## A Probabilistic Identity

K. Subramani
Department of Computer Science and Electrical Engineering,
West Virginia University,
Morgantown, WV
ksmani@csee.wvu.edu

**Theorem:** 0.1 For arbitrary events  $E_1$  and  $E_2$  in a sample space S,

$$\mathbf{Pr}[E_1] \leq \mathbf{Pr}[E_1|E_2^c] + \mathbf{Pr}[E_2]$$

Proof:



Figure 1: A probabilistic identity

Observe from Figure (1), that the set  $E_1$  can be partioned into the disjoint sets  $E_1 - E_2$  and  $E_1 \cap E_2$ . From elementary set theory, we know that  $E_1 - E_2 = E_1 \cap E_2^c$  (Work it out!) Since the sets,  $E_1 \cap E_2^c$  and  $E_1 \cap E_2$  are disjoint (mutually exclusive), we have,

$$\mathbf{Pr}[E_1] = \mathbf{Pr}[E_1 \cap E_2^c] + \mathbf{Pr}[E_1 \cap E_2]$$

$$\leq \mathbf{Pr}[E_1 \cap E_2^c] + \mathbf{Pr}[E_2]$$

$$= \mathbf{Pr}[E_1 | E_2^c] . Pr[E_2^c] + \mathbf{Pr}[E_2]$$

$$\leq \mathbf{Pr}[E_1 | E_2^c] + \mathbf{Pr}[E_2]$$