Analysis of Algorithms - Midterm (Solutions)

L. Kovalchick
LCSEE,
West Virginia University,
Morgantown, WV
{lynn@csee.wvu.edu}

1. Consider the recurrence relation (6 points):

T(1) = 1
Tn) = 2-Tn—-1)4+1, n>1
Show that T'(n) = 2" -1
Proof: Using induction:
Base case T'(1):
T(1) 1
T(1) = 2'-1
= 2-1
= 1
Thus, the base case is true.
Let us assume that T (k) is true, i.e.,
Tk) = 2F-1
We need to show that T(k + 1) is true.
Th+1) = 2-T(k+1-1)+1
= 2-T(k)+1
= 2-(2" —=1)+1 (using the inductive hypothesis)
= 2kl _241
— 2k+1 -1
T(k+1) = 2H1_1

Thus, P(k+1) is true and we have shown that P(k) — P(k + 1); applying the principle of mathematical
induction, we conclude that the conjecture is true. O

2. Show that if f(n) = O(g(n)) and e(n) = O(h(n)), then f(n)-e(n) = O(g(n) - h(n)). (4 points)
Proof: By definition of ’O’, f(n) = O(g(n)) implies that:

Also, by definition of ’0O’, e(n) = O(h(n)) implies that:

Observe that:

=
2
A
2
IA A
[>T
=N
2
Q\
>
2

Then, by definition of *O’, f(n) -e(n) = O(g(n) - h(n)). O

3. Let T be a proper binary tree of height h, having n nodes. Show that h > log,(n + 1) — 1. (6 points)

Proof: Note that we want to find a lower bound on the height h of a proper binary tree containing n
nodes. The height will be minimized when all n nodes are packed as tightly as possible, i.e. when the
proper binary tree is also o full binary tree. In a full binary tree, of height h, the total number of nodes is:
20 120 422 4 42k =20 1 g, h = log,(n+ 1) — 1. If the tree T is not full, the height h will
only increase. We can thus conclude that h > log,(n+1)—1, for any proper binary tree T having n nodes. O

4. Consider the binary tree T in Figure (1). Write down the order of the nodes, when you traverse the tree in
inorder, preorder and postorder. (6 points)

/ ©, /
CARC o
Figure 1: Binary Tree T

Observe that in an inorder traversal, the left children of a node are visited before it is visited and the right
children of a node are visited after it is visited. Applying this recursively, we conclude that the nodes in T
would be visited in the following order: —1,1,8,2,3,4,5,9,6,7.

Observe that in an preorder traversal, a node is visited before its children are visited and the left children
of a node are visited before the right children are visited. Applying this recursively, we conclude that the
nodes in T would be visited in the following order: 4,2,1,-1,8,3,5,6,9,7.

Observe that in an postorder traversal, a node is visited after its children are visited and the left children
of a node are visited before its right children are visited. Applying this recursively, we conclude that the
nodes in T would be visited in the following order: —1,8,1,3,2,9,7,6, 5, 4.

Prove that Algorithm (0.1) correctly sorts an n—input sequence S provided as an n—element array A
(in increasing order). You may assume that the n elements of the array are stored in the locations
A[1], A[2],..., A[n]. What is the worst-case running time of the algorithm? (8 points)

Hint: You may either use the Loop Invariant Technique or induction (second principle!) on the number of
elements in the array!

Function BUBBLE-SORT(A, n)

1:

N

for i=1ton—1)do
for (j=i+1ton)do
if (A[i] > A[j]) then

temp = Ali]
AJi) = Alj
A[j] = temp
end if
end for
end for

Algorithm 0.1: Bubble Sort Algorithm

Proof: We shall discuss correctness of the BUBBLE-SORT() Algorithm using the Loop invariant technique
(Please see Pg. 27 of [GT02]).

We use the following loop invariant:
S(i): The first i — 1 elements are in their correct positions in A.

The key difference between our approach and the approach in [GT02], is that we start from S(1) since our
elements are stored in A[1], A[2],......, A[n] as opposed to A[0], A[1],..., A[n —1].

S(1) s trivially true, since A[0] does not exist. Consider the working of the outer loop in iteration i = k.
Prior to the start of this iteration, we have A[l] < A[2]... < A[k — 1], with A[k — 1] being the (k — 1)t
smallest element in A. As iteration i = k proceeds, we scan through the array to determine the smallest
element in A[k] through A[n] and put it in A[k]. Hence, if S(1),...,S(k) are true, then S(k + 1) is true,
i.e. after the i = k iteration (and before the i = k+1 iteration), we have A[1l] < A[2]... A[k—1] < A[k] and
Alk] is the k'h smallest element in A. It follows that S(n) is true, i.e. at the end of the iteration i =n—1,
the first n — 1 elements are in their correct positions in A. This forces An] to be in its correct place!

Thus, we have shown that the algorithm is correct by applying the principle of loop invariants.

A rough approzimation to the running time can be obtained by observing that the i loop runs at most n
times and so does the j loop. Further, within the nested for loops, at most 4 statements are executed. So
the total running time cannot exceed 4 - n2, i.e., O(n?). We give a more formal analysis below. Let T(n)
denote the worst-case running time of Algorithm (0.1). We then have

i=1 j=i+1

T(n)

n—1

4-Z(n—i)

i=1

Il
]
7

n—1
— 4 (n_zl_n'(T;—l))
- tn-n -2,
. n-(n—1)
= 4. 5
= 0(n?

In passing, we note that there is no good input for this algorithm. The if statement within the double for
loop is executed)(n?) times. O

References

[GT02] Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundations, Analysis and Internet
Ezxamples. John Wiley & Sons, 2002.

