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For randomized algorithms, usually knowing the bound of expected running time is not enough. It is more
desirable to show that the expected running time is small with high probability. To prove this statement, we
will begin by examining a family of stochastic processes that is fundamental to the analysis of many types of
randomized algorithms. They are Occupancy Problems.

1 Occupancy Problems

A Simple Example of Occupancy Problem

1. We have m indistinguishable balls.

2. We have n distinct bins.

3. We throw those m balls independently, uniformly into those n bins.

Questions:

1. What is the expected number of balls in a bin?

2. What is the expected number of bins with k balls in each of it?

Definition: 1.1 The probability that a random variable deviates from its expectation is referred to as the tail
problem of that deviation.

Theorem: 1.1 The probability of the Union of events is no more than the sum of their probabilities.

Pr[
n⋃

i=1

Ei] ≤
n∑

i=1

Pr[Ei]

Proof: For n = 2
P (E1 ∪ E2) = P (E1) + P (E2)− P (E1E2) ≤ P (E1) + P (E2)

That is

Pr[
n=2⋃

i=1

Ei] ≤
n=2∑

i=1

Pr[Ei]

Suppose for n, it satisfies

Pr[
n⋃

i=1

Ei] ≤
n∑

i=1

Pr[Ei]

For n = n + 1, Then we have

Pr[
n+1⋃

i=1

Ei] = Pr[
n⋃

i=1

Ei ∪ En+1] = Pr[
n⋃

i=1

Ei] + Pr[En+1]− Pr[
n⋃

i=1

EiEn+1]
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Since

Pr[
n⋃

i=1

Ei] ≤
n∑

i=1

Pr[Ei]

and

Pr[
n⋃

i=1

EiEn+1] ≥ 0

Therefore

Pr[
n+1⋃

i=1

Ei] ≤
n∑

i=1

Pr[Ei] + Pr[En+1] ≤
n+1∑

i=1

Pr[Ei]

Thereom is proved. 2

Now, let’s consider the case m = n. For 1 ≤ i ≤ n, let X be the number of balls in the ith bin. Let us try
to make a statement with very high probability, no bins receives more than k balls, for a chosen k. Let Ej(k)
denote the event that bin j has k or more balls in it. The probability that bin j receives exactly i balls is

(
n
i

)(
1
n

)i (
1− 1

n

)n−i

≤
(

n
i

)(
1
n

)i

≤
(ne

i

)i
(

1
n

)i

=
(e

i

)i

Thus,

Pr[Ej(k)] ≤
n∑

i=k

(e

i

)i

≤
( e

k

)k
(

1 +
e

k
+

( e

k

)2

+ · · ·
)

Let k∗ = d(e lg n)/ lg lg ne. Substitute k∗ into the above equation

Pr[Ej(k∗)] ≤
( e

k∗

)k∗
(

1 +
e

k∗
+

( e

k∗

)2

+ · · ·
)

That is can be simplified as

Pr[Ej(k∗)] ≤
( e

k∗

)k∗ 1
1− e/k∗

Using k∗ = d(e lg n)/ lg lg ne, we get
Pr[Ej(k∗)] ≤ n−2

We invoke the principle: the probability of the union of the events is no more than their sum. We have

Pr[
n⋃

j=1

Ej(k∗)] ≤
n∑

j=1

Pr[Ej(k∗)] ≤ 1
n

Thus we established

Theorem: 1.2 With probability at least 1− 1/n, no bin has more than k∗ = (e ln n)/ ln ln n balls in it.

Suppose that m balls are randomly assigned to n bins. We study the probability of the event that they all
land in distinct bins. Consider the assignment of the balls to bins as a sequential process: we throw the first ball
into a random bin, then next ball, and so on. For 2 ≤ i ≤ m, let Ei denote the event that the ith ball lands in a
bin not containing any of the first i− 1 balls. From the probability of the intersection for a collection of event

Pr[
k⋂

i=1

Ei] = Pr[E1]× Pr[E2|E1]× Pr[E3|E1 ∩ E2] · · · Pr[Ek| ∩k−1
i=1 Ei]
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We have

Pr[
m⋂

i=2

Ei] = Pr[E2]Pr[E3|E2]Pr[E4|E2 ∩ E3] · · · Pr[Em| ∩m−1
i=2 Ei]

The probability that ith ball lands in an empty bin given that the first i− 1 balls fell into distinct bins is

Pr[Ei| ∩i−1
j=2 Ej ] = 1− i− 1

n

Making use of the fact that

1− x ≤ e−x

We have

Pr[
m⋂

i=2

Ei] ≤
m∏

i=2

(
1− i− 1

n

)
≤

m∏

i=2

e−(i−1)/n = e−m(m−1)/2n

Corollary: 1.1 For m = d√2n + 1e, the probability that m balls land in distinct bins ≤ 1
e

When m increases beyond this value, the probability drops rapidly. A special case is popular in mathematics
as the birthday problem. The 365 days of the year (ignoring leap years) correspond to 365 bins, and the birthday
of each of m people is chosen independently and uniformly from 365 days. How large must m be before two
people in the same room are likely to share their birthdays? From the Corollary 1.1,

m = d
√

2n + 1e = d√2× 365 + 1e = 28

Therefore, 28 people is obviously the answer.

2 The Markov and Chebyshev Inequalities

Theorem: 2.1 (Markov Inequality): Let Y be a random variable assuming only non-negative values. Then
for all t ∈ R+,

Pr[Y ≥ t] ≤ E[Y ]
t

Proof: Let

f(y) = 1, if y ≥ t;

f(y) = 0, otherwise.

For all y, it satisfies

f(y) ≤ y

t

Then we have

Pr[Y ≥ t] = E[f(Y )] ≤ E

[
Y

t

]
=

E[Y ]
t

2
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Corollary: 2.1 Let Y be a random variable assuming only non-negative values. Then for all t ∈ R+,

Pr[Y ≥ kE[Y ]] ≤ 1
k

Theorem: 2.2 (Chebyshev’s Inequality): Let X be a random variable with expectation µX and standard
deviation σX . Then for all t ∈ R+,

Pr[|X − µX | ≥ tσX ] ≤ 1
t2

Proof:
First note that

|X − µX | ≥ tσX

(X − µX)2 ≥ t2σ2
X

The random variable

Y = (X − µX)2

has expectation

E(Y ) = σ2
X

From Markov Inequality, we have

Pr[Y ≥ t2σ2
X ] ≤ E[Y ]

t2σ2
X

≤ σ2
X

t2σ2
X

=
1
t2

2

3 Randomized Selection

Consider the problem of selecting the kth smallest element in a set S of n element. We assume that the elements of
S are distinct. Let rS(t) denote the rank of an element t (the kth smallest element has rank k) and let S(i) denote
the ith smallest element of S. Thus the problem becomes that we seek to identify S(k). LazySelect algorithm is
introduced.

Let’s establish some important property of independent random variables in order to perform the analysis of
LazySelect algorithm.

Definition: 3.1 Set X and Y be two random variables defined on the sample space. The joint distribution of
X and Y is given by

Pr[x, y] = Pr[X = x, Y = y]

Theorem: 3.1 The random variable X and Y are independent if

Pr[X = x, Y = y] = Pr[X = x]Pr[Y = y]

Theorem: 3.2 If X and Y are the independent random variable, then

E[XY ] = E[X]E[Y ]

Theorem: 3.3 Let X1, X2, · · ·Xm be the independent random variables, and X =
∑m

i=1 Xi. Then

σ2
X =

m∑

i=1

Σ2
Xi

4



Algorithm LazySelect:

Input: A set S of n elements, and an integer k in [1, n].
Output: The kth smallest element of S, S(k).

1: Pick n3/4 elements from S, chosen independently and uniformly at random with replacement; call this multiset
of elements R.

2: Sort R in O(n3/4 log n) steps using any optimal sorting algorithm.
3: Let x = kn−1/4. For l = max{bx − √nc, 1} and h = min{dx +

√
ne, n3/4}, let a = R(l) and b = R(h). By

comparing a and b to every element of S, determine rS(a) and rS(b).
4: if k < n1/4, then P = {y ∈ S|y ≤ b};

else if k > n− n1/4, let P = {y ∈ S|y ≥ a};
else if k ∈ [n1/4, n− n1/4], let P = {y ∈ S|a ≤ y ≤ b};
Check whether S(k) ∈ P and |P | ≤ 4n3/4 + 2. If not, repeat Steps 1− 3 until such a set P is found.

5: By sorting P in O(|P | log |P |) steps, identify P(k−rS(a)+1), which is S(k).

Algorithm 3.1: LazySelect Algorithm

Proof:
Let µi denote E[Xi], and µ =

∑m
i=1 µi. The variance of X is given by

E[(X − µ)2] = E[(
m∑

i=1

(Xi − µi))2]

Expanding the latter and using linearity of expectations, we obtain

E[(X − µ)2] =
m∑

i=1

E[(Xi − µi)2] + 2
∑

i<j

E[(Xi − µi)(Xj − µj)]

Since all pairs of Xi, and Xj are independent, so are the pairs (Xi − µi), (Xj − µj). Each term in the latter
summation can be replaced by E[(Xi−µi)]E[(Xj−µj)]. Since E[(Xi−µi)] = E[Xi]−µi = 0, the latter summation
vanishes. It follows that

E[(X − µ)2] =
m∑

i=1

E[(Xi − µi)2] =
m∑

i=1

σ2
Xi

2

Thus the idea of the algorithm is to identify two elements a and b in S such that both of the following statements
hold with high probability:

1. The element S(k) that we seek is in P .

2. The set P of elements between a and b is not very large, so that we can sort P inexpensively in step 5.

Theorem: 3.4 With probability 1 − O(n−1/4), LazySelect finds S(k) on the first pass through Steps 1-5. The
running time of LazySelect algorithm is 2n + o(n).

Proof:
The time bound is easily established by examining the algorithm; Step 3 requires 2n comparisons, and all other

steps perform o(n) comparisons, provided the algorithm finds S(k) on the first pass through Steps 1−5. We measure
the running time of LazySelect algorithm in terms of the number of comparisons performed on it, therefore, the
running time of LazySelect algorithm is 2n + o(n).

We now consider the mode of failure: a > S(k) because fewer than l of the samples in R are less than or equal
to S(k) (so that S(k) /∈ P ). Set

5



Xi = 1, if R(i) ≤ S(k),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Sk. Note that we really do mean the number of samples,
and not the number of distinct elements. The random variables Xi are Bernoulli random variables. Then the
expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

Since
l = max{bx−√nc, 1}

X < l

Then we have
X < x−√n

X − x < −√n

| X − x |≥ √
n

The probability of the above is
Pr[| X − x |≥ √

n] = Pr[| X − µX |≥ √
n]

Apply the Chebyshev bound to X and σX ≤ n3/8/2

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

An essentially identical argument shows that

Pr[b < Sk] = O(n−1/4)

Since the probability of the union of events is at most the sum of their probabilities, the probability that either
of these events occurs (causing S(k) to lie outside P ) is O(n−1/4)

2

If the element a is greater than Sk (or if b is smaller than Sk), we fail because P does not contain Sk. Now
let’s show that

Pr[b < Sk] = O(n−1/4)
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Consider the mode of failure: b < S(k) because at least h of the random samples in R should be smaller than
S(k) (so that S(k) /∈ P ). Set

Xi = 1, if R(i) ≤ S(k),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Sk. Note that we really do mean the number of samples,
and not the number of distinct elements. The random variables Xi are Bernoulli random variables. Then the
expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

Since
h = min{dx +

√
ne, n3/4}

X ≥ h

Then we have
X ≥ x +

√
n

X − x ≥ √
n

| X − x |≥ √
n

The probability of the above is

Pr[| X − x |≥ √
n] = Pr[| X − µX |≥ √

n]

Apply the Chebyshev bound to X and σX ≤ n3/8/2

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

So we proved that
Pr[b < Sk] = O(n−1/4)

2

The second type of failure occurs when P is too big. To study this, we define kl = max{1, k − 2n3/4} and
kh = min{k+2n3/4, n}. To obtain an upper bound on the probability of this kind of failure, we will be pessimistic
and say that failure occurs if either a < Skl or b > Skh. The analysis is very similar to that above in studying
the first mode of failure, with ki and kh playing the role of k.

For k < n1/4 and P = {y ∈ S|y ≤ b}, let’s show

Pr[a < Skl] = O(n−1/4)
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Set

Xi = 1, if R(i) ≤ S(kl),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skl. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X,

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

2

Let’s show

Pr[b > Skh] = O(n−1/4)

Proof:
Set

Xi = 1, if R(i) ≤ S(kh),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skh. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

8



µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X, we have

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

2

For k > n− n1/4 and P = {y ∈ S|y ≥ a}; let’s show

Pr[a < Skl] = O(n−1/4)

Set

Xi = 1, if R(i) ≤ S(kl),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skl. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X,

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

2

Let’s show

Pr[b > Skh] = O(n−1/4)

Proof:
Set

Xi = 1, if R(i) ≤ S(kh),
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Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skh. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X, we have

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

2

For k ∈ [n1/4, n− n1/4] and P = {y ∈ S|a ≤ y ≤ b}; let’s show

Pr[a < Skl] = O(n−1/4)

Set

Xi = 1, if R(i) ≤ S(kl),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skl. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4
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This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X,

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

2

Let’s show

Pr[b > Skh] = O(n−1/4)

Proof:
Set

Xi = 1, if R(i) ≤ S(kh),

Xi = 0, otherwise.

Thus

Pr[Xi = 1] = k/n

and

Pr[Xi = 0] = 1− k/n

Let

X =
n3/4∑

i=1

Xi

be the number of samples of R, that are at most Skh. The random variables Xi are Bernoulli random variables.
Then the expectation and the variance of a Bernoulli random variable with success probability p

µX =
kn3/4

n
= kn−1/4

σ2
X = n3/4

(
k

n

) (
1− k

n

)
≤ n3/4

4

This implies that σX ≤ n3/8/2. Applying the Chebyshev bound to X, we have

Pr[| X − µX |≥ √
n] ≤ Pr[| X − µX |≥ 2n1/8σX ] = O(n−1/4)

2

Adding up the probability of all of these failure modes, we find that the probability that LazySelect algorithm
fail to find a suitable set P is O(n−1/4)
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