
The Probabilistic Method

Lin Yang
LDCSEE

West Virginia University,
Morgantown, WV

{yang@csee.wvu.edu}

1 Introduction

In this lecture, we will study some basic principles of the probabilistic method, a combinatorial tool with many
applications in computer science. This method is a powerful tool for demonstrating the existence of combinatorial
objects. We introduce the basic idea through several examples drawn from early lecture notes, and follow that by
a detailed study of the maximum satisfiability (MAX-SAT) problem. We then introduce the notion of expanding
graphs and apply the probabilistic method to demonstrate their existence. These graphs have properties that
prove useful in later lecture notes, and we illustrate these properties via an application to probability amplification.

In certain cases, the probabilistic method can actually be used to demonstrate the existence of algorithms, rather
than merely combinatorial objects. We illustrate this by showing existence of efficient non-uniform algorithms
for the oblivious routing. We then present a particular result, the Lovász Local Lemma, which underlies the
successful application of the probabilistic method in a number of settings. We apply this lemma to the problem
of finding a satisfying truth assignment in an instance of SAT problem where each variable occurs in a bounded
number of clauses.

2 Overview of the Method

There are two recurrent themes in the probabilistic method.

1. Any random variable assume at least one value that is no smaller than its expectation, and at least one
value that is no greater than its expectation.

2. If an object chosen randomly from a universe satisfies a property with positive probability, then there must
be an object in the universe that satisfies that property. For instance, if we were told that a ball chosen
randomly from a bin is red with probability 1/3, then we know that the bin contains at least one red ball.

Considering the following examples:

1. Ramsey Number of A Graph
Let Kn be a complete graph with n vertices.

Now let us consider this problem. Two-coloring of a graph is that each edge of the graph is colored ei-
ther blue or red. The Ramsey Number R(k, l) is the smallest integer n such that in any two-coloring of the
edges of Kn by red and blue, either there is a red Kk (i.e., a complete subgraph on k vertices all of whose
edges are colored red) or there is a blue Kl. Ramsey showed thatR(k, l) is finite for any two integers k and
l. Let us obtain a lower bound for the Ramsey number R(k, k).

1

Claim: 2.1 if
(

n
k

)
2
1−

(
k
2

)
< 1 then R(k, k) > n. Thus R(k, k) > 2b

k
2 c for all k ≥ 3

Proof: Consider a random two-coloring of the edges of Kn obtained by coloring each edge independently
either red or blue, where each color is equally likely. For any fixed set R of k vertices, let AR be the event
that the induced subgraph of Kn on R is monochromatic (i.e., that either all its edges are red or they are
all blue). Each edge is colored either blue or red with a probability half. Thus the probability that all edges

of the subgraph are colored either blue or red is (1
2)

(
k
2

)
. Clearly,

Pr[AR] = 2(
1
2
)

(
k
2

)
= 2

1−

(
k
2

)

Since there are
(

n
k

)
possible choices for R, the probability that at least one of the events AR occurs is at

most
(

n
k

)
2
1−

(
k
2

)
< 1. Thus, with positive probability, no event AR occurs and there a two-coloring

of Kn without a monochromatic Kk, i.e., R(k, k) > n. Note that if k ≥ 3 and we take n = 2b
k
2 c then

(
n
k

)
2
1−

(
k
2

)

=
n!

k!(n− k)!
× 2

2
k!

2(k−2)!

Here we use the Stirling’s approximation,
n! = (

n

e
)n

=
n!

k!(n− k)!
× 2

2
k!

2(k−2)!

=
(2k/2

e)k/2

k!(n− k)!
× 2

2
k!

2(k−2)!

<
21+ k

2

k!

(n

2k/2

)k

≤ 21+ k
2

k!
� 1

and hence
R(k, k) > 2b

k
2 c

2

2. Binary Planar Partition
We have the following theorem from lecture note II.

Theorem: 2.1 The expected size of the autopartition produced by RandAutois O(n log n).

2

This asserts that for any set of n disjoint line segments in the plane, the expected size of the autopartition
found by the RandomAuto algorithm is O(n log n). From this way we may conclude that for any set of n
disjoint line segments in the plane, there is always an autopartition of size O(n log n). This follows directly
from the fact that if we were to run the RandoAuto algorithm, the random defined to be the size of the
autopartition can assume a value that is no more than its expectation; thus, there is an autopartition of
this size on any instance.

3. Game Tree Evaluation
Any algorithm for game tree evaluation that produces the correct answer on every instance develops a
certificate of correctness: for each instance, it can exhibit a set of leaves whose values together guarantee
the value it declares by the algorithm of the previous lecture related to this topic, the expected number of
leaves inspected by the algorithm on any instance of T2,k is at most n0.793, where n = 22k. It follows that
on any instance of T2,k, there is a set of n0.793 leaves whose values certify the value of the root for that
instance.

4. Set-Balancing Problem
For every n × n 0-1 matrix A, for a randomly chosen vector b ∈ {−1,+1}n, we have ‖ Ab ‖∞≤ 4

√
n lnn,

with probability at least 1 − 2/n. From this we may conclude that for every such matrix A, there always
exists a vector b ∈ {−1,+1}n, such that ‖ Ab ‖∞≤ 4

√
n lnn.

5. Max-Cut Problem
Let us consider another example concerning the problem of finding a large cut in a graph. Given an
undirected graph G =< V,E > with n vertices and m edges, we wish to partition the vertices of G into two
sets of A and B so as to maximize the number of edges (u, v) such that u ∈ A and V ∈ B. This problem
is sometimes referred as the max-cut problem. The problem of finding an optimal max-cut is NP -hard; in
contrast, the min-cut problem has a polynomial time algorithm.

Theorem: 2.2 For any undirected graph G =< V,E > with n vertices and m edges, there is a partition of the
vertex set V into sets A and B such that

|{(u, v) ∈ E | u ∈ A and v ∈ B}| ≥ m/2

Proof: Consider the following experiment. Each vertex of G is independently and equiprobably assigned to either
A or B.

For an edge u, v, the probability that its end-points are in different sets is 1/2. Following is a brief proof of
why the probability is 1/2.

Proof: The two end points of edge u is u1 and u2, and v has v1 and v2.
Let x1 = 1, if either u1 or u2 v1 or v2 are in different set.
x2 = 0, otherwise.

Pr[x1] =
1
2

E[x1] = 0× 1
2

+ 1× 1
2

The graph has m edges,

E[X] =
m∑

i=1

E[xi]

By linearity of expectation,
E[X] =

m

2
2

3

By linearity of expectation, the expected number of edges with end-points in different sets is thus m/2. It fol-
lows that there must be a partition satisfying the theorem. 2

3 Maximum Satisfiability

Given a set of m clauses in conjunctive normal form over n variables, decide whether there is a truth assignment
for the n variables that satisfies all the clauses. We may assume without loss of generality that no clause con-
tains both a literal and its complement, since such clause are satisfied by any truth assignment. Consider the
following optimization version the problem: rather than decide whether there is an assignment that satisfies all
the clauses, we instead seek an assignment that maximizes the number of satisfied clauses. This problem, called
the MAX-SAT problem, is known to be NP-complete .

Theorem: 3.1 For any set of m clauses, there is an assignment to the input that satisfies at least m/2 clauses.

Proof: Suppose that each variable is set to TRUE or FALSE independently and equiprobably. For 1 ≤ i ≤ m,
let Zi = 1 if the ith clause is satisfied and 0 otherwise. For any clause containing k literals, the probability that
it is not satisfied by this random assignment is 2−k, since this event takes place if and only if each literal gets a
specific value, and the (distinct) literals in a clause are assigned independent values. This implies that that the
probability that a clause with k literals is satisfied is 1 − 2−k ≥ 1/2, implying that E[Zi] ≥ 1/2 for all i. Let
Z = Z1 + Z2 + · · · + Zm. By linearity of expectation, the expected number of clauses satisfied by this random
assignment is

∑m
i=1 E[Zi] ≥ m/2. 2

This results holds regardless of whether the instance has a satisfying assignment. Let us continue with the
MAX-SAT problem, in which our goal is to maximize the number of clauses that are satisfied. This problem
being NP-complete, we seek approximation algorithms. It turns out that variants of the probabilistic existence
proof of Theorem 3.1 can actually be turned into approximation algorithms; we explore this theme for the re-
minder of this section.

Given an instance I, let m∗(I) be the maximum number of clauses that can be satisfied, and let mA(I) be the
number of clauses satisfied by an algorithm A. The performance ratio of an algorithm A is defined to be the infi-
mum (over all instances I) of mA(I)/m∗(I). If A achieves a performance ratio of α, we call it an α-approximation
algorithm. For a randomized algorithm A, the quantity ma(I) may be a random variable, in which case we
replace mA(I) by E[mA(I)] in the definition of performance ratio. Note that unlike the satisfiability problem
(in which we seek to satisfy all clauses), we may choose to leave some clauses unsatisfied in the MAX-SAT problem.

We now give a simple randomized algorithm that achieves a performance ratio of 3/4. The idea is to formu-
late the problem as an integer linear program, solve the linear programming relaxation, and then to round using
the randomized rounding technique introduced in Chapter 4.

With each clause Cj in the instance, we associate an indicator variable zj ∈ {0, 1} in the integer linear pro-
gram to indicate whether or not that clause is satisfied. For each variable xi, we use an indicator yi. Let yi = 1
if the variable xi is set TRUE, ,and yi = 0 otherwise. Let C+

j be the set of indices of variables that appear in the
uncomplemented form in clause Cj , and C−

j be the set of indices of variables that appear in the complemented
form in clause Cj . We try to maximize

m∑
j=1

zj

where
yi, zj ∈ {0, 1} (∀i and j)

4

subject to ∑
i∈C+

j

yi +
∑

i∈C−
j

(1− yi) ≥ zj (∀j)

Let ŷi be the value obtained for yi by solving this linear program, and let ẑi be the value obtained for zi by solving
this linear program. Clearly

∑
j ẑj is an upper bound on the number of clauses that can be satisfied in this instance.

For any positive integer k, let βk denote 1− (1− 1/k)k. For a clause Cj with k literals, the probability that it is
satisfied by randomized rounding is at least βkẑj .

Clause Cj = (x1, x2, . . . , xk), and
x̂1 + x̂2 + · · ·+ x̂k ≥ ẑj

1−
k∏

i=1

(1− x̂i) ≥ βkẑj

βk = 1− (1− 1
k

)k

lim
k→∞

(1− 1
k

)k =
1
e

Therefore,

βk = 1− (1− 1
k

)k ≥ 1− 1
e

f(x) = 1− (1− x
k)k is a concave function on [0, 1] (See Appendix).

When k = 1,
f(x) = 1− (1− x) = x

When k = 2,
f(x) = 1− (1− x

2
)2

= 1− (
x2

4
− x + 1)

= −x2

4
+ 4

5

Figure 1: concave function f(x) = x

Lemma: 3.1 Let Cj be a clause with k literals. The probability that it is satisfied by randomized rounding is at
least βkẑj.

Proof: In the linear program,
ŷ1 + · · ·+ ŷk ≥ ẑj

Since each variable is rounded independently, this occurs with probability
∏k

i=1(1− ŷi). So we have

1−
k∏

i=1

(1− ŷi) ≥ βkẑj

The expression on the left is minimized when ŷi = ẑj/k for all i. Also max n1, n2 ≥ n1+n2
2 . Therefore, it suffices

to show that 1 − (1 − z/k)k ≥ βkz for all positive integers k and 0 ≤ z ≤ 1. Since f(x) = 1 − (1 − z/k)k is
a concave (See Appendix A) function, to show that it is never less than a linear function g(x) over the interval
[0,1], it suffices to verify the inequality at the end-points x = 0 and x = 1. 2

By Lemma (??) and from linearity of expectation we have:

Theorem: 3.2 Given an instance of MAX-SAT, the expected number of clauses by linear programming and ran-
domized rounding is at least (1−1/e) times the maximium number of clauses that can be satisfied on that instance.

We now argue that on any instance, one of the algorithm is a 3/4 approximation algorithm. Given any instance,
we run both algorithms and choose the better solution. Let n1 denote the expected number of clauses that are
satisfied when each variable is independently set to 1 with probability 1/2. Let n2 denote the expected number
of clauses that are satisfied when we use the linear programming followed by randomized rounding.

6

Figure 2: concave function f(x) = −x2

4 + 4

Theorem: 3.3

max{n1, n2} ≥
3
4

∑
j

ẑj

Proof: Since max{n1, n2} ≥ n1+n2
2 , it suffices to show that (n1 + n2)/2 ≥ (3/4)

∑
j ẑj. Let Sk denote the set of

clauses that contain k literals, we know that

n1 =
∑

k

∑
Cj∈Sk

(1− 2−k) ≥
∑

k

∑
Cj∈Sk

(1− 2−k)ẑj

By Lemma(??), we have
n2 ≥

∑
k

∑
Cj∈Sk

βkẑj

Thus
n1 + n2

2
≥

∑
k

∑
Cj∈Sk

(1− 2−k) + βk

2
ẑj

Since (1− 2−k) + βk ≥ 3/2 for all k, so that we have

n1 + n2

2
≥ 3

4

∑
k

∑
Cj∈Sk

ẑj =
3
4

∑
j

ẑj

2

4 Expanding Graphs

Expanding graphs have found many uses in computer science and in telephone switching networks.

7

Intuitively, an expanding graph is a graph in which the number of neighbors of any set of vertices S is larger
than some positive constant multiple |S|. The following is a definition of a particular type of expanding graph
called an OR-concentrator. Recall that in a graph G(V,E) for any set S ⊆ V , the set of neighbors of S is
Γ(S) = {w ∈ V |∃v ∈ S, (v, w) ∈ E}.

Definition: 4.1 An (n, d, α, c) OR-concentrator is a bipartite multigraph G(L,R,E), with the independent sets
of vertices L and R each of cardinality n, such that

1. Every vertex in L has degree at most d.

2. For any subset S of vertices from L such that |S| ≤ αn, there are at least c|S| neighbors in R.

In most applications, it is desirable to have d as small as possible and c as large as possible, |Γ(S)| ≥ c|S|.

Theorem: 4.1 There is an integer n0 such that for all n > n0, there is an (n, 18, 1/3, 2) OR-concentrator.

Proof: Consider a random bipartite graph on the vertices in L and R, in which each vertex of L chooses its
neighbors by sampling (with replacement) d vertices independently and uniformly from R. Since the sampling is
with replacement, a vertex of L may choose a vertex in R more than once; we discard all but one copy of such
multiple edges. Let ξs denote the event that a subset of s vertices of L has fewer than cs neighbors in R. We will
first bound Pr[ξs], and then sum Pr[ξs] over the values of s no larger than αn to obtain an upper bound on the
probability that the random graph fils to be an OR-concentrator with the parameters we seek.

Fix any subset S ⊆ L of size s, and any subset T ⊆ R of size cs. There are
(

n
s

)
ways of choosing S,

and
(

n
cs

)
ways choosing T . The probability that T contains all of the at most ds neighbors of the vertices in

S is (cs/n)ds. Thus, the probability of the event that all the ds edges emanating from some s vertices of L fall
within and cs verticees of R is bounded as follows,

Pr[ξs] ≤
(

n
s

) (
n
cs

) (cs

n

)ds

We use the identity
(

n
k

)
≤ (ne/k)k and obtain

Pr[ξs] ≤
(ne

s

)s (ne

cs

)cs (cs

n

)ds

≤ (sd−c−1nc+1−de1+ccd−c)s

=
[(s

n

)d−c−1

e1+ccd−c

]s

Using α = 1/3 and s ≤ αn, we have

Pr[ξs] ≤

[(
1
3

)d−c−1

e1+ccd−c

]s

≤

[(
1
3

)d

3c+1e1+ccd−c

]s

8

≤
[(c

3

)d

(3e)c+1

]s

Using c = 2 and d = 18, we have

Pr[ξs] ≤

[(
2
3

)18

(3e)3
]s

Let r = (2/3)18(3e)3, and note that r < 1/2. We obtain that∑
s≥1

Pr[ξs] ≤
∑
s≥1

rs =
r

1− r
< 1

and the desired result follows. 2

We may easily see that by rounding the probabilities Pr[ξs] carefully, we can in fact show that our random
graph has a fairly good (rather than merely non-zero) probability of being an (n, 18, 1/3 , 2) OR-concentrator.
However, if we were to generate a random graph and argue that it has a very high probability of being an
OR-concentrator, we still do not know of an efficient way of verifying that graph generated is indeed an OR-
concentrator with the given parameters.

For many applications of expanding graphs, such a Monte Carlo guarantee is unacceptable - for instance, a
telephone company may be uncomfortable that the network it plans to build may by chance be inadequate.
Unfortunately, it is considerably harder to give a succinct ”formula” or a deterministic algorithm that, given
n, always generates such an expanding graph. We do have ”explicit constructions” that will, given n, generate
OR-concentrator with guaranteed bounds for d, α and c; but these bounds are somewhat weaker than the bounds
attainable using the probabilistic method.

5 Oblivious Routing

In this section we address the problem of oblivious permutation routing on the hypercube. We focus on the num-
ber of random bits used by the randomized oblivious algorithm. Comparing the performance of the randomized
algorithm with the negative result of Theorem 4.4, we find that our randomized oblivious algorithm achieves
an expected running time that no deterministic oblivious algorithm can achieve. Given that randomness is ab-
solutely necessary to beat the lower bound of

√
N/n steps for deterministic oblivious algorithms, we approach

the question that how much randomness is actually needed to achieve an algorithm with an expected time of O(n).

Each deterministic oblivious algorithm for an N -node network is a set of N2 routes, one for each source-sink
pair. Every randomized oblivious algorithm can be expressed as a pair of sets, {A1, . . . , AR} and {p1, . . . , pR},
where each Aj is a deterministic oblivious algorithm and pj is the probability that we use Aj on a run of the
randomized algorithm.

Theorem: 5.1 Consider any randomized oblivious algorithm for permutation routing on the hypercube with N =
2n nodes. If this algorithm uses k random bits, then its expected running time is Ω(2−k

√
N/n).

Proof: We have observed that any randomized oblivious algorithm is a probability distribution on deterministic
oblivious algorithms. Since only k random bits are used, at least one of these deterministic algorithms is chosen
with probability at least 2−k, on any execution. Denote this deterministic algorithm by A1. By the lower bound
of Theorem 5.1, there is an input that requires time Ω(

√
N/n) on A1. Feed this input to randomized algorithm;

9

with probability 2−k, the randomized algorithm chooses A1 and takes time Ω(
√

N/n). Thus, the expected running
time of the randomized algorithm is Ω(2−k

√
N/n). 2

Corollary: 5.1 Any oblivious algorithm for permutation routing on the hypercube with N = 2n nodes must use
Ω(n) random bits in order to achieve expected running time O(n).

Proof: The expected running time of the algorithm is

Ω(
√

N/n)

According to the definition of big-O, we have

2−k
√

N/n = cn

c is a constant
2−k

√
2n/n = cn

2−k2
n
2

n
1
2

= cn

2
n
2 = cn

3
2 2k

lg 2
n
2 = lg (cn

3
2 2k)

n

2
= lg c +

3
2

lg n + k

k =
n

2
− lg c− 3

2
lg n

We keep the dominant item and then have

k =
1
2
n = Ω(n)

2

Theorem: 5.2 For every n, there exists a randomized oblivious scheme for permutation routing on a hypercube
with N = 2n nodes that uses 3n random bits and runs in expected time at most 15n.

Proof: We will say that a set β = {B1, B2, . . . , Bt} of deterministic oblivious permutation routing algorithms on
the N -node hypercube is an efficient N -scheme if, for any instance, the expected number of steps using a randomly
chosen algorithm from β is at most 15n. To prove the theorem, for every N = 2n, there is an efficient N -scheme
for t = N3.

The hypercube has N nodes. When routing on the hypercube, the intermediate nodes of each of the N node
has a N1 + N2 + · · · + NN = NN execution. Each execution is a deterministic algorithms. So there are NN

possible deterministic algorithms on an execution. Let us denote these NN algorithms by Aj, 1 ≤ j ≤ NN . On
an N -node network, there are N ! distinct possible instances of permutation routing, one for each permutation on
{1, . . . , N}. By Theorem 4.7 of textbook, for any particular instance of the permutation routing problem, at most
1/N of Aj are bad.

Consider the following experiment: sample N3 indices i1, i2, . . . , iN3 independently and uniformly at random
from the range {1, 2, . . . , NN}. We shall show that the set of deterministic algorithms A = {Ai1 , . . . , AiN3} is an
efficient scheme.

10

The expected number of algorithms in A that are bad is at most N3(1/N) ≤ N2. Let Xj be 1 if Aj is bad
and 0 otherwise. Thus E[

∑
j Xj] ≤ N2. Since the Xj are independent Poisson trials, we use the Chernoff bound,

∆+(µ, ε) <

√
4 ln 1/ε

µ

to obtain that the probability that more than 2N2 of the algorithm in A are bad is less than e−N2/4. See following,

(1 + δ)µ = 2N2

µ = N2

1 + δ = 2

δ = 1

δ+(µ, ε) = 1

1 <

√
4 ln 1/ε

µ

ε ≤ e−N2/4

Let ε = e−N2/4.

Let βi denote the bad event that more than 2N2 algorithms in A are bad. Then for n ≥ 2,

Pr[∪N !
i=1βi] ≤

N !∑
i=1

Pr[βi]

≤ N !× e−N2/4

Here we use identity N ! = (N
e)N .

≤ NN

eN
× e−N2/4

≤ NN

e
N2
4 +N

Let α = NN

e
N2
4 +N

.

ln

(
NN

e
N2
4 +N

)
= ln α

N lnN − (
N2

4
+ N) = lnα

Since N2 is a dominant term here, thus,

lnα < 0

α < 1

Therefore,

Pr[∪N !
i=1βi] ≤

N !∑
i=1

Pr[βi]

< 1

11

Therefore, with positive probability, no more than 2N2 of the algorithms in A are bad for any instance of permu-
tation routing on the N -node hypercube. This means there exists a subset of N3 algorithms from {A1, . . . , ANN }
with the property that at most 2N2 algorithms in this subset are bad for any instance. Let us denote this subset
by β = {B1, B2, . . . , BN3}.
On any instance πi, a randomly chosen algorithm from β fails to route πi within 14n steps with probability at
most 2N2/N3 = 2/N . By reasoning similar to that in Exercise 4.6 of textbook of textbook, Thus, the expected
number of steps using an algorithm randomly chosen from β is less than 15n. 2

6 The Lovász Local Lemma

The Lovász Local Lemma is a tool in the probabilistic method that has found many applications in extremal
graph theory, in Ramsey theory, and in the theory of random graphs.

Suppose we have n events, each of which occurs with probability at most 1/2. In an instance of the proba-
bilistic method, each of the n events may correspond to one of n ways in which the probabilistic experiment could
fail. If the events were independent, we could then assert that with probability at least 2−n, none of these events
occurs. The Lovász Local Lemma generalizes this notion to the case where each of these events is independent
of all but a small number of other events. Let ξi, 1 ≤ i ≤ n be events in a probability space. Recall that ξi is
mutually independent of a set S of events if Pr[ξi| ∩j∈T ξj] = Pr[ξi], where T is any subset of events from S. The
main device in establishing this lemma is dependency graph G, in which there is a vertex representing each event
ξi. An event ξi is mutually independent of all other events ξj such that (ξi, ξj) is not an edge of the graph.

Lemma: 6.1 Let G(V,E) be a dependency graph for events ξ1, . . . , ξn in a probability space. Suppose that there
exists xi ∈ [0, 1] for 1 ≤ i ≤ n such that

Pr[ξi] ≤ xi

∏
(i,j)∈E

(1− xi)

Then

Pr[∩n
i=1ξ̄i] ≥

n∏
i=1

(1− xi)

Proof: Let S denote a subset of the indices from {1, . . . , n}. We first establish by induction on k = |S| that for
any S and for any i such that i /∈ S,

Pr[ξi| ∩j∈S ξ̄j] ≤ xi

(See Appendix A for the proof of the following probabilistic identity [1])

Pr[A|(B ∩ C)] =
Pr[(A ∩B)|C]

Pr[B|C]
[1]

The base case is S = φ. For the inductive step, ,we let S1 = {j ∈ S : (i, j) ∈ E}, and let S2 = S2/S1, by the
definition of conditional probability,

Pr[ξi| ∩j∈S ξ̄j] =
Pr[ξi ∩ (∩j∈S1 ξ̄j)| ∩m∈S2 ξ̄m]

Pr[∩j∈S1 ξ̄j | ∩m∈S2 ξ̄m]

We can bound the numerator to:

Pr[ξi ∩ (∩j∈S1 ξ̄j)| ∩m∈S2 ξ̄m] ≤ Pr[ξi| ∩m∈S2 ξ̄m]

12

= Pr[ξi]

≤ xi

∏
(i,j)∈E

(1− xj)

Suppose that S1 = {j1, . . . , jr}. If r = 0, then the denominator is 1; for r > 0, we invoke the induction hypothesis:

Pr[ξj1 ∩ · · · ∩ ξ̄jr
] = (1−Pr[ξj1 | ∩m∈S2 ξ̄m]) · · · (1−Pr[ξjr

|ξ̄j1 ∩ · · · ξ̄jr−1 ∩m∈S2 ξ̄m])

≥ (1− xj1) · · · (1− xjr
) ≥

∏
(i,j)∈E

(1− xj)

Pr[ξi| ∩j∈S ξ̄j] ≤ xi

Pr[∩n
i=1ξ̄i] = (1−Pr[ξ1])(1−Pr[ξ2|ξ̄1]) · · · (1−Pr[ξn| ∩n−1

i=1 ξ̄i])

≥
n∏

i=1

(1− xi)

2

Corollary: 6.1 Let ξ1, . . . , ξn be events in a probability space, with Pr[ξi] ≤ p for all i. If each event is mutually
independent of all other events except for at most d, and if ep(d + 1) ≤ 1, then Pr[∩n

i=1ξ̄i] > 0.

(
1− 1

d + 1

)
=

1
e

xi =
1

d + 1

We now apply Corollary 6.1 to prove k-SAT (each clauses has exactly k literals. Suppose that each of the n
variables appears (complemented or uncomplemented) in at most 2k/50 clauses. Let m denote the number of
clauses.

Consider a random truth assignment of values to the variables, in which each variable is independently fixed
to be 0 or 1 with probability 1/2. For 1 ≤ i ≤ m, let ξi denote the event that the ith clause is not satisfied by this
random assignment. Since each clause contains k literals, we have Pr[ξi] = 2−k, for 1 ≤ i ≤ m. The event ξi that
the ith clause is not satisfied is independent of all other events ξj , except those j such that clause i and clause j
share at least one variable. The number of clauses j that share a variable with a specific clause i cannot exceed the
total number of clauses containing the variables that appear in clause i, and this is at most k2k/50. We now apply
Corollary 5.12 with d = k2k/50, and conclude that with positive probability the random truth assignment satisfies
all m clauses. Thus, there must be a satisfying truth assignment for any instance of SAT meeting these conditions.

Corollary 6.1 merely tells us that a random assignment is good with positive probability, but this probabil-
ity is small. We may have to try the random assignment many times before we succeed in finding one that
satisfies all m clauses. We now describing a Las Vegas randomized algorithm that runs in time polynomial in m,
yielding a satisfying truth assignment.

Let G denote the dependency graph - each clause corresponds to a vertex of G, and two vertices are adja-
cent in G if the corresponding clauses share one ore more variables. Note that if clause C1 contains literal x1,
,and clause C2 contains literal x̄1, then the vertices C1 and C2 are adjacent.

At any point in the algorithm, some variables have been fixed to 0 or 1, while others remain unspecified yet;
initially, all variables are unspecified. The algorithm consists of two stages; the first stage will fix values for some
od the variables and defer the rest to the second stage. We call a clause dangerous if both the following conditions
hold:

13

1. k/2 literals of the clause Ci have been fixed.

2. Ci is not satisfied yet.

For any dangerous clause, we defer its remaining unspecified variables to the second stage, skipping them over
in the sequential random assignment. At the end of the first stage, we say that a clause has survived if it is not
satisfied by the variables fixed in the first stage.

For the second stage we need only consider the variables that were unspecified at the end of the first stage,
and the clauses that survived. A clause Ci can survive the first stage for one two two reasons:

1. It became dangerous, or

2. All variables corresponding to its unspecified literals were deferred because other clauses containing these
variables (and, hence, adjacent to Ci) became dangerous

Therefore, a clause Ci may survive as a result of any one of up to d + 1 clauses becoming dangerous - Ci itself,
and its d neighbors. Every clause that survived has at least k/2 unspecified variables.

Exercise: Apply Corollary 6.1 to show that there is a truth assignment of the deferred variables that satis-
fies all the surviving clauses. (Again, consider a random assignment.)

The second stage will find a truth assignment. The probability that any particular clauses becomes danger-
ous during the first stage is at most 2−k, since exactly k/2 of its literals have their values fixed, and none of these
random variables satisfy the clause. This implies that the probability that a clause survive is at most (d+1)2−k/2.

Consider the subgraph of G induced by the vertices corresponding to the surviving clauses. In Lemma 6.2
below, we will show that with high probability, all connected components of this induced subgraph of G have
size O(log m). Notice that two surviving clauses from different connected components of this subgraph cannot
share a deferred variable. Therefore, the deferred variables can be uniquely assigned to distinct components of
the subgraph G induced by the surviving clauses. For any particular connected component, the total number
of deferred variables in its clauses must be O(log m); in time polynomial in m, we can enumerate the 2O(log m)

truth assignments for these variables until that satisfies all clauses in this component. The second stage consists
of repeating this process independently for each connected component, giving a polynomial time algorithm for
assigning values to the deferred variables so as to satisfy all surviving clauses.

Lemma: 6.2 With probability 1 − o(1), all connected components of G induced by the clauses that survive the
first stage have size at most zlogm, for a fixed constant z.

Proof:Consider a collection of clauses C1, . . . , Cr such that every pair of these has distance as least 4 in G. Each
clause Ci survives only if at least one of the d + 1 clauses at distance at most 1 it turns dangerous during the
first stage. For each Ci, let Di be any one dangerous clause at distance at most 1 from it. Since the Ci’s are at
distance 4 from each other, the Di’s must be distinct.

There are at most (d+1)r possible ways of choosing the clauses D1, . . . , Dr. Since each of the clauses D1, . . . , Dr

is at at distance 1 from some clause in the set C1, . . . , Cr, ,they must be at distance at least 2 from each other
and hence have disjoint sets of variables. The probability that D1, . . . , Dr all become dangerous is at most 2−rk/2.
Thus, for a set of of r clauses every pair of which is distance at least 4 apart in G, the probability that they all
survive is at most

[(d + 1)2−k/2]r

We must bound the probability that some connected subgraph of G of size zlogm survives. To this end we introduce
a graph-theoretic device known as 4 − tree. Call a subset T of clauses a 4 − tree if the following two properties
hold:

14

1. The distance in G between every pair of these clauses is at least 4.

2. If we form a new graph in which two clauses are adjacent if their distance in G is exactly 4, T is connected.

We first bound the number of 4-trees of size r and use this to bound the probability that a large 4-tree survives.
By arguing that a large connected subgraph of G must contain a large 4-tree, we will finally conclude it is unlikely
that a large connected subgraph survives.

Define a new graph G4 as follows: there is a vertex for each clause, and two vertices are adjacent in G4 if
their distance in G is 4. Each vertex of G4 has O

(
d4

)
neighbors. The number of 4-trees of size r in G is no more

than the number of connected subgraphs in G4 of size r. The number of subgraph of G4 of size r is at most

amd8r

For some constant a, and this is an upper bound on the number of 4-trees of size r in G. By having the analysis
above, we conclude that the probability that any 4-tree of size larger than b log m survives the first round is o(1),
for a suitably large constant b.

For any connected subgraph in G there is a maximal 4-tree T , together with at most 3d3 − 1 other vertices
within distance 3 of a vertex of T . Thus the size of this subgraph is at most 3|T |d3. We conclude that the proba-
bility of survival of any connected subgraph of size exceeding 3bd3 log m is o(1).
2

If the first stage results in a connected component larger than this bound, we repeat it; the expected num-
ber of repetitions is less than 2. Thus, we assume that we enter the second stage of the algorithm with every
surviving connected component having size O(logm). The number of unspecified variables associated with each
of these components is also O(log m), and in time polynomial in m we can find values for them that satisfy all
the clauses. Since no variable is shared by two or more components, we can treat each component in isolation.
Clearly the expected running time of this algorithm is polynomial in m.

Theorem: 6.1 The above algorithm finds a satisfying truth assignment for any instance of k-SAT containing m
clauses in which each variable is contained in at most 2k/50 clauses, in expected time polynomial in m.

15

A Appendix: Some Important Results

A.1 Concave Functions

To extend the notions of concavity and convexity to functions of many variables we first define the notion of a
convex set.

Definition: A.1 A set S of n-vectors is convex if (1− λ)x + λx′ ∈ S whenever x ∈ S, x ∈ S, and λ ∈ [0, 1].

Therefore, we have the following definition for Concave Functions.

Definition: A.2 Let f be a function of many variables, defined on a convex set S. We say that f is concave if
the line segment joining any two points on the graph of f is never above the graph.
Then f is concave on the set S if for all x ∈ S, all x′ ∈ S, and all λ ∈ (0, 1) we have

f((1− λ)x + λx′) ≥ (1− λ)f(x) + λf(x′)

Figure 3: Concave Functions

f(x) = 1− (1− x

k
)k

f((1− λ)x + λx′)

= 1−
(

1− (1− λ)x + λx′

k

)k

≥ (1− λ)f(x) + λf(x′)

≥ (1− λ)
(
1− (1− x

k
)k

)
+ λ

(
1− (1− x′

k
)k

)

16

A.2 A Proof of A Probabilistic Identity

Pr[A|(B ∩ C)] =
Pr[(A ∩B)|C]

Pr[B|C]

Proof: By using the following identities,

Pr[E|F] =
Pr[EF]
Pr[F]

Pr[E ∩ F] = Pr[E|F]×Pr[F]

Therefore,

Pr[A|(B ∩ C)] =
Pr[(A ∩B ∩ C)]

Pr[B ∩ C]

=
Pr[(A ∩B) ∩ C]

Pr[B ∩ C]

=
Pr[(A ∩B)|C]×Pr[C]

Pr[B|C]×Pr[C]

=
Pr[(A ∩B)|C]

Pr[B|C]
2

References

[1] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Univrsity Press,
1995.

[2] Martin J. Osborne. Concave and convex functions of many variables.
http://www.chass.utoronto.ca/ osborne/MathTutorial/CVN.HTM

17

