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1. We are given the probability distribution described by:

1
PI'(X) = m,.’ﬂzk,k-’-l,...,g

= 0, otherwise

For the above PMF to describe a valid probability distribution, it must satisfy two conditions:

() 0<Pr(X=2)<1

Pr(X::c):ﬁ,forx:k,k—kl,...,ﬁ
Since £ > k then £ — k+ 1> 1. Thus,0<ﬁ<1

Hence, 0 <Pr(X =12) <1

(b) >, Pr(X=2)=1
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Thus, we may conclude that the PMF descibed by (1) is a valid probability distribution.

e The mean of the distribution E(X) is calculated as:
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e The standard deviation of the distribution oy is calculated as:

02 = E[X?|- (Efa])’
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2. When the coin is tossed twice, the sample space is: S = {HH,TT,HT,TH}. Since the coin turns up HEADS with
probability p # %, the goal in this problem is to devise a revised sample space, in which HEADS and TAILS are
equiprobable. Note that the events {HT'} and {T'H} both occur with probability p- (1 — p). Consequently, we can
create a new sample space S’ = {HT,TH}, in which both events are equiprobable. Denote either one as HEADS
and the other as TAILS!



Figure 1: A bad input instance for the vertex-contraction min-cut algorithm

3. Consider the graph in Figure (1).

A and B are complete graphs on n vertices connected by a single edge. Clearly this edge is the min-cut of this input
instance. We need to study the probability that the edge survives a round of vertex contraction, i.e. this cut is not
lost as a result of contraction. Any vertex contraction will destroy the min-cut, if it picks one vertex from A and the
other vertex from B. The process of picking 2 random vertices from the graph can be done in one of the following
2 ways:

(a) Pick a vertex, uniformly at random; then pick another vertex uniformly at random. Under this scheme, the

probability that a particular vertex-pair is picked is m (sequential model).

b) Pick a vertex pair, uniformly at random; under this scheme, the probability that a particular vertex-pair is
b y b b
picked in m, where C(2n,2) is the number of combinations of 2n objects, taken 2 at a time (parallel
model).

Both schemes differ only by a constant insofar as this analysis is concerned; we will assume that the sampling is
done as per the sequential model.

Observe that the only way in which the min-cut survives a round of 2n — 2 vertex contractions, is if A has been
reduced to a single vertex and B has been reduced to a single vertex, i.e. each of the 2n — 2 contraction operations
chose both vertices from A or both vertices from B. Let E4 denote the event that A was reduced to a single vertex
at some point during the 2n — 2 contractions and let Ej denote the event that B was reduced to a single vertex, at
some point during the 2n — 2 contractions. We need to study the probability of the event £ = E4 N Ep.

0.1 A Probabilistic Recurrence

Consider a graph G with 2 components A and B, connected by a singe edge as shown in Figure (1). Let a = |A4]
and b = |B|

Let E{* denote the event that both vertices were picked from A in the first contraction. Clearly Pr[E{!] = 245 X
2527, likewise, Pr[Ef] = by x bodo,

Observe that a min-cut preserving contraction in G, results in either A losing a vertex or B losing a vertex. Both
these events are mutually exclusive. Let T'(a,b) denote the probability with which the min-cut survives a round of
a + b — 2 contractions. It follows that

T(a,b) = Pr[E#]-T(a—1,b)+Pr[EP]-T(a,b—1)
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Equation (2) is true for all a,b > 2.
We use mathematical induction on the sum of the indices (a + b) to show that T'(a,b) < ()22,

It is not hard to verify the following initial condtions:

7(1,0) 0
T(0,1) = 0
T1,1) = 1
T2,1) = ;_ T(1,1)+§-g-T(2,0)
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Clearly, the proposition is true for the base cases a + b = 3,4, 5,6 (Verify it!).
Let us assume that T'(j, k) is true, whenever 6 < j +k <n — 1.
Using (2), we have,
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It follows that T'(n,n) < (1)2" 2. Thus, the probability of preserving the min-cut is exponential in the size of the
graph.

. Refer Lecture Notes II!

. Consider an arbitrary language L € RP. We need to show that L € BPP. Since L € RP, there exists an algorithm
A to decide L as follows:

e z € L= Pr(A(z) accepts) > %

e © ¢ L= Pr(A(z) accepts) =0
Now consider the following algorithm, which we denote by A’, to decide L. Given an arbitrary string x € >.*, run
A twice on it. If either run accepts, declare x € L, otherwise declare x ¢ L. If € L, the probability that A rejects
is < %; consequently the probability that A’ rejects is < %; it follows that the probability that A’ accepts > %. If

z & L, the probability that A accepts = 0; hence the probability that A’ accepts = 0 < %. It is clear that A’ is a
BPP algorithm for L! (see [MR95].) The claim follows.

. Define
fly) = 1, if h(y) >t

= 0 otherwise

It follows that E[f(Y)] = L.Pr[h(Y) > ¢]+ 0.Pr[h(Y) < t]; hence Pr[h(Y) > t] = E[f(Y)]. Since f(y) < %,Vh(y)
(note it is not true for all y!), we have

E[f(Y)]

A
=

1)
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