+ (3)a" 2 + ...+ (J_y)ab™ + 0"

n—1

Differentiate both sides with respect to b,

na+b)"" = (Ha"'+23)a"b+...+n—-1) (7) ab" " +nd"!

Substitute a =1 and b=1

n(l+1)"1
Therefore,

dix(p = n2m!
=0

IM+2E) +...+m-1)(_y) +n

References

[1] Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight bounds for oblivious routing in the
hypercube. Mathematical Systems Theory, 24(4):223-232, 1991.

