
Markov Chains and Random Walks

Jinqiao Yu
LDCSEE

West Virginia University,
Morgantown, WV
{jyu@csee.wvu.edu}

Let G = (V,E) be a connected, undirected graph with n vertices and m edges. For a vertex v ∈ V , Γ(v)
denotes the set of neighbors of v in G. A random walk on G is the following process, which occurs in a sequence
of discrete steps: starting at a vertex v0, we proceed at the first step to a random edge incident on v0 and walking
along it to a vertex v1, and so on. ”Random chosen neighbor” will mean a neighbor chosen uniformly at random;
the choice at each step is independent of all previous choices.

Two typical questions about random walk in a complete graph Kn:

Let u and v be two vertices in Kn.
1.Starting from vertex u, what’s the expected number of steps of first reaching v?
2.Starting from vertex u, what’s the expected number of steps to visit every vertex in the graph?

Answers:
1. The expected number of steps starting from u to first reach v is n− 1.
Solution: Starting from u, at any step the probability of first reaching a specific vertex v is 1

n−1 .
Let X be the number of steps of first reaching v from u. Then the distribution of X is a geometric distribution
with p = 1

n−1 . Therefore expected number of steps of first reaching v from u=E(X) = 1
p = n− 1.

2. The expected number of steps starting from u to visit all the vertices in Kn is (n − 1)Hn−1, where
Hn−1 =

∑n−1
j=1 1/j is the Harmonic number.

Solution: Let X be a random variable defined to be the number of steps required to visit all vertices in Kn.
Let C1, C2, ..., CX denote the sequence of steps, where Ci denotes the vertex visited at step i. Call the ith step a
success if the vertex was not visited in any of the first i− 1 steps.
We divide the sequence into epochs, where epoch i begins with the step following the ith success and ends with
the step on which we visit the (i + 1)st vertex. Define the random variable Xi, for 0 ≤ i ≤ n− 2, to be the
number of steps in the ith epoch, so that

X =
n−2∑
i=0

Xi.

Further, let pi denote the probability of success on any step of the ith epoch. This is the probability of visiting
one of the n− 1− i remaining vertices and so,

pi =
n− i− 1

n− 1
.

The random variable Xi is geometrically distributed with parameter pi. Thus, the expected value of Xi is 1/pi.
By linearity of expectation,

1

E[X] = E[
n−2∑
i=0

Xi] =
n−2∑
i=0

E[Xi] =
n−2∑
i=0

n− 1
n− i− 1

= (n− 1)
n−1∑
i=1

1
i

= (n− 1)Hn−1.

1 2-SAT PROBLEM

Recall that the k − SAT problem is the special case of the SAT problem in which each clause contains exactly
k literals. We seek an assignment of Boolean values to the variables such that all the clauses are satisfied, or an
assurance that no such assignment exists. While the k − SAT problem is NP-hard for k ≥ 3, it is solvable in
polynomial time for k = 1 or k = 2. Below is a polynomial-time algorithm for 2− SAT problem (k = 2).

Function MON2SAT-algorithm

1: Start with a random assignment.
2: While there is an unsatisfied clause(both of the two literal values are false).

a.Choose one of its literals uniformly at random and flip it.
3: After r repetitions declare that the formula is probably unsatisfiable.

Algorithm 1: MON2SAT

For this algorithm, if the 2 − SAT problem is truly unsatisfiable, then it will definitely says so. But if the
algorithm says that the 2 − SAT problem is unsatisfiable, it is probably incorrect. (The 2 − SAT problem is
actually satisfiable, but the algorithm failed to find a satisfying assignment.) Therefore it is a RP algorithm.
From the following theorem, we will know that it’s expected running time is polynomial. Consequently, the above
algorithm is a Monte-Carlo algorithm with one-sided error.

Theorem: 1.1. If r = 2n2, where r is the total number of coin tosses, the probability that a satisfying assignment
will be found by Algorithm MON2SAT for a satisfied formula ≥ 1

2 .

Proof:
Let T represents a satisfying assignment. Let t(i)=expected number of steps for the algorithm to reach a sat-

isfying assignments given that our current assignment differs from T in exactly i literals.
We want to know what is t(n) =?
It is easy to see

t(0) = 0.

t(n) = 1 + t(n− 1).

At each iteration, we complement the current value of one of the literals of some unsatisfied clause, so that the
number of literals having correct values either is increased by one or decreased by one. Since in an unsatisfied
clause, at least one of the two literals has an incorrect value and we randomly choose one of the two literals,
therefore with probability at least 1

2 we increase by one the number of literals having correct values. With probability
at most 1

2 , we increase by one the number of literals having incorrect values. Since t(i− 1) ≤ t(i + 1), for t(i), we
have t(i) ≤ 1

2 t(i + 1) + 1
2 t(i− 1) + 1.

Now, let X(i) = 1
2 (X(i− 1) + X(i + 1)) + 1, then X(i) ≥ t(i).

X(0) = 0.

X(n) = 1 + X(n− 1).

Solving for X(i), we have X(n) = n2. Since t(i) ≤ X(i), we have that t(n) ≤ n2. Therefore the expected number of
steps for the MON2SAT algorithm to find a satisfying assignment is O(n2). Using Markov’s Inequality, it is easy to

2

see Pr[Y > 2n2] ≤ 1
2 , where Y is the number of steps for the algorithm to reach a satisfying assignment. Therefore

if r = 2n2, Pr[a satisfying assignment will be found by Algorithm MON2SAT for a satisfied formula] ≥ 1
2 . 2

2 Markov Chains

Definition: 2.1. A Markov Chain M is a discrete-time stochastic process defined over a set S of states in terms
of a matrix P of transition probabilities.The set s is either finite or countably infinite. The transition probability
matrix P has one row and one column for each state in S. The entry Pij is the probability that the next state will
be j, given that the current state is i. Thus, for all i, j ∈ S, we have 0 ≤ Pij ≤ 1, and

∑
j Pij = 1.

As the possion distribution, an important property of a Markov Chain is the memorylessness property: the future
behavior of a Markov chain depends only on its current state, and not on how it arrived at the present state. The
memorylessness property can be stated more formally as follows:

Pr[Xi+1 = j|X0 = i0, X1 = i1, ..., Xt = i] = Pr[Xt+1 = j|Xt = i] = Pij .

A Markov Chain need not have a prespecified initial state; in general, its initial state X0 is permitted to be chosen
according to some probability distribution over S.
For i, j ∈ S, the t-step transition probability is defined as

P
(t)
ij = Pr[Xt = j|X0 = i].

Given an initial state X0 = i, the probability that the first transition into state j occurs at time t is denoted by
r
(t)
ij and given by

r
(t)
ij = Pr[Xt = j, and for 1 ≤ S ≤ t− 1, Xs 6= j|X0 = i].

For X0 = i, the probability that there is a visit to j, at some t 0 is given by

fij =
∑
t>0

r
(t)
ij .

The expected number of steps to reach state j from i is denoted by

hij =
∑
t>0

tr
(t)
ij .

If fij < 1, we have hij = ∞.

Definition: 2.2. If fii < 1, i is called transient. If fii = 1, i is called persistent. A persistent state can be null
or non-null, depending on whether hii = ∞ or not.

Definition: 2.3. A strong component of a directed graph G is a maximal subgraph C of G such that for any
pair of vertices i and j in the vertex set of C, there is a directed path from i to j, as well as a directed path from
j to i.

We restrict our attention to finite Markov chains, i.e., Markov chains whose states are finite in number. We
claim that every state in such a Markov chain is either transient or non-null persistent. We define the underlying
directed graph of a Markov chain as follows: there is one vertex in the graph for each state of the Markov chain;
and there is an edge directed from vertex i to vertex j if and only if pij > 0.

3

Definition: 2.4. A strong component C is said to be a final strong component if there is no edge going from a
vertex in C to a vertex not in C.

Theorem: 2.1. A state is persistent if and only if it lies in a final strong component.

Proof: For any state i, it must lies in a strong component C. If i is persistent, then we say that the strong
component C must be final. Otherwise, there is an edge going from a vertex from C to a vertex not in C, which
means there is no directed path from the vertex back to C. Therefore, the probability for state i going out C and
can not go back to state i is non-zero. It conflicts with the assumption that the state i is persistent.

In a finite Markov chain, starting from any vertex in a strong component C, there is a non-zero probability
of reaching any other vertex in the same strong component in a finite number of steps. If C is a final strong
component, this probability is 1 since the Markov chain can never leave the component C once it enters it. It
follows that any state lies in a final strong component must be persistent. 2

Definition: 2.5. A Markov chain is said to be irreducible, if its underlying graph consists of a single strong final
component.

Definition: 2.6. Define q(t) = (q(t)
1 , q

(t)
2 , ..., q

(t)
n), the state probability vector (also called the distribution of the

chain at time t), to be the row vector whose ith component is the probability that the chain is in state i at time t.

It is easy to check that q(t+1) = q(t)p, so we have by induction that q(t) = q(0)p(t). It follows that a Markov
chain’s behavior for all time is specified by its initial distribution q(0)and its transition matrix P .

Definition: 2.7. A stationary distribution is a probability distribution π, such that π = πp.

Intuitively, if the Markov chain is in the stationary distribution at step t, it remains in the stationary distri-
bution at step t + 1. Thus the stationary distribution is thought of as a description of the steady-state behavior
of the Markov chain.

Definition: 2.8. The periodicity of a state i is d, if P
(n)
ii = 0 when d - n and d is the largest such integer.

Definition: 2.9. A state is said to be periodic if it has periodicity greater than 1, and is said to be aperiodic
otherwise. A Markov chain in which every state is aperiodic is known as an aperiodic Markov chain.

Definition: 2.10. An ergodic state is one that is aperiodic and non-null persistent.

Definition: 2.11. An ergodic Markov chain is one in which all states are ergodic.

The following is a fundamental theorem of Markov chain.

Theorem: 2.2. Any irreducible, finite, and aperiodic Markov chain has the following properties.
1. All states are ergodic.
2. There is a unique stationary distribution π such that, for 1 ≤ i ≤ n, πi > 0.
3. For 1 ≤ i ≤ n, fii = 1, and hii = 1/πi.
4. Let N(i, t) be the number of times the Markov chain visits state i in t steps. Then

lim
t→∞

N(i, t)
t

= πi.

4

3 Random Walks on Graphs

Let G = (V,E) be a connected, non-bipartite, undirected graph where |V | = n and |E| = m. It induces a Markov
chain MG as follows: the states of the MG are the vertices of G, and for any two vertices u, v ∈ V ,

Puv =
{ 1

d(u) if (u, v) ∈ E

0 otherwise,

where d(u) is the degree of vertex u.

Lemma: 3.1. The periodicity of any state in G, is the gcd of the length of all closed walks in G.

Since G is undirected, it has a circle of length 2 that traverse the same edge twice in succession. Further, since G
is non-bipartite it has odd cycles that give closed walks of odd length. It follows that the gcd of the closed walks
is 1, and hence MG is aperiodic. Noting that G is finite, Theorem (2.2) implies that MG has a unique stationary
distribution π.

Lemma: 3.2. For all v ∈ V , πv = d(v)/2m.

Proof: Let [πp]v denote the component corresponding to vertex v.

πv = [πp]v

=
∑

u

πupuv

=
∑

(u,v)∈E

d(u)
C

× 1
d(u)

=
d(v)
C.

Therefore the system admits the solution πu = d(u)/C, where C is a constant. Since
∑

v∈V πv = 1 and∑
v∈V d(v) = 2m, we have C = 2m. Therefore the system admits the solution πv = d(v)/2m which, by Theorem

(2.2), is the unique stationary distribution. 2

As a direct consequence of Theorem (2.2) and Lemma (3.2), we obtain the following lemma.

Lemma: 3.3. For all v ∈ V , hvv = 1/πv = 2m/d(v).

Definition: 3.1. The hitting time huv (sometimes called the mean first passage time) is the expected number of
steps in a random walk that starts at u and ends upon first reaching v.

Definition: 3.2. We define Cuv, the commute time between u and v, to be Cuv = huv + hvu = Cvu. This is the
expected time for a random walk starting at u to return to u after at least one visit to v.

Definition: 3.3. Let Cu(G) denote the expected length of a walk that starts at u and ends upon visiting every
vertex in G at least once. The cover time of G, denoted C(G), is defined by C(G) = maxuCu(G).

Lemma: 3.4. For any edge (u, v) ∈ E, huv + hvu ≤ 2m.

Proof: Replace edges of G by a pair of oppositely directed edges, the directed edges form the state space. There
are 2m states in this new Markov chain. The transition matrix Q for this Markov chain has non-zero entry

Q(u,v),(v,w) = Pvw = 1/d(v),

5

corresponding to an edge (v, w). This matrix is doublystochastic, meaning that not only do the rows sum to
one(as in every Markov chain), but the columns sum to one as well. To see this, fix a (directed) edge (v, w) and
observe that the column sum corresponding to this state is given by∑

x∈V,y∈T (x)

Q(x,y),(v,w) =
∑

u∈T (v)

Q(u,v),(v,w)

=
∑

u∈T (v)

Pvw

= d(v)× 1
d(v)

= 1.

From the result of Problem 6.6 in the textbook, we have the following results.
1. For any stochastic matrix P , ∃π, such that πp = π and

∑
i πi = 1.

2. If P is a doubly stochastic matrix, π is necessarily the uniform distribution.
Therefore it follows that the uniform distribution πQ on the edges is stationary for this Markov chain. Since

πQ = [
1

2m
,

1
2m

, ...,
1

2m
].

By part (3) of Theorem (2.2), we can conclude that the expected time between successive traversals of the directed
edge (v, u) is 2m.
Consider now huv + hvu, and interpret this as the expected time for a walk starting from vertex u to visit vertex
v and return to u. Conditioned on the event that the initial event that the initial entry into u was via the
directed edge (v, u), we conclude that the expected time to go from there to v and then to u along (v, u) is 2m.
The memorylessness property of a Markov chain now allows us to remove the conditioning:since the sequence of
transitions from u onward is independent of the fact that we arrived at u along (v, u) at the start of the commute,
the expected time back to u is at most 2m. 2

4 Electrical Networks

Resistive network is a graph with resistors on the edges.
Kirchoff’s law: current is like water flow. For any node, sum entering equal sum leaving.

Figure 1: Kirchoff’s Law

In figure 1,the arrows represent the direction of current flow, the junction is where the wires meet. I1 is flowing
into the junction whereas I2 and I3 are flowing out. If I1 was 20 amp and I3 was 5 amp then I2 would be 15
amp, as I1 = I2 + I3. Kirchoff’s voltage law states that the sum of voltage drops around a closed circuit is equal
to zero. This can also be expressed as the sum of voltage drops around a closed circuit is equal to the sum of
voltage sources

Ohm’s law: V=IR. (V = voltage difference across resistor).
where V is the Voltage measured in volts, I is the Current measured in amperes, R is the resistance measured in

6

Ohms.

Figure 2: Olm’s Law

In this simple circuit(Figure 2) there is a current of 12 amps (12A) and a resistive load of 1 Ohm (1W). Using
the ohm’s law from above we determine the Voltage:

V = 12× 1 = 12 V olts (12V).

We have two addition formulas for resistors:
Resistors in series: R = R1 + R2.
Resistors in parallel: 1

R = 1
R1

+ 1
R2

.

Given an undirected graph G, let N(G) be the electrical network defined as follows: it has a node for each
vertex in V ; for every edge in E, it has a one ohm resistance between the corresponding nodes in N(G). For two
vertices u, v ∈ V , Ruv denotes the effective resistance between the corresponding nodes in N(G). The following
theorem establishes a close relation between commute time for the simple random walk on G and effective resis-
tances in the electrical network N(G).

Theorem: 4.1. For any two vertices u and v in G, the commute time Cuv = 2mRuv.

Proof: For any vertex u in G. Let Γ(u) denote the set of vertices in V that are adjacent to u. Let d(u)=|Γ(u)|.
Let φuv denote the voltage at u in N(G) with respect to v, if d(x) amperes of current are injected into each node
x ∈ V , and 2m amperes are removed from v. We claim that for any u ∈ V , huv = φuv.
Using Kirchhoff’s Law and Ohm’s law, we have

φuv − φwv = φuw = 1.

Therefore
d(u) =

∑
w∈Γ(u)

(φuv − φwv).

By the definition of expectation, for all u ∈ V \{v},

huv =
∑

w∈Γ(u)

1
d(u)

(1 + huv).

The above two equations are both linear with unique solutions; furthermore, they are identical if we identify φuv

with huv. This proves huv = φuv.To complete the proof of the theorem, we note that huv is the voltage φvu at v
in N(G) measured with respect to v and u, when currents are injected into all nodes and 2mA removed from u.
Changing signs, φvu is now the voltage at u relative to v when current is injected at u, and removed from all other
nodes. Since resistive networks are linear, we can determine Cuv by super-posing the networks on which φuv and
φvu are measured. Currents at all nodes except u and v cancel, resulting in Cuv being the voltage between u and
v where

∑
w∈V d(w) = 2m amperes are injected into u and removed from v, which yields the theorem by Ohm’s

law. 2

7

Lemma: 4.1. The effective resistance between any two nodes u and v is at most the length of the shortest path
between them in G.

Proof: The effective resistance between any two nodes u and v is the voltage difference between u and v when
one ampere is injected into u and removed from v. Let P1 be the shortest path between u and v. If P1 is the only
path between u and v, then since V = IR and R =

∑
i∈P1

Ri, we have φuv equals to the length of the shortest
path. If there exists a second path p2. Then the length of p2 > the length of p1. Therefore the resistance of p2 is
greater than the resistance of p1. Since 1

R = 1
R1

+ 1
R2

, we know the resistance is less than the resistance on the
shortest path. Therefore the effective resistance between u and v is less the one when there exists only one path
between u and v. Hence the effective resistance between any two nodes is at most the length of the shortest path
between them. 2

Definition: 4.1. Diameter of G: the maximum of all of lengths of the shortest path between any 2 vertices in
G.

Obviously, for any n-vertex graph G, we have the diameter of G is less than n− 1. It is easy to see that G can
have at most n2/2 vertices. By Theorem (4.1), we have

Cuv ≤ 2× n2

2
(n− 1) < n3.

.

Corollary: 4.1. In any n-vertex graph, and for all vertices u and v,

Cuv < n3.

5 Cover Time

Theorem: 5.1.
C(G) ≤ 2m(n− 1).

Proof: Let T be any spanning tree, T can be traversed, such that each edge is visited exactly once in each
direction. V0 be any vertex on G. Let’s denote the sequence of the traversal of the tree.

v0, v1, . . . , v2n−2 = v0.

Cv0(G) ≤
2n−3∑
j=0

hvj ,vj+1 =
∑

(u,w)∈T

Cuw.

Since (u, w) ∈ E, by Lemma (3.4), Cuw ≤ 2m.
It follows that

Cv0(G) ≤ 2m(n− 1).

Since v0 can be any vertex in G, we have

C(G) ≤ 2m(n− 1).

2

Let R(G) = maxu,v∈V Ruv; we call R the resistance of G. The resistance of a graph characterizes its cover
time fairly tightly.

8

Theorem: 5.2. mR(G) ≤ C(G) ≤ 2`3R(G) lnn + n.

Proof: Notice that there exists vertices u, v such that R(G)=Ruv. We know Cuv = huv + hvu. By Theorem
(4.1)), we know Cuv = 2mRuv. It follows that mR(G) = m× Cuv

2m = Cuv

2 . Since Cuv

2 ≤ max{huv, hvu}, we have
mR(G) ≤ C(G).

Divide the random walk of length 2`3mR(G) ln n into lnn epochs each of length 2`3mR(G). For any vertex
v, the hitting time huv is at most 2mR(G), regardless of the vertex u at which an epoch starts. By the Markov
inequality, the probability that v is not visited during any single epoch is at most 1/`3. Therefore the probability
that any vertex is not visited within 2`3mR(G) lnn steps is at most 1/n2. When this happens(there is a vertex
that has not been visited within 2`3mR(G) ln n steps , we continue the walk until all vertices are visited, and n3

steps suffice for this(by Corollary (4.1)). Thus the expected total time is at most

2`3mR(G) lnn + (1/n2)n3 = 2`3mR(G) ln n + n.

2

6 Graph Connectivity

We are now ready for our first algorithmic application of random walks. Two vertices in an undirected graph
G are said to be connected if there exists a path between them. A connected component of G is a (maximal)
subset of vertices in which every pair of vertices is connected.

The undirected s-t connectivity (USTCON) problem is the following:given an undirected graph G and two
vertices s and t in G, decide whether s and t are in the same connected component.

A probabilistic log-space Turing machine for a language L is a probabilistic Turing machine using space
O(log n) on instances of size n, and running in time polynomial in n. We say that a language(equivalently, a
decision problem) A is in RLP if there exists a probabilistic log-space Turing machine M such that on any input
x,

Pr[M accepts x]
{

≥ 1
2 x ∈ A

0 x /∈ A.

Theorem: 6.1. USTCON ∈ RLP.

Proof: The log-space probabilistic Turing machine simulates a random walk of length 2n3 through the input
graph, starting from s. If it encounters t, it then says YES; otherwise, it outputs NO. Clearly the machine will
never say YES on an graph of USTCON in which s and t are not in the same component. What’s the probability
that it outputs NO when it should have said YES.

By Theorem (4.1), hst ≤ n3. By the Markov inequality, if t is in the same component of G as s, the probability
that it is not visited in a random walk of 2n3 steps starting from s is at most 1/2. The Turing machine uses its
workspace to count up to 2n3, and to keep track of its position in the graph during the walk; both of these require
only space O(log n).
2

We now consider a specific class of non-uniform, deterministic log-space algorithms for USTCON known as
universal traversal sequences. We focus on n-vertex graphs that are regular of degree d. Such a graph is said to
be labeled if, at each vertex in the graph, each of the d edges incident on that vertex has a unique(integer) label
in {1, ..., d}. There is no requirement that an edge receive the same label at both end-points.

Any sequence of symbols σ = (σ1, σ2, ...) from {1, ..., d} together with a starting vertex v in a labeled graph
describes a walk through the graph.

9

A sequence σ is said to traverse a labeled graph G if the walk it prescribes visits every vertex of G regardless
of the starting vertex. A sequence σ is said to be universal traversal sequence for a class of labeled graphs if it
traverses every graph in the class, and for every starting vertex.

Let G be a family of connected labeled d−regular graphs on n vertices. Each member of each graph counts as
a distinct member of G. Let U(G) denote the length of the shortest universal traversal sequence for all the labeled
graphs in G. Let R(G) denote the maximum resistance between any pair of vertices in any graph in G.

Theorem: 6.2. U(G) ≤5mR(G)log2(n|G|).

Proof: Given a labeled graph G ∈ G, let v be a vertex of G. Consider a random walk of length 5mR(G)log2(n|G|),
divided into log2(n|G|) ”epochs” each of length 5mR(G). The probability that the walk fails to visit v in any epoch
is at most 2/5 by Theorem (4.1) and Markov’s inequality, regardless of the vertex of G at which the epoch began.
The probability that v is not visited during any of the log2(n|G|) epochs is thus at most (2/5)log(n|G|), which can
be written into (n|G|)−c for a value of c > 1. Summing this probability over all n choices of the vertex v and all
|G| choices of the labeled graph G, the probability that the random walk (sequence) fails to be universal is less than
one. Thus there is a sequence of this length that is universal for the class G. 2

Let U(d, n) denote the length of the shortest universal traversal sequence for connected, labeled, n-vertex,
d-regular graphs.

Exercise: 6.1. Show that the number of labeled n-vertex graphs that are d-regular is (nd)O(nd).

Proof. First choose any vertex u, there are n different ways to label it. There are d! different ways to label the
edges incident on it. Therefore there are n × d! different ways to label u and its incident edges. For a second
randomly chosen vertex, say v, there are n− 1 different ways to label it and d! different ways to label the edges
incident on it. Therefore there are (n− 1)× d! different ways to label v and its incident edges. Similarly, for the
third vertex, there are (n − 2) × d! different ways to label it and its associated edges. Consequently, there are
total (n × d!) × ((n − 1) × d!)... × (1 × d!) = (n!)(d!) different ways to label the graph. Therefore, let X denote
the number of labelled n−vertex graphs that are d-regular. X = (n!)(d!).

X = (n!d!)
= nd× (n− 1)(d− 1)× (n− 2)(d− 2)× ...

≤ (nd)(nd)

= (nd)O(nd)

Corollary: 6.1. U(d, n) = O(n3d log n).

Proof: The diameter of every connected n-vertex, d-regular graph is O(n/d) and so, therefore, is its resistance.
The number of edges m = nd/2. The result now follows from Exercise (6.1) and Theorem (6.2). 2

For directed graphs, we can’t use the same techniques used in undirected graphs, because a random walk may
trapped at a vertex which does have edges going out. In this case, we modify the technique by jump back from
where we got stuck.

As before, let the edges leaving a vertex v be labeled 1, 2, ..., d(v). Thus any path in the graph can be associated
with a string whose symbols are drawn from 1, 2, ..., n− 1, as in the discussion of universal traversal sequences.
If we could begin at s and enumerate the walks corresponding to all such strings of length n − 1, we would be
assured of discovering a path from s to t if one existed. The number of such strings being of the order nn, we
would require Ω(n log n) space to maintain a counter that could index these strings. Since we only wish to use
O(n log n) space, we use randomization to achieve this reduction in space.

10

The algorithm consists of repeatedly executing the following two steps until either step results in termination.

Function A Monte Carlo Algorithm for STCON in directed graphs

1: Starting at s, simulate a random walk of n − 1 steps. Each step consists of choosing an edge leaving the
current vertex uniformly at random. If t is reached, output YES and stop. If the walk reaches a vertex with
no outgoing edge, or a vertex other than t after n− 1 steps, return to s. This step can be implemented using
O(log n) bits of memory.

2: Flip log nn unbiased coins. If they all come up HEADS, halt and output NO. This can be implemented by a
counter that keeps track of the number of coins that have been flipped. The number of bits required in this
counter is log(log nn), which is O(log n), as required.

Algorithm 2: A Monte Carlo Algorithm for STCON in directed graphs

Since the number of distinct walks from s is at most nn, the probability of discovering an s−t path on a trial(in
Step 1) is at least n−n. The probability of terminating in Step 2 on a trial is the probability that all the coins
come up HEADS, and this is n−n. Thus on each trial, the algorithm terminates successfully with probability
at least n−n, and erroneously with probability at most (1 − n−n)n−n ≤ n−n. Let pw denote the probability of
outputting YES on termination; then we have

pw ≤ n−n + (1− 2n−n)pw,

where the first term on the right-hand side denotes the probability of succeeding on the very first trial, while the
second term denotes success thereafter. Solving, we have pw ≥ 1/2.

Theorem: 6.3. The above algorithm will, given an instance of STCON,
1. Always output NO if there is no path from s to t.
2. Output YES with probability at least 1/2 if there is a path from s to t.

The algorithm uses space O(log n).

11

