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1 Problems

1. Prove using induction:
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Proof: Base case P(1):

1
LHS = Ziz

RHS =

Thus, LHS = RHS and P(1) is true.

Let us assume that P(k) is true, i.e.,

St = k-(k+1)6-(2k+1)

We need to show that P(k + 1) is true.
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LHS=RHS. Thus, we have shown that P(k) — P(k+1); applying the principle of mathematical induction,
we conclude that the conjecture is true. O

. Consider the recurrence relation:

T(n) = 1, if n=1
= T(n—-1)+2", otherwise

Show that T'(n) = 2"+ — 3.

Proof: Base Case:

Using expansion:
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3. Show that Y., logi = O(nlogn)

Proof: We can obtain an upper bound on this series by bounding each term of the series, by the largest term
(logn). From this, we have:
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Then by definition of '0’, Y1, logi = O(nlogn). O

4. Show that Y"1 logi = Q(nlogn)

Proof: Assume without loss of generality that n is even. Thus,
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Note:

Snlogn —5n > nlogn
5nlogn —nlogn > b5n
4nlogn > bdn
logn > °
ogn >
n > 2%

We can thus choose n > 4, since 22 = 4.
Then by definition of 27, > logi = Q(nlogn). O



5. Let T be a proper binary tree of height h having n nodes. What is the minimum value for n as a function
of A? Justify your answer.

The minimum value for n as a function of his: n =2h +1

Observe that the minimum value for n in a proper binary tree of height h occurs when the tree is unbalanced.
In this case, each internal node has exactly one child that is an external node, except for the internal node
at level h —1, which has 2 children which are external nodes. This means that each level of the tree contains
exactly two nodes, except for level 0 which contains only 1 node (the root). It follows that a tree of height
h would have 2h + 1 nodes.



